
Towards Automatic Hardware Synthesis
from Formal Specification to Implementation
Fritjof Bornebusch

1
, Christoph Lüth

1,2
, Robert Wille

1,3
, Rolf Drechsler

1,2

1
Cyber Physical Systems, DFKI GmbH, Bremen, Germany,

2
Group of Computer Architecture, University of Bremen, Germany,

3
Johannes Kepler University Linz, Austria

{fritjof.bornebusch,christoph.lueth}@dfki.de, robert.wille@jku.at, drechsler@uni-bremen.de

Abstract—In this work, we sketch an automated design flow for
hardware synthesis based on a formal specification. Verification re-
sults are propagated from the FSL level through the proposed flow
to generate an ESL model as well as an RTL implementation auto-
matically. In contrast, the established design flow relies on manual
implementations at the ESL and RTL level. The proposed design
flow combines proof assistants with functional hardware descrip-
tion languages. This combination decreases the implementation ef-
fort significantly and the generation of testbenches is no longer
needed. We illustrate our design flow by specifying and synthesiz-
ing a set of benchmarks that contain sequential and combinational
hardware designs.We compare themwith implementations required
by the established hardware design flow.

1 INTRODUCTION
Nowadays, circuits are in almost every part of our lives and get-

ting more complex over time. With the increasing complexity, the

number of potential failures increases as well. To reduce potential

failures in circuit designs, the increasing complexity must be con-

sidered from the beginning. To address this, iterative improvements

have been proposed, e.g. the consideration of hardware designs

at a higher abstraction level. The established design flow specifies

a hardware design at the Formal Specification Level (FSL) [12] in
SysML/OCL [22, 23] which can later be verified [11, 24]. After the

hardware design was specified, a SystemC [17, 27] model at the

Electronic System Level (ESL) [21] is implemented. As the model

is implemented manually, testbenches at this level ensure that the

model corresponds to the specification [28, 29]. Finally, an imple-

mentation at the Register Transfer Level (RTL) is implemented for

synthesizing the desired hardware design. Testbench generation

ensures that the implementation corresponds to the model [8].

Looking at this design flow in terms of its implementation effort,

it can be seen that, thus far, almost all implementation steps between

the individual abstraction levels have to be conducted manually.

More precisely, while a structure for a SystemC model can indeed

be generated automatically from a SysML class diagram, its behav-

ior (e.g. described by OCL constraints) have to be implemented

manually. The final RTL implementation has to be implemented

manually as well, because of the limitations of SystemCs synthe-

sizeable subset [13, 18, 26]. This makes the implementation effort of

the established design flow time-consuming. Furthermore, due to

the manual translation steps, the ESL model as well as the RTL im-

plementation rely on the quality of the generated testbenches (and

any verification results obtained in higher abstraction levels usually

cannot be transferred to lower abstraction levels). Consequently,

similar design tasks are frequently repeated at different abstraction

levels. That is, the basic problem of the established design flow is

the lack of an automatic translation process between the individual

levels. To address this problem, proof assistant based design flows

emerged [4, 6, 10, 14]. A formal specification of a hardware design

is specified and verified by the proof assistant and translated into

an RTL implementation automatically afterwards. Because of the

automatic propagation of verification results, this requires no test-

benches to be generated at the RTL level. However, following this

flow, the hardware design is specified in a restrictedDomain-Specific
Language (DSL). Proof assistants provide a specification language

to describe programs which is used to embed such a DSL. As the

DSL is focused on a certain hardware design, these approaches

cannot be treated as an alternative to the established design flow

as it allows the specification and synthesis of arbitrary hardware

designs.

In this work, we propose a new design flow which combines the

proof assistant based design flow with functional hardware descrip-

tion languages (HDL) [2, 5]. Proof assistants like Coq [4] provide the

extraction of formal specifications into executable code [20] which

we extended to extract a CλaSH model [2] which again generates

an RTL implementation. Both translation steps are automatically,

i.e. no testbenches need to be generated at the ESL and RTL level.

The combination of proof assistants and functional HDLs provides

a design flow that does not require a restricted DSL and eliminates

the problems of the established design flow, as discussed above. We

present our new design flow as follows: First, we motivate and dis-

cuss the established design flow in detail. In Section 3, we evaluate

existing approaches with respect to the lack of automation of the

established design flow and describe the proposed design flow in

detail. Section 4 describes the implementation while Section 5 eval-

uates the new design flow and shows the obtained results. Finally,

Section 6 summarizes and concludes this work.

