
Reliability Improvements for Multiprocessor Systems
by Health-Aware Task Scheduling

Robert Schmidt∗, Rehab Massoud∗, Jaan Raik†, Alberto García-Ortiz∗, Rolf Drechsler∗
∗University of Bremen, agarcia@item.uni-bremen.de, {rschmidt,massoud,drechsler}@uni-bremen.de

†Tallin University of Technology, jaan.raik@ati.ttu.ee

Abstract—Multiprocessor systems are increasingly susceptible
to faults due to shrinking feature sizes and denser integration of
many cores. Fault activation correlates with reliability degrada-
tions, which are unacceptable for multiprocessor systems in criti-
cal applications. The reliability of multiprocessor systems can be
improved exploiting its intrinsic redundancy, but current coarse-
grained solutions wastefully require spare cores, which are not
always available. This work proposes a health-aware task schedul-
ing that leverages fine-grained intrinsic redundancy, without de-
manding spare cores, to obtain graceful degrading multiprocessor
systems. Thorough simulation results are reported to quantify
the advantages of our approach. With our graceful degradation
approach the lifetime of a multiprocessor system improves by a
factor of up to 2.32 for equal reliability levels.

I. Introduction

The probability that a particular device is operational for a
given duration, or reliability, is a dependability attribute and
key metric for systems in critical applications. For example,
systems for long-term autonomous exploration missions have
to be operational during their complete mission. Other critical
applications like banking, medical, automotive or aerospace face
similar reliability requirements that are only met by dependable
systems. Traditional dependable systems, compared to their non-
dependable counterparts, have three key issues: They are more
expensive, consume more power, and provide less performance.

A promising approach to overcome the previous limits is
hardening commercial off-the-shelf (COTS) components, which
are cheaper, faster, and consume less power, to build systems
that meet the mission’s dependability requirements [1]. The
dependability challenge of COTS components for long term
autonomous missions is to guarantee a certain reliability without
affecting their affordability, power consumption, and perfor-
mance benefits. The COTS challenge’s relevance rises with
the increasing demand for dependable systems by emerging
artificial intelligence applications in autonomous systems. Most
such systems are cyber-physical systems, interacting with their
environment, which require high computational capabilities.
These high computational capability demands are satisfied by
multiprocessor systems.

Multiprocessor systems have some intrinsic redundancy,
which can be leveraged by dependability-aware task scheduling.
Task scheduling solutions are classified as either static or
dynamic. Static scheduling assigns tasks ahead of actual ex-
ecution to processing elements and requires a well characterized
workload and system topology. Dynamic scheduling assigns

tasks to processing elements at run time, overcoming worst-case
assumptions for performance or failure related metrics.

Current dependability-aware global static scheduling ap-
proaches waste slack available at run time [2], and depend on
a specific fault scenario, with exponentially growing solution
storage and access overhead [3]. Dynamic scheduling overcomes
worst-case assumptions, but current dependability-aware ap-
proaches either assume spare homogeneous cores, or are limited
to slowly accumulating faults [4, 5].

We present a global dynamic scheduling solution, suitable
for multiprocessor systems without spare cores, to improve
reliability by graceful degradation. Our contributions are:
• a fine-grain CPU graceful degradation model to expose the

intrinsic redundancy and modularity in a microarchitecture
(Section III-A)

• results from simulation experiments showing improve-
ments up to a factor of 2.32 in operational time with a relia-
bility of R = 0.99 by using our approach (Section IV-A)

With our fine-grain dynamic scheduling approach the reliability
of multiprocessor systems is asserted, without compromising
their affordability, power consumption, and performance com-
pared to traditional dependable systems.

II. Related work
Task allocation and scheduling problems are alternative for-

mulations of the same general scheduling problem.For a single
processor, scheduling is local and concerned with assigning tasks
to processing time. For multiprocessor systems, additional global
scheduling is needed to assign tasks to processing elements.
Scheduling solutions are further classified as static or dynamic.

