Simulation-Based Debugging of Formal Environment Models*

Tim Meywerkl, Arthur Niedzwiecki?, Vladimir Herdt!® and Rolf Drechsler!?

Abstract— Logic-based formal models of robot environments
are often used to aid the generation and verification of robotic
plans. They are however often simplified and rather abstract
compared to the real world that the robot acts in. This can
lead to considerable discrepancies between the behavior of the
formal model and that of physics-based simulation engines.
These discrepancies are not always apparent to the designer.
In this paper we propose a new methodology to make these
discrepancies explicit by combining formal verification and
simulation. Our approach is able to find relevant discrepancies,
while only requiring a small number of simulations.

I. INTRODUCTION

Robots working in complex environments like households
face various challenges such as a dynamic environment and
a variety of different tasks. A promising approach to handle
this complexity is the usage of generalized robotic plans.
During the creation of such plans, logical formalisms like
the event calculus [1,2] or situation calculus [3,4] are often
employed to model the robot’s environment. More recently,
formal models have also been used to verify the correctness
of existing plans [5]. Formal models allow for exhaustive
reasoning, but the rigid framework of these formalisms often
means that formal models are simplified and rather abstract
compared to the real world that the robot acts in.

There are two main reasons for the higher abstraction in
formal models. One is the complexity of real-life physics,
that can often not be adequately modeled in terms of formal
logic. Another reason is the discretization that often takes
place, i.e. the environment is partitioned into a finite set
of discrete positions instead of using real-valued coordi-
nates. Depending on the level of abstraction, this can lead
to considerable discrepancies between the behavior of the
formal model and that of physics-based simulation engines.
However, when used in planning and verification, formal
models are usually assumed to be correct. Discrepancies in
the model can have severe consequences. A plan derived or
verified from a faulty model is often also faulty and can result
in considerable damages to the robot and its environment.
Unfortunately, discrepancies of formal models are not always
apparent to the designer and to the best of our knowledge,
there is no systematic approach to find them.

In this paper we aim to make these discrepancies explicit
by combining formal verification techniques with robotic
simulation. The main idea is to use the existing formal

*The research reported in this paper has been supported by the Ger-
man Research Foundation DFG, as part of Collaborative Research Center
(Sonderforschungsbereich) 1320 EASE — Everyday Activity Science and
Engineering, University of Bremen (http://www.ease-crc.org/).
The research was conducted in sub-project PO4.

IResearch Group of Computer Architecture, University of Bremen,
Germany

2Institute for Artificial Intelligence, University of Bremen, Germany

3Cyber Physical Systems, DFKI GmbH, Bremen, Germany

{tmeywerk, aniedz, vherdt, drechsler} @uni-bremen.de

verification engine SEECER [5, 6], which is based on the
Discrete Event Calculus (DEC) [7], to find particularly
interesting execution traces in the formal model and then run
the same execution in the simulator. The resulting states of
both executions are then compared. Our approach is able to
focus on specific robotic plans and specific interesting final
states. This way we need to perform only very few simulation
runs compared to a naive brute force approach.

Physics-based simulation is a standard tool to produce
safe and high-quality robotic plans. Simulation engines like
Gazebo [8] or Webots [9] come with a variety of features
and accurate physics simulation. Simulation-based testing of
robotic plans is the de-facto standard way to assess their
correctness and find errors.

Formal verification [5, 10] on the other hand tries to for-
mally prove the correctness of plans. Since a robot interacts
with its environment, it is usually not sufficient to verify
the plan by itself. Instead, formal models of the robot’s
environment are developed and used in reasoning. These
models are often logic-based, for instance employing the
situation or event calculus.

Many plan-based robotic systems also employ runtime
verification [11], which aims to monitor the robots actions
during runtime. In contrast to formal verification it can
only find errors while they occur and can not guarantee the
absence of errors in any way.

The combination of formal verification and simulation is a
promising direction for the scalable verification of complex
systems. One such technique is concolic testing [12], which
combines symbolic execution of software programs with con-
crete random test cases. Thus far, hybrid formal verification
and simulation methods have usually been used to verify a
software or hardware system. The application to verification
of formal models has to the best of our knowledge not yet
been attempted.

The debugging of formal models is still a manual process.
Similarly to the software domain, tools that assist in debug-
ging have been developed [13]. However, they still require an
experienced developer to identify errors in the formal model.
Our approach aims towards a mostly automatic debugging
process, where only the modifications to the formal model
have to be done manually.