2 MOTIVATION
In this section, we briefly review the established design flow, thus

far, when aiming to realize a given formal specification as a final RTL

implementation. Based on that, the main problems are discussed

which provide the motivation of this work. A running example is

introduced in this section which is used to illustrate the established

design flow as well as the design flow proposed later in this paper.

2.1 The Established Hardware Design Flow
Formal specifications, such as SysML/OCL [22, 23], provide an

abstract description of an arbitrary hardware design to be realized.

These descriptions allow for formal verification [11, 24] and provide

a proper starting point for the design flow as sketched in Figure 1.

FSL

(e.g. SysML/OCL)

ESL

(e.g. SystemC)

RTL

(e.g. VHDL, Verilog)

manual

manual

Figure 1: The established hardware design flow.

A formal specification is provided in modeling languages such as

the Systems Modeling Language (SysML) which describe the struc-

ture of the desired hardware design, while constraints in the Object
Constraint Language (OCL) describe the behavior. Afterwards, a
corresponding SystemC [17] model is to be realized. Code skeletons

can straightforwardly and automatically be derived from a SysML

class diagram. The functional behavior of the resulting SystemC

model (as, e.g., described through OCL constraints) has to be re-

implemented manually since no executable SystemC code can be

derived automatically from these constraints. Since manual imple-

mentations are error-prone, the generation of testbenches ensure

that the model corresponds to the specification [28, 29]. Thus, the

model relies significantly on the quality of these testbenches. The

resulting manual implementation of the SystemC model as well

as the generation of good quality testbenches is obviously a time-

consuming process. To synthesize a hardware design the final RTL

implementation, e.g. in VHDL [1], has to be implemented. This step

is also manual as SystemC does not support the synthesis of an

arbitrary hardware design, but of a restricted subset [13, 18, 26].

As the SystemC model, the RTL implementation also relies on the

quality of the generated testbenches to ensure the implementation

corresponds to the model [8]. The resulting manual implementa-

tion and the generation of good quality testbenches makes this step

time-consuming as well.

2.1.1 Specification of a Hardware Design in SysML/OCL. In this

work, we consider a traffic light controller as running example

which controls the lights for trams, cars, and pedestrians. Figure 2
shows a SysML specification of the system and which is specified

as follows:

trafficLightController

~ tick(): void

carsTrafficLight

+ value: enum<trafficLight>

pedestriansTrafficLight

+ value: enum<trafficLight>

tramsTrafficLight

+ value: enum<trafficLight>
1 1

1

1

11

Figure 2: SysML specification of the traffic light example.

• tick: This function describes a finite state machine (FSM)

which iterates over the individual states and sets the lights

based on the current state. The different traffic lights are

encoded as states of the FSM.

• value: This attribute of each traffic light contains the infor-

mation how the individual lights are switched off and on.

1 context t r a f f i c L i g h t C o n t r o l l e r

2 inv p e d e s t r i a n s T r a f f i c L i g h t G r e e n :

3 s e l f . p e d e s t r i a n s T r a f f i c L i g h t . v a l u e = t r a f f i c L i g h t : : Green implies
4 (s e l f . t r am s T r a f f i c L i g h t . v a l u e <> t r a f f i c L i g h t : : Green and
5 s e l f . c a r s T r a f f i c L i g h t . v a l u e <> t r a f f i c L i g h t : : Green)

Listing 1: Safety property for the trafficLightController as OCL constraint.

In addition to the SysML description, OCL constraints as, e.g.,

the one shown in Listing 1 are implemented to specify a desired

behavior. For example, the invariant in Listing 1 specifies that if

the pedestrians traffic light is green, it is not green for the cars and
the trams.

2.1.2 Implementation of the SystemC Model. In contrast, the pre-

cise implementations of functions such as tick (shown in Listing 2)

have to be provided manually. As described above, testbenches

ensure the correct behavior. After passing these testbenches, the

final RTL implementation, e.g. in VHDL [1], is to be implemented

which is also covered by testbenches.