Related to our approach, system lifetime maximization by
global dynamic scheduling for heterogeneous multiprocessor
systems [6] uses a heuristic to solve the scheduling problem at
run time, but requires special wear sensors which are not widely
available. Comparable to us, the envisioned DeSyRe system
can detect submodule failures and reschedule tasks to cores that
provide the required functionality [7]. Although, their approach
requires code annotations and duplicate code for applications
that shall run on cores with failed submodules, exposing the
redundancy scheme and burden to the application developer.
Similar, proposed run-time heuristics for managed heteroge-
neous and degradable cores requires hardware reconfiguration
capabilities [8], which is not always available. Complementary
to our approach, health management based on IEEE 1687
infrastructure [9] provides an interconnect solution for health

Smart health monitor

Analyze
contained

instructions
Submodule

lookup
Annotate

task

Micro-
architecture

analysis

Smart health monitor

 1001110
010111010
101010110
101010101
101011101
010101010
100111010
000101011

Scheduler

 1001110
010111010
101010110
101010101
101011101
010101010
100111010
000101011

Applications

Netlist

HW

HW/SW
I = ∪I k

dx
d1

d2
d3

1h
2h

Static analysis
and annotation

Dynamic
schedule

Store in memory

Figure 1. Combined static analysis and dynamic scheduling approach.

information and implementation details for a fault management
architecture, which corresponds to the health monitors in
our approach. Exploitation of the microarchitecture’s existing
redundancy for graceful degradation is expected to increase the
baseline reliability by a factor of 1.42 for a single core [10], but
neglects the potential for even further single core degradation
in a multi-core system. Orthogonal to our approach, bespoke
processors remove unused gates by symbolic simulation [11], to
improve power instead of reliability.

III. Implementation

Our approach, as shown in Figure 1, is a global dynamic task
scheduling approach enhanced with static knowledge dx about
each task, and dynamic knowledge about the current health
status hi of each processor. The processor’s microarchitecture
and all applications are analyzed at design time. At runtime, the
scheduler is provided with the health status of each processor,
which allows to schedule the annotated tasks in a health-aware
manner. The fine-grain health status of each processor allows to
schedule tasks on partially defect processors. This way they can
still contribute to system performance and reliability.

A. Graceful degradation model

Modern CPUs are hierarchical and modular: Their microarchi-
tecture, which implements the instruction set architecture, con-
sists of several submodules. Submodules are either macro units,
intellectual property cores, or arise by functional decomposition.
Not all submodules are required to successfully execute every
instruction. Such instructions add to the microarchitecture’s
graceful degradation potential, which we leverage by our fine-
grain health-aware task scheduling. For this, the scheduler
requires two sources of information: 1) health status of each
submodule in each core; and 2) which submodules are required
for each instruction. The later is derived by our design-time
approach described in this section.

We divide the CPU’s microarchitecture by connectivity into
submodules. Submodules needed for successful execution of an
instruction are added to the instruction’s submodule dependency
set Ik. These sets allow to derive the submodule dependencies of
each task: they inherit the submodule dependencies of all their

instructions, further described in Section III-B. Such annotated
tasks enable the scheduler to schedule them on cores that have
at least the required submodules error-free.

Our approach is formalized using set theory as follows: We di-
vide the CPU’s microarchitecture into N submodules m j. Together
all submodules form the whole microarchitecture submodule
set M = {m j | j ∈ N ∧ j < N }. Two subsets of M define
each instruction’s submodule dependencies: 1) the functional
submodule dependence set Fk, including all submodules needed
for execution of instruction ik; and 2) the set of submodules that
are required to be error-free Ek, taking into consideration the
fault containment of the microarchitecture

The functional submodule dependence set Fk is acquired
by semi-automatic microarchitecture analysis: Fk = {m j |