The remainder of this paper is structured as follows: In
Section [[Il we provide the background necessary for the
understanding of this paper. Section[[II]explains our approach
to finding discrepancies between model and simulation in
detail. In Section [[V] we evaluate our approach in three prac-
tical scenarios, followed by a discussion on the limitations
and applications of our approach in Section [V} Section [V]]
concludes the paper.

http://www.ease-crc.org/

1 (let ((?goal—pose xorigin—pose *))
2 (perform

3 (a motion

4 (type going)

5 (pose ?goal—pose))))

6 (let ((?looking—pose =xlooking—posex))
7 (perform

8 (a motion

9 (type looking)

10 (pose ?looking—pose))))

11 (perform

12 (a motion

13 (type detecting)

14 (object (an object

15 (type ?object—type))))

Fig. 1: Excerpt of a CPL plan for object detection

II. PRELIMINARIES

In this section, we present the preliminaries necessary
for the understanding of our approach. These include the
Cognitive Robot Abstract Machine in Section [[I-A] as well
as the verification engine SEECER, which is used to formally
verify the correctness of robotic plans in Section [[I-B

A. Cognitive Robot Abstract Machine

The Cognitive Robot Abstract Machine (CRAM) [14]
is a powerful toolbox for the generation, execution and
simulation of robotic plans. It is able to automatically infer
action parameters depending on the situation at hand. It also
monitors the task execution in real-time and has several ways
to detect failures and recover from them.

A core module of CRAM is the CRAM Planning Language
(CPL), which is used to formulate general robotic plans. It
is built upon the Common Lisp programming language and
is therefore a Turing-complete language. Figure [I] shows
an excerpt of a CPL plan. It consists of three perform
statements in Lines [2] [7] and [I1] Each perform statement
has as argument a motion designator. A designator is a
possibly underspecified description of an action that the
robot should execute. The first motion designator in Line [3]
instructs the robot to navigate to a predefined goal position.
The exact path or speed is not specified within the plan, but
is instead inferred at runtime by a motion planner. Similarly,
the second designator in Line [§] makes the robot turn its
head towards a specified position and the third designator in
Line [T2 uses a perception subroutine to search for objects of
a certain type within the robot’s field of view.

Another important module within CRAM is the fast pro-
jection simulator [15] based on the Bullet physics engine.
Due to some simplifications in the physics calculation it is
able to achieve a very fast simulation speed. This allows
CRAM to simulate the effects of several possible action
parametrizations before the best parametrization is executed
on the real robot. Despite its slight simplifications, the
simulator has been shown to accurately predict an action’s
effects when performed on a real robot.

Saf
5 Confidence

threshold
reached

CPL Plan [—»
World Model
Eafety Properties}—;

Counterexample found Confidence
(initial discrete state threshols

& actions): not reached
simulation required

SEECER
(robot plan
verification)

Confidence
check

Model and
simulation
results match

) —
Sampling Discrepancy
of cont!nuous state - Simulation found
from discrete state| Starting (manual model
positions
& actions refinement)

Fig. 2: Overview of our approach

B. Formal verification for CRAM

Formal verification for plan-based robotics is still in its
infancy. One approach specifically tailored to CRAM is
the verification engine SEECER [5,6]. SEECER combines
symbolic execution [16] of the CPL source code with envi-
ronment modeling and reasoning based on the Discrete Event
Calculus (DEC) [7]. Symbolic execution is a well established
technique from software verification. It works by executing
all possible paths through the program and using symbolic
variables instead of concrete values for all inputs. During
execution, constraints over those variables are collected and
solved by an SMT solver. This way, a symbolic execution
engine can identify inputs that reach certain states or violate
certain properties. The DEC is a logical formalism based
on many-sorted first-order logic. It used the sort of fluents
and events to describe a dynamic system, actions that can be
executed in that system and those actions’ preconditions and
effects.

SEECER is given a CPL plan, an environment descrip-
tion and a set of safety properties. These safety properties
describe certain constraints of the robots environment that
should always hold. For instance, the robot should never
place an object at a position that is already occupied by
another object. SEECER can now decide whether there is an
initial state and a viable path through the plan code, such
that the resulting final state of the environment violates one
or more safety properties.