1 void t i c k (T r a f f i c L i g h t ∗ s t a t e s) {

2 Car c a r s = s t a t e s −>c a r s ; P e d e s t r i a n s p e d e s t r i a n s = s t a t e s −>p e d e s t r i a n s ;

3 Tram trams = s t a t e s −>trams ;

4 i f (c a r s == Red && p e d e s t r i a n s == Red && trams == Red) {

5 s t a t e s −>c a r s = Red ; s t a t e s −>p e d e s t r i a n s = Red ; s t a t e s −>trams = Green ;

6 } e l se i f (c a r s == Red && p e d e s t r i a n s == Red && trams == Green) {

7 s t a t e s −>c a r s = RedYel low ; s t a t e s −>p e d e s t r i a n s = Red ; s t a t e s −>trams = Red ;

8 } e l se i f (c a r s == RedYel low && p e d e s t r i a n s == Red && tram == Red) {

9 s t a t e s −>c a r s = Green ; s t a t e s −>p e d e s t r i a n s = Red ; s t a t e s −>trams = Red ;

10 } e l se i f (c a r s == Green && p e d e s t r i a n s == Red && tram == Red) {

11 s t a t e s −>c a r s = Ye l low ; s t a t e s −>p e d e s t r i a n s = Red ; s t a t e s −>trams = Red ;

12 } e l se i f (c a r == Ye l low && p e d e s t r i a n s == Red && tram == Red) {

13 s t a t e s −>c a r s = Red ; s t a t e s −>p e d e s t r i a n s = Green ; s t a t e s −>trams = Red ;

14 } e l se {

15 s t a t e s −>c a r s = Red ; s t a t e s −>p e d e s t r i a n s = Red ; s t a t e s −>trams = Red ;

16 }

17 }

Listing 2: Traffic light state machine implementation of the SystemC
model.

2.2 Problems of the Established Design Flow
The basic problem of the established design flow are the manual

and time-consuming translation steps between the individual lev-

els. As a result, the SystemC model and the RTL implementation

rely on the quality of the generated testbenches as no verification

results can be propagated through the design flow automatically.

Using SysML/OCL at the FSL level and SystemC at the ESL level,

these problems cannot be eliminated since OCL constraints cannot

automatically be translated into executable SystemC code and an

arbitrary SystemC model is not synthesizeable. A design flow that

eliminates the problems of the established one must firstly allow

the specification and verification of arbitrary hardware designs and

secondly propagate verification results from the FSL level to the

RTL level automatically.

3 GENERAL IDEA
In this work, we propose a new design flow which addresses the

problems of the design flow discussed above. To this end, we are

utilizing alternative design flowswhich already have been evaluated

in the context of hardware verification and synthesis. These design

flows already provide partial solutions to the problems discussed

above. After reviewing those flows, we introduce a new design flow

that combines the best of these and, by this, eliminates the problems

of the established design flow.

3.1 Proof Assistant Based Hardware Design
Flow

To address the lack of automation between the FSL and ESL level

of the established design flow, we take a look at the verification

of programs by proof assistants (so-called interactive theorem

provers) [4, 6, 16]. Proof assistants are utilized for specification

of programs and for verification of properties about the program’s

behavior. They specify a program as a collection of recursive func-

tion definitions and data types. The specification language is a

higher-order logic and a property ϕ is proven if and only if ϕ is

derivable in this logic. This logic is indeed too expressive for au-

tomated theorem proving and the proof assistant has to be guided

manually through the proof [16]. For the automatic generation of

executable code (certified programming), proof assistants, such as

Coq [4], support the automatic extraction from a formal specifica-

tion into a functional programming language, such as Haskell or

Ocaml. A functional language is embedded into the specification

language of the proof assistant which enables the extraction of

proofs and functions into executable code by a straightforward

syntactical substitution [20].

There is already research in the area of combining proof as-

sistants with hardware design verification and synthesis [10, 14].

Figure 3 sketches their general design flow. A Hardware Domain-
Specific-Language (Hardware DSL) is embedded in the specification

language of the proof assistant. The hardware design is specified as

a collection of functions and data types in the DSL. Combinational

circuits are described as recursive function definitions, while se-

quential ones are a composition of such functions in combination

with a finite state machine (e.g. a Mealy machine). This machine

describes the clock as a transition from one state to the next. The

Hardware DSL only describes the functional behavior of the de-

sign, without the consideration of dedicated hardware properties,

e.g. parallelism. This enables the automatic analysis of a specified

behavior and the generation of RTL implementations [3, 15].

Proof Assistants

(e.g. Coq)

Hardware DSL

RTL

(e.g. VHDL, Verilog)

automatic

Figure 3: Hardware design flow using proof assistants.