∀m j ∈ M if m j required by ik }. The error-free set Ek is derived
by analysis of the remaining submodules Rk = Mk\Fk, which are
not required from a functional point of view: Ek = {m j | ∀m j ∈

Rk∀mi ∈ Fk if error in m j can propagate to mi }. Together Fk

and Ek form the submodule dependency set for instruction
ik: Ik = Fk ∪ Ek. If Ik is a strict subset of M, instruction
ik adds to the fine-grain graceful degradation potential of the
microarchitecture, because a core with errors in the redundant
submodules M \ Ik is still able to execute ik. This implicitly
assumes that failures in the redundant modules do not stop the
overall operation of the processor. The graceful degradation po-
tential G of a microarchitecture which implements J instructions
is G =

∑J
k |M \ Ik |/(J|M|), where |M| denotes the cardinality of

set M.
As an example we choose, due to public-domain availability,

the Plasma MIPS I microarchitecture. Plasma is a conservative
choice to demonstrate our approach, because the minimal
microarchitecture provides only few submodules, limiting the
graceful degradation potential. Despite these limits, the microar-
chitecture has three potential submodules for graceful degra-
dation, which we evaluate for stuck-at faults: The arithmetic
and logical unit, the shifter, and the multiplier. The register
file, program counter, control path, and all remaining logic and
memory are considered by annotating each instruction with a
dependence on a further virtual submodule containing them. We
analyzed the data path semi-automatically using Yosys to obtain
the submodule connectivity.

B. Task model

The graceful degradation model, described in the last section,
is made accessible to the scheduler by our task model. Our
task model builds upon task graphs, extending them by our
submodule dependence information: programs are modeled
as directed acyclic graphs, where a node corresponds to an
instruction sequence, or task, and each edge corresponds to
a data dependence between tasks. All tasks are element of
the task set V , and all edges are element of the edge set
E = { (vi, v j) | if execution of vi needs to precede v j }. Together
both sets form a tuple P = (V, E) representing a program as a
task graph.

Each task is annotated with the submodules it requires
for execution, formalized as a submodule dependence vector

Address Mnemonic Submod. dependency Ik

0040FA2C mult a3, t6 Imult = {mmult}
0040FA30 andi v1, v1, 0xffff Iandi = {malu}
0040FA34 addiu a3, t7, 4 Iaddiu = {malu}
0040FA38 sll v1, v1, 2 Isll = {mshift}

D j = Imult ∪ Iandi ∪ Iaddiu ∪ Isll = {mmult,malu,mshift}

Figure 2. Example annotation of task j. Instructions introduce submodule
dependencies, resulting in a larger submodule dependence set D j.

d ∈ BN ,B = {0, 1}. The submodule dependence vectors
are constructed from the submodule dependence sets of each
instruction contained within the task: Tasks are sequences of n
instructions ik, which are elements of the instruction sequence set
Q j, with the instructions corresponding submodule dependence
sets Ik. Their union, as shown in Figure 2, is the task’s submodule
dependence set D j =

⋃
k∈Q j

Ik. Such sets are encoded by
ε : D j → B

N into submodule dependency vectors d j:

d j =
[
m1 m2 . . . mN

]
∈ BN : mi =

1 mi ∈ D j

0 mi < D j

The vector d j represents all submodule dependencies for task
j, and is used by the scheduler described in Section III-C to
calculate all scheduling possibilities for task j.

C. Task scheduler

The submodule dependencies d j of task j can be evalu-
ated as a scheduling location constraint irrespective of the
implemented scheduling algorithm. For each processor pi in
our multiprocessor system the scheduler receives health status
hi = [hi1, hi2, . . . , hiN] for all N submodules of pi. Given a
task x’s submodule dependence vector dx = [dx0, dx1, . . . , dxN],
and binary health status we can calculate the schedulability
si,x =

∧
j hi j ∨ ¬dx j of task x on processor pi. If at least

one schedulability evaluates to true, task x is executable by
the multiprocessor system. Calculating the schedulability is
computationally inexpensive, which allows even real-time con-
strained schedulers to support our additional scheduling location
constraint.