Usually safety properties are used to describe certain
properties that need to hold for the safety of the robot and
its environment. However, in general any property that con-
strains a finite number of states can be specified, irrespective
of whether they are related to safety or not. To reflect this
slightly different semantic, we will refer to them simply as
state constraints for the remainder of this paper.

III. FINDING DISCREPANCIES

In this section we present our approach to detect dis-
crepancies between a formal model written in the DEC and
a simulated environment. We begin with some definitions
and a general overview of the approach in Section
Afterwards, we describe the sampling and confidence
calculation in greater detail in Sections [[II-B| and [[TTI-C|

A. Overview

To find discrepancies, we need an initial state of the robot
and its environment, such that the same chain of action
executions results in different final states in the formal model
and the simulation.

(] I2

[

Fig. 3: Simple robotic environment

Here, a state is a mapping from parameters such as
positions or angles to their values. However, states in the
formal model are usually different from states in the simula-
tion, since the simulation uses real numbers to describe the
parameters, while the formal model has to be discrete. This
discretization is usually implemented by modeling a finite set
of discrete values for each parameter, which correspond to re-
gions and intervals in the continuous space. In the following,
we will denote a state over continuous, i. €. real numbers as a
continuous state and a state over discrete positions and angles
as a discrete state. To semantically connect continuous and
discrete states, we introduce a mapping m : S; — S4, where
S. and Sy are the sets of continuous and discrete states,
respectively. Consequently, each continuous state maps to a
single discrete state, while each discrete state is mapped to
by an infinite amount of continuous states. Additionally, we
define an execution trace as a sequence Sg, ag, - - -, Ap—1, Sn
of states s; and actions a;. Action a; is executed in state s;
and results in a new state s;4;. We call s the initial state
and s,, the final state. Whenever it is not clear from context,
we will use the terms continuous execution trace and discrete
execution trace to denote whether the s; are continuous or
discrete states.

Example 1. Consider the simple environment depicted in
Figure [3| It consists of a rectangular area, which is divided
into two regions r; and 7. The regions are defined through
their x-coordinates with 7; spanning from z = 0 to z = 1
and ro spanning from z = 1 to z = 2. The environment
contains a robot (currently in 7;) and a box that the robot
can pick up and move (currently in r3). A plan might now
instruct the robot to move to z = 1.5, pick up the box, move
back to x = 0.5 and place it there. This would produce a
discrete final state with both the robot and the box inside r;.
The continuous state would be more accurate and contain
the exact positions of robot and box.

Figure [2] shows the high-level flow of our approach. The
input to the procedure consists of three components (green
boxes in Figure [2): a plan written in CPL, a world model
and a set of state constraints. The world model and state
constraints are formalized as a DEC description. The state
constraints describe a set of discrete states which should
trigger a simulation using the same fluents and predicates
as the world model. These three inputs are fed into our
symbolic verification engine SEECER (top left in Figure [2),
which will then try to find a discrete execution trace which
leads to one of the desired states. We modified SEECER in
such a way that it does not terminate after the first finding,
but instead reports the execution trace and waits for the rest

of the procedure to finish before the symbolic execution is
continued. Whenever SEECER returns an execution trace, the
initial state s4,0 and the action sequence are extracted. To set
the initial state in the simulator, it has to be converted into
a continuous state. This is done through sampling (bottom
left), i.e. selecting a state s.o with m(sco) = a0 at
random. Afterwards, the initial state s.o and the actions
are given to the simulator (bottom right), which sets the
initial state, executes the actions and then compares the
resulting final state against the one found by SEECER. If
the final continuous state from the simulation does not map
to SEECER’s final discrete state, a discrepancy between the
model and simulation has been found. This discrepancy is
then reported and the procedure terminates. If the simulator
and the DEC model reach matching final states, there is
no discrepancy for the sampled initial state. However there
may be another initial continuous state mapping to the
initial discrete state which causes a discrepancy. Due to the
infinite amount of continuous states, exhaustive sampling
is not possible. Instead we use a stochastic approach and
calculate the confidence in the hypothesis that there is no
problematic continuous state mapping to sq o (top right). If
this confidence reaches a pre-defined threshold, the execution
trace is assumed to not cause any discrepancy and SEECER
continues to search for the next execution trace. Otherwise,
a new initial state is sampled and simulated. The following
subsections provide more information on the sampling pro-
cess and the confidence calculation.

B. Sampling-Based Simulation of Counterexamples

Due to the difference between discrete and continuous
states, there is no unique continuous state for each discrete
state returned by SEECER. Instead, a continuous state has to
be sampled. The sampling process and the subsequent con-
fidence calculation is easiest, if all parameters are sampled
independently of each other. This means that the discrete
world model describes rectangular or cuboid regions. We
will focus on this case in the following discussion. Once
all parameters have been sampled, the initial state is set in
the simulation. Afterwards the action sequence is executed.
The resulting final state can now be compared with the final
discrete state returned by SEECER.

Example 2. Consider again the environment and plan from
Example |1} Sampling an initial concrete state might result in
the robot at x = 0.8 and the box at x = 1.4. After setting
this state in the simulation and executing the actions, both
the robot and box would be at « = 0.8. This final continuous
state maps to the final discrete state with both the robot and
the box in r;.

The sampling and simulation is repeated until either a
discrepancy has been found or a pre-defined confidence
is reached. We describe the confidence calculation in the
following subsection.

C. Calculating the Confidence

In this section, we describe the calculation of the confi-
dence that occurs after each simulation run. To do that, we
consider the action sequence as a function, which maps every
initial continuous state to the respective final continuous

state. We assume that this function follows the multivariate
normal distribution, i.e. each parameter of the final state is
a linear combination of the parameters of the initial state
plus a normally distributed error €. Each parameter y of the
final state is given as y = > .., (z;5;) + €, where n is the
number of parameters, x; is the i-th parameter value of the
initial state and f; is its coefficient. This equation can also
be written in matrix notation as y = X 3+ ¢, where X is the
row vector (2) and 3 is the column vector

1
B

As usual, we also assume that all parameters of the final state
are independent of each other given a fixed initial state.

Since the coefficients 5 are unknown, they have to be
estimated from the sampled initial states and their respective
final states. We call these estimated coefficients b. Using
the sampling data, the equation can now be rewritten as
y = Xb+¢€, where y is now a column vector of the sampled
parameter from the final state. X is a matrix, where each row
corresponds to a sample and each column corresponds to a
parameter from the initial state. € is now a column vector as
well, containing the error for each sample.

Example 3. Consider again the simple environment from the
previous examples. The state can be fully described through
the x-coordinate of the robot and the box. Lets assume, we
are interested in the final position of the box and we have
two samples: In the first sample the robot and box start at
z = 0.5 and z = 1.3, respectively, and the box ends up at
x = 0.6 in the final state. In the second sample the robot
and box start at x = 0.9 and z = 1.7 and the box ends up
at z = 0.8. The equation would now be written as

0.6 0.5 1.3
(O.S) = (0.9 1.7) be
Following the standard least squares procedure, we want
to minimize the sum of the squares of those errors, i.e.
the term Y ., ;> = €’e. The respective values of b can
be estimated by b = (X'X) !X’y and the least squared
error by o = min(e'e) = (y — Xb)'(y — Xb). Once
all coefficients and errors for all parameters of the final

state have been estimated, we can calculate a confidence
interval for each of them. This confidence interval is given by

[Z? 1(372 min bz) Z(f) ’Ez 1(5151 mazx * i Z(\/7)(7
where ; ip 1s the smallest possible value of z; if {> 0
and the hlghest possible value of x; otherwise. Similarly,
Zimaz 1S the highest possible value if b; > 0 and the
smallest possible value otherwise. Z is the Z-distribution,
C the desired confidence, n the number of parameters and
s the number of samples. Using +/C' makes sure, that the
confidence of the combination of all n confidence intervals
is vC" = C. This joint confidence region now describes the
possible final states that we expect to reach from any initial
continuous state mapping to sq0. If now all final states in
the confidence region map to the same discrete state, we
can terminate the sampling loop and continue with the next
execution trace.

Example 4. Consider the environment from the previous
examples once again. Assume, that the coefficients

= ()

and the least squared error 0 = 0.3 have been found after
sampling 4 initial states. Further assume, that the initial
discrete state has the robot in region r; and the box in
ro. Since 71 is bound by 0 < z < 1 and the coefficient
by = 0.5 is positive, we use 1 min = 0 and 1 ez = 1.
On the other hand, b, = —0.4 is negative, so we use
ZT2.min = 2 and Zo e = 1. Using a 95% confidence, we
get Z(1/0.95) ~ 2.24. Plugging these values into the above
equation, results in a lower interval boundary of

2.24-0.3
0-09+2-(-0.1) — — = —0.536
and an upper boundary of
2.24-0.3
1-09+4+1-(-0.1) + — = 1.136

Since both interval boundaries are outside of the region
r1, the desired confidence is not yet reached and more
simulations need to be performed.