D. Multiprocessor system

Our system contains multiple degradable processors and
a hardened runtime manager. The runtime manager is either
dedicated hardware, or another processor, protected either by
process, design, or software techniques, executing the scheduler
as part of the operating system. The operating system’s scheduler
supports tasks with deadlines, and failure to schedule a task in
time is regarded as a system failure.

Each processor provides for all its submodules a binary status
flag, or health information, which is generated by a function
which maps available error information to module errors. This
mapping function is implemented inside a health monitor, which
collects error information during system runtime from logical
checkers, built-in self-test routines, voltage- and temperature
sensors, or dedicated delay/ageing detection circuits [12]. The
health monitor, as part of the runtime manager beyond the

scope of this paper, is either a software or hardware module,
capable to transform various error information into submodule
health information, and is treated as a black box module by our
scheduling approach. Our approach is agnostic to the error’s
origin, because no matter if the error is due to radiation, timing,
or manufacturing defects, the error information is condensed to
a binary flag.

The system is designed for an average task arrival rate per
processor µ given a workload of reoccurring tasks. Under error-
free operating conditions the system has enough spare capacity
to schedule and finish all tasks before their deadline. But with
increasing errors the scheduling possibilities decrease, and the
delay until a suitable processor is found increases. This delay
reduces the time available for execution before the deadline,
increasing the risk of missing the deadline. Once a deadline
is missed, the system has by definition failed. The probability
to fail during the system’s mission time is used to derive the
system’s reliability R = 1 − Pr (deadline missed).

IV. Experimental setup & results

The multiprocessor system used for the evaluation of our
approach consists of five bus-connected processors: One runtime
manager and four workers. We consider a synthetic Plasma
MIPS I microarchitecture with minimal submodule dependen-
cies and homogeneous execution times for all instructions.

To model a workload for embedded real-time systems
we choose applications from MiBench. All applications are
compiled for MIPS I, and disassembled using Capstone, for
submodule dependency annotation using instruction submodule
dependency sets from our microarchitecture analysis. Applica-
tions are given a recurrence frequency and deadline to form a
workload for our multiprocessor system.

The scheduler uses earliest deadline first scheduling to assign
tasks to the first available processor. Each processor is capable
to execute one task at a time. Over time, faults manifest and
their activation results in errors which degrade the processor’s
functionality. Our graceful degradation approach with health
monitors allows us to confine faults with submodule granularity.
If a submodule is in error, the task currently running on the
processor is interrupted and returns to the task queue to be
restarted from the beginning on the next available processor
which provides the required submodules for execution. The
erroneous, degraded submodule either stays in error in case of
permanent faults, or returns operational with a mean time to
recovery in case of transient faults. The baseline system without
our graceful degradation approach degrades and restores with
processor granularity.

Our simulator allows us to evaluate systems for different work-
loads and fault environments with single instruction temporal
granularity. Due to the random nature of faults we designed
our experiment for r = 100 repetitions, with the multiprocessor
system’s operational time as response variable. We considered
the degradation model, mean time to failure (MTTF), and task
arrival rate as factors in our experiment and report the results in
Section IV-A.

0 2 4 6 8 10

Runtime/Missiontime

0.0

0.2

0.4

0.6

0.8

1.0

0.37
p = 0.004

MTTF = 0.5

0 2 4 6 8 10

Runtime/Missiontime

1.85
p < 0.0005

MTTF = 0.7

0 2 4 6 8 10

Runtime/Missiontime

1.61
p < 0.0005

MTTF = 1.0

Graceful

Baseline

Figure 3. Density of system lifetime results with fitted log-normal approximation
for the baseline system and our graceful approach.