The following section presents our experimental evalua-
tion.

I'V. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed approach on three
robotic plans set in a household kitchen environment.

The underlying formal model, written as a DEC descrip-
tion, is identical for all three plans except for the types of
items that are present in the kitchen. The formal model uses
the DEC axioms and consists of an additional 7 sorts, 2
predicates, 16 fluents, 10 events and 59 logical sentences.
For the most part, it describes pre-conditions and effects of
the actions used in the plans, such as navigation, pick-up
or drawer access. On the simulation side, we use the fast
plan projection simulator [15], that is tightly integrated with
CRAM. For the formal verification we use our extension of
SEECER.

All experiments were conducted on a Linux machine
running an Intel Core i5-7200U CPU with 2.50 GHz clock
rate.

In the following Section we present the three robotic
plans used in the evaluation. Section [[V-B| contains the
experimental results and the discrepancies that have been
found.

A. Robotic Plans

All three of our plans operate in the same kitchen and
therefore share the same formal model and simulation envi-
ronment. All plans are concerned with pick-and-place tasks,
i.e. transporting items from one part of the kitchen to
another. They have been selected, since they are well-suited
to showcase the types of discrepancies that can be found with
our approach. Below, we describe all plans in further detail.

1) Plan 1: Setting the Table: The first plan is tasked with
setting a table for breakfast, i. e. transporting a bowl, a cereal
box, a milk carton and a spoon from the kitchen workspace

TABLE I: Simulation data until a first discrepancy is found

plan iterations simulations time
Plan 1 1 12 273s
Plan 2 2 11 197s
Plan 3 1 1 22s
Plan 2 (modified) 3 20 289s

to a nearby table. The spoon is located in one of the three
available drawers, all other items are on top of the workspace.

The plan loops through the items and has the robot
transport each one individually. In case of the bowl, cereal
and milk, the robot attempts to detect the item on top of
the workspace. For the spoon, the robot searches through
the drawers by opening them, trying to detect the spoon and
then closing them again. Once an object has been detected,
it is picked up, the robot navigates to a pre-defined position
in front of the table, and the object is placed in its target
position.

2) Plan 2: Bowl and Spoon: This plan is a modified
version of the first one. This time only the bowl and the
spoon are transported to the table, the spoon is transported
first and the drawers are only closed as long as the spoon
has not been detected.

3) Plan 3: Looking into Drawers: This plan uses the
spoon inside one of the drawers again and no other items. The
goal again is to find the spoon inside the drawers and then
transport it to the table. However, the spoon is now allowed
to be not only in the center of the drawers, but also towards
the side or very far in the front or back. Therefore, the robot
has to try to detect the spoon from multiple poses per drawer.
These poses are all close together and are therefore inside
the same region described by the formal model.

B. Experimental Results

We executed the proposed approach on the three robotic
plans using a confidence threshold of 99%. We were able
to find three major discrepancies between the formal model
and the simulator.

The first discrepancy was found during execution of Plans
1 and 2. The state constraints were chosen to trigger a
simulation after a successful navigation action, i.e. whenever
the robot executed a navigation action to some position p at
timepoint ¢ and actually reached position p at timepoint ¢+ 1.
Both in simulation and when executing on a real robot, it
may happen, that the robot loses an object from its gripper,
either due to a bad grasp or sudden movement. This object
will then usually fall to the floor or a surface, often outside
of the robots vision or reach. In the formal model this case
was not considered. The main effect of a navigation action,
namely the new position of the robot, was formalized, but
no changes to other fluents such as gripper attachment or
objects’ positions were made.

The second discrepancy also occurred after a successful
navigation action during Plan 2. Part of the plan is a loop that
opens a drawer, searches for the spoon inside and then closes
the drawer. However, when the spoon was actually found,
the closing was omitted, i.e. one drawer would always stay
open. Depending on the robots position, this drawer would

sometimes block the path that the robot was supposed to take.
Thus, the success of the navigation action would sometimes
depend on the state of the drawer. This was correctly reflected
inside the simulation, since collision checks are done before
each navigation action. If there is no free path between the
origin and goal positions, the action would fail. The formal
model did not contain any such constraint, though. This is
a typical oversight by the model engineer, which can be
easily fixed. In addition to the error in the formal model,
this discrepancy also uncovered a flaw in the robotic plan,
which can now be modified to always close the drawer, even
if the spoon was found.