A. Results & discussion

In this section we compare our graceful degradation approach
with health monitors to a baseline systems with identical
parameterization and fault environment. The fault environment
is represented by the MTTF normalized to a predefined mission
duration TM . The interesting corner to quantify our approach are
low workloads as they are common in automotive and aerospace
applications. The chosen workload is reflected by the average
task arrival rate per processor µ.

We report results for the median of the multiprocessor
system’s operational time, with and without our graceful degra-
dation approach, normalized to TM in Table I. As shown in
Figure 3, the distribution of the operational time is approximately
log-normal distributed. We use Welch’s unequal variances t-test
to test for our null hypothesis of equal medians, and report the
smallest level of significance p that would lead to a rejection
of the null hypothesis. We conclude that there is no evidence
to suggest that the medians are equal for a significance level of
α = 0.05 across all interesting corners. By using our graceful
degradation approach, we are able to extend the system’s
operational time by 1.85TM for a average task arrival rate of
µ = 0.11 and MTTF of 0.7TM .

Furthermore the results in Table I confirm the intuition about
the deteriorating effect of increasing the workload on operational
lifetime. Two corner cases for an average task arrival rate of
µ = 0.11 are notable: very harsh fault environments with MTTF of
0.1TM and very easy fault environments with MTTF of 9TM . Both
cases are extreme up to the point that the differences between
both systems are not relevant anymore. The harsh case, which
is unlikely and not of practical interest for critical applications,
exhausts the graceful degradation capabilities of our approach,
as indicated by the lifetime degradation for R = 0.99 in Table I.
In the easy case, the graceful degradation capabilities are only
partly needed, and the differences between a system with- and
without our approach are less severe.

Contrary, in the MTTF range of 0.7TM to 3.0TM , our graceful
degradation approach improves reliability up to R = 0.99997,
which enables critical applications without demanding spare
cores.

V. Conclusion

Our fine-grain CPU graceful degradation model successfully
exposes the intrinsic redundancy of microarchitectures, eliminat-
ing the need for spare cores to assert reliability. Thorough simu-
lation experiments confirm the effectiveness and significance of

Table I
Comparison of baseline systems to graceful system in terms of reliability and
extended system lifetime over different average arrival rates per processor µ
and MTTF corners. System lifetime and MTTF are normalized to the planned

mission duration.

Lifetime T for Probability of failure
Lifetime median R(t ≤ T) = 0.99 Reliability R(t > 1) 1 − R(t > 1)

µ MTTF Base Grace Factor p Base Grace Factor Base Grace Factor Base Grace

0.11 0.1 0.26 0.45 1.71 <0.001 0.015 555 0.011 897 0.76 0.002 615 0.051 409 19.66 0.997 385 0.948 591
0.11 0.3 0.78 1.17 1.50 <0.001 0.011 206 0.019 646 1.75 0.325 049 0.598 037 1.84 0.674 951 0.401 964
0.11 0.5 1.41 1.77 1.26 0.004 0.013 393 0.014 751 1.10 0.714 986 0.841 337 1.18 0.285 014 0.158 663
0.11 0.7 1.62 3.47 2.15 <0.001 0.011 239 0.015 633 1.39 0.778 827 0.951 292 1.22 0.221 173 0.048 708
0.11 1.0 2.71 4.32 1.59 <0.001 0.011 085 0.025 740 2.32 0.920 987 0.982 772 1.07 0.079 014 0.017 228
0.11 3.0 7.21 8.79 1.22 <0.001 0.010 087 0.011 388 1.13 0.988 798 0.999 970 1.01 0.011 202 0.000 030
0.11 9.0 9.60 9.91 1.03 0.036 0.010 411 0.010 088 0.97 1.000 000 1.000 000 1.00 0.000 000 0.000 000
0.25 0.1 0.14 0.16 1.15 0.019 0.011 406 0.016 288 1.43 0.000 013 0.001 285 96.36 0.999 987 0.998 715
0.25 0.3 0.33 0.47 1.44 <0.001 0.011 539 0.014 696 1.27 0.025 254 0.144 605 5.73 0.974 746 0.855 395
0.25 0.5 0.47 0.89 1.89 <0.001 0.021 375 0.014 434 0.68 0.160 129 0.429 642 2.68 0.839 871 0.570 359
0.25 0.7 0.85 1.06 1.25 0.002 0.015 125 0.027 880 1.84 0.395 166 0.530 570 1.34 0.604 834 0.469 430
0.25 1.0 1.06 1.39 1.31 0.012 0.011 760 0.023 021 1.96 0.532 895 0.679 602 1.28 0.467 106 0.320 398
0.25 3.0 3.04 4.91 1.62 <0.001 0.010 722 0.010 809 1.01 0.912 674 0.975 746 1.07 0.087 326 0.024 254
0.25 9.0 8.27 8.63 1.04 0.290 0.012 107 0.011 579 0.96 0.997 963 0.999 145 1.00 0.002 037 0.000 855