The final discrepancy occurred in Plan 3. This time, a
successful grasping action was used as the state constraint.
Plan 3 uses several positions to search for the spoon inside
a drawer. Since all of those positions are relatively close
together compared to the total size of the kitchen, they fall
into the same region. The formal model assumes that all
perception and grasping actions from this region succeed if
the object is inside on of the drawers and that drawer is
currently open and unobstructed. In practice however, the
small differences in positions were crucial in the visibility
and reachability of the spoon. The discretization used in the
formal model was simply too coarse to accurately reflect the
true conditions for visibility and reachability of the spoon. A
finer discretization would be able to mitigate this problem,
but this would of course also increase the size of the model
and the complexity of reasoning.

The detected discrepancies clearly show that our approach
can effectively find discrepancies in formal models. In ad-
dition, our experimental results indicate that our approach
can work very effectively in keeping the number of required
simulation runs low for finding these discrepancies. To show
this aspect, we recorded experimental data during the execu-
tion. They are summarized in Table[I] The first column Plan
states the plan that was executed. The next column shows the
number of iterations, i.e. how many execution traces were
returned by SEECER and then used for sampling. The third
column reports the number of simulation runs and the final
column contains the total time spent in the simulation.

Here, we have the three plans described above, as well
as a modified version of Plan 2, where both the plan and
the formal model now consider the discrepancies found
previously. Consequently, no discrepancy was found for this
modified version. For Plan 1 and Plan 3 the first execution
trace led directly to a discrepancy, while Plan 2 first produced
an execution trace, where no discrepancy was found. Instead,
after 7 samples the confidence threshold of 99% was reached.
The discrepancy later found in the second execution trace
could in fact not occur in this first execution. The modified
Plan 2 needed 3 iterations until all execution traces were
explored. In all cases, only very few runs were necessary
to find the discrepancies. This also led to a small amount of
time spent in the simulation. In all cases, less then 5 minutes
of simulation time were used.

This is evidence that our approach is able to effectively
find relevant discrepancies, while only requiring a small
number of simulations.

V. DISCUSSION AND FUTURE WORK

The evaluation showed the practical applicability of our
approach. This section discusses how its results should be
interpreted and how the approach can be tuned to fit the
user’s needs. We also give several directions for future work.

The approach is correct, since every discrepancy reported
by the algorithm necessarily has to be observed to actually
produce two different final states. It is however not complete.
This is due to the infinite number of concrete states for any
discretization. While the absence of a discrepancy can not
be formally proven, our approach can give a probabilistic
guarantee by employing the measure of confidence. The
confidence threshold can be freely chosen by the user. They
can easily increase the chance to find even very rare or hidden
discrepancies by increasing the threshold. This will of course
also increase the number of simulation runs and therefore the
runtime.

The results of our approach can be used in multiple
ways. The obvious choice is to refine the formal model in
such a way that the discrepancy no longer occurs. However,
sometimes such a refinement may make the model vastly
more complicated and thus make reasoning harder. Alter-
natively, the discrepancies could be collected and any result
derived from the formal model could be reviewed with regard
to the discrepancies. This could be done either manually
or (semi-)automatically through simulation. So far, it was
always assumed that a discrepancy means that the formal
model is faulty. There may of course also be the case where
the formal model is accurate, but the simulation engine is
not. While we expect this case to occur rarely in practice, the
discrepancy could as well be used to modify the simulation
engine.

Right now, our approach regards the simulator as a pure
black box. In future work, we also want to leverage some
knowledge about the simulator’s internal functionality. This
could allow to get a higher degree of certainty in the case
that no discrepancy could be found, maybe even up to a full
formal proof of the equivalence of model and simulation. We
also want to investigate the case where the state’s parameters
are not fully independent. This way, not only rectangular and
cuboid regions could be considered, but also other shapes.

One could also use our proposed approach to build a
formal model from scratch. A developer would start with
some kind of minimal model, e. g. a model where all actions
have no effect. Afterwards our approach is used to detect
any discrepancies between the model and a simulator. These
discrepancies are then used to manually refine the model.
This process is repeated until no further discrepancies are
found. We expect a model produced in this way to be very
well adapted to the plan(s) and state constraints used. On
the other hand, it should be minimal in a sense, i.e. contain
no sentences that are irrelevant to the plan(s). This in turn
should lead to high realism of the model while keeping the
reasoning effort low.