our graceful degradation approach to leverage fine-grained in-
trinsic redundancy of multiprocessor systems by global dynamic
task scheduling, which extends the operational lifetime up to a
factor of 2.32 while asserting reliability levels of R = 0.99. By
extending the operational lifetime of multiprocessor systems we
render long-term autonomous mission with COTS multiprocessor
systems feasible, and provide a solution for the increasing
demand of affordable dependable systems.

References
[1] S. Esposito et al. (2015). COTS-Based High-Performance

Computing for Space Applications. IEEE Trans. Nucl. Sci.
62(6):2687–2694.

[2] C. Bolchini et al. Run-Time Mapping for Reliable Many-Cores
Based on Energy/Performance Trade-offs. IEEE Int. Symp.
Defect Fault Tolerance VLSI Nanotech. Syst. (2013), p. 58–64.

[3] A. Das et al. Fault-Aware Task Re-Mapping for Throughput
Constrained Multimedia Applications on NoC-based MPSoCs.
23rd IEEE Int. Symp. Rapid Syst. Prototyping. (2012), p. 149–
155.

[4] C.-L. Chou et al. FARM: Fault-Aware Resource Management in
NoC-based Multiprocessor Platforms. Proc. Conf. Des., Autom.
& Test Europe. (2011).

[5] T. Chantem et al. Enhancing Multicore Reliability through Wear
Compensation in Online Assignment and Scheduling. Proc.
Conf. Des., Autom. & Test Europe. (2013).

[6] A. S. Hartman et al. Lifetime Improvement through Runtime
Wear-based Task Mapping. Proc. 8th IEEE/ACM Int. Conf.
Hardware/Software Codesign Syst. Synthesis. (2012), p. 13–22.

[7] D. Theodoropoulos et al. The DeSyRe Runtime support for
Fault-tolerant Embedded MPSoCs. Int. Symp. Parallel Dis-
tributed Process. Appl. (2014), p. 197–204.

[8] S. Tzilis et al. Runtime Management of Adaptive MPSoCs for
Graceful Degradation. Proc. Int. Conf. Compilers, Architectures
& Synthesis Embedded Syst. (2016).

[9] K. Shibin et al. (2017). Health Management for Self-Aware
SoCs Based on IEEE 1687 Infrastructure. IEEE Des. Test
34(6):27–35.

[10] J. Srinivasan et al. Exploiting Structural Duplication for Life-
time Reliability Enhancement. Proc. 32nd Int. Symp. Comput.
Architecture. (2005), p. 1–12.

[11] H. Cherupalli et al. Bespoke Processors for Applications with
Ultra-low Area and Power Constraints. Proc. 44th Int. Symp.
Comput. Architecture. (2017).

[12] M. Agarwal et al. Circuit Failure Prediction and Its Application
to Transistor Aging. 25th IEEE VLSI Test Symp. (2007).