VI. CONCLUSION

In plan-based robotics, formal models are a widely used
tool to assist in creating and verifying plans. These formal

models allow for exact and exhaustive reasoning, but are
usually more abstract than simulation. The discrepancies in
behavior between formal models and simulation are rarely
obvious. In this paper we proposed a novel methodology
that makes these discrepancies explicit for the first time.

Our approach combines formal verification and simulation
and can be targeted towards specific robotic plans and
environment states. The main loop first uses the formal
verification tool SEECER to find interesting execution traces
and extract the initial state and the action sequence. From
the initial discrete state a continuous state is sampled. This
is then fed into the simulation engine. If the resulting final
state of both executions do not match, a discrepancy has been
found. Otherwise the sampling is repeated until a sufficient
confidence is reached.

Our experimental evaluation clearly shows that the ap-
proach is able to find interesting discrepancies in real-world
scenarios. Furthermore, it did so with very few simulation
runs.

REFERENCES

[1] R. Kowalski and M. Sergot, “A logic-based calculus of events,” in
New Generation Computing, vol. 4, 1986, pp. 67-95.

[2] R. Miller and M. Shanahan, “Some alternative formulations of the
event calculus,” in Computational Logic: Logic Programming and
Beyond. Lecture Notes in Computer Science, vol. 2408, 2002, pp. 452—
490.

[3] J. McCarthy and P. J. Hayes, “Some Philosophical Problems from the
Standpoint of Artificial Intelligence,” in Machine Intelligence 4, 1969,
pp. 463-502.

[4] H. Levesque, F. Pirri, and R. Reiter, “Foundations for the situation
calculus,” 1998.

[5] T. Meywerk, M. Walter, V. Herdt, J. Kleinekathofer, D. Grofle, and
R. Drechsler, “Verifying safety properties of robotic plans operating
in real-world environments via logic-based environment modeling,” in
Leveraging Applications of Formal Methods, Verification and Valida-
tion (ISoLA), 2020, pp. 326-347.

[6] T. Meywerk, M. Walter, V. Herdt, D. Grofie, and R. Drechsler, “To-
wards Formal Verification of Plans for Cognition-enabled Autonomous
Robotic Agents,” in Euromicro Conference on Digital System Design
(DSD), 2019, pp. 129-136.

[7]1 E. T. Mueller, “Event Calculus Reasoning Through Satisfiability,” in
Journal of Logic and Computation, 2004, pp. 703-730.

[8] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2004, pp. 2149—
2154.

[9] O. Michel, “Cyberbotics Itd. webots™: Professional mobile robot
simulation,” International Journal of Advanced Robotic Systems, 2004.

[10] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher,
“Formal specification and verification of autonomous robotic systems:
A survey,” in ACM Computing Surveys, 2019, pp. 1-41.

[11] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan,
and G. Rosu, “Rosrv: Runtime verification for robots,” in International
Conference on Runtime Verification, 2014, pp. 247-254.

[12] K. Sen, “Concolic testing,” in 22nd International Conference on
Automated Software Engineering (ASE), 2007, pp. 571-572.

[13] R. Mannadiar and H. Vangheluwe, “Debugging in domain-specific
modelling,” in Software Language Engineering, 2011, pp. 276-285.

[14] M. Beetz, L. Mosenlechner, and M. Tenorth, “Cram—a cognitive robot
abstract machine for everyday manipulation in human environments,”
in 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2010, pp. 1012-1017.

[15] L. Mosenlechner and M. Beetz, “Fast temporal projection using accu-
rate physics-based geometric reasoning,” in 2013 IEEE International
Conference on Robotics and Automation, 2013, pp. 1821-1827.

[16] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Computing Surveys
(CSUR), 2018.

	Introduction
	Preliminaries
	Cognitive Robot Abstract Machine
	Formal verification for CRAM

	Finding Discrepancies
	Overview
	Sampling-Based Simulation of Counterexamples
	Calculating the Confidence

	experimental evaluation
	Robotic Plans
	Plan 1: Setting the Table
	Plan 2: Bowl and Spoon
	Plan 3: Looking into Drawers

	Experimental Results

	Discussion and Future Work
	Conclusion
	References