At first view, this design flow addresses the problem of the es-

tablished design flow, described in Section 2.2. The Hardware DSLs

are indeed focused on dedicated hardware designs, e.g. multi-core

CPUs [10] or low-level circuit designs [14]. The specification lan-

guage already provided by the proof assistant is restricted and the

DSL results in a limited expressivity of hardware designs: The Kami

project [10] is not designed for describing combinational circuits

while the PI-Ware project [14] is focused on low-level circuits, e.g.

multiplexer or parallel prefix sum. To eliminate the problem of

the restricted expressivity of hardware designs the DSL could, of

course, be extended which is obviously time-consuming. The ability

of proof assistants to extract executable code, however, leads to the

following question: Can arbitrary hardware designs be specified by
using the specification language of proof assistants and exploit their
existing extraction mechanism?

3.2 Functional Hardware Description
Languages

To address the lack of automation between the ESL and RTL level

of the established design flow, we consider functional hardware

description languages (functional HDLs). The idea of describing

hardware designs using functional languages started back in the

1980s [25]. During the last 20 years functional hardware descrip-

tion languages became more popular and more implementations

emerge [2, 5]. Analogous to the proof assistant based design flow,

described above, combinational circuits are described as recursive

functions and data types while sequential ones are a composition

of such functions combined with a finite state machine. The unique

representation of such hardware design models and the structured

communication between their components, ensured by the type

system, enables the automatic analysis and synthesis into an RTL

implementation. Figure 4 sketches the synthesizing of hardware

designs by functional HDLs.

ESL

(functional HDL)

RTL

(e.g. VHDL, Verilog)

automatic

Figure 4: Hardware design flow using functional hardware description
languages.

Simply replacing SystemC [17] by functional HDLs does not

solve the problem of the established design flow, discussed in Sec-

tion 2, since it is not possible to automatically generate an exe-

cutable functional model from an arbitrary SysML/OCL [22, 23]

specification. As functional HDLs enables the modeling of arbitrary

hardware designs, the following question emerges: Can proof as-
sistants be combined with functional HDLs for automatic hardware
synthesis?

3.3 Proposed Hardware Design Flow
To eliminate the manual and time-consuming translation steps of

the established hardware design flow, we merge the proof assistant

based design flow with functional hardware description languages,

as reviewed above. At the FSL level we use the proof assistant

Coq [4, 9]. This proof assistant provides a program specification

language (Gallina) which is based on an expressive formal language

called the Calculus of Inductive Constructions (CiC) [4]. CiC com-

bines higher-order logic with a richly-typed inductive design. A

separate tactic language provides the implementation of user de-

fined proof methods. As described in Section 3.1, Coq provides

the extraction from a formal specification into executable code. To

generate an ESL model we extended the extraction mechanism of

Coq by the functional HDL CλaSH [2]. In comparison with em-

bedded functional HDLs, like Lava [5], CλaSH borrows its syntax

FSL

(Proof Assistants, e.g. Coq)

ESL

(functional HDL, e.g. CλaSH)

RTL

(e.g. VHDL, Verilog)

automatic

automatic

Figure 5: Proposed hardware design flow which combines proof assistants
with functional hardware description languages.

and semantics from Haskell. This gives us access to all of Haskell’s

choice elements, like case-expressions and pattern matching [2].

Combinational as well as synchronous sequential circuits, either

as a Mealy or a Moore machine, can be modeled in CλaSH. CλaSH
itself supports the generation of different RTL implementations, e.g.

VHDL, Verilog or SystemVerilog, from a model. Figure 5 sketches

our proposed design flow.

By combining proof assistants with functional hardware descrip-

tion languages, we propose a new design flow that does not require

manual translation steps as the established one, described in Sec-

tion 2.1. The automatic translation steps reduce the implementation

effort significantly what accelerates the entire hardware design pro-

cess. Only a specification at the FSL level is needed while the ESL

model and the RTL implementation are generated automatically.

The proposed design flow does also not rely on testbench genera-

tion at the ESL and RTL level as verification results from the FSL

level are propagated through the entire flow automatically.

4 IMPLEMENTATION OF THE PROPOSED
HARDWARE DESIGN FLOW

To show how our proposed design flow is implemented, we consider

the trafficLightController example, described in Section 2. This sec-

tion shows the specification in Coq as well as the generated code in

CλaSH to give an overview of how hardware designs are specified

and verified in the proposed design flow. The same transitions of

the state machine, as shown in Listing 2, are used. For this reason,

we only show its function definition rather than its implementation

in the following sections.

4.1 Specification and Verification of Hardware
Designs in Coq

Low-level hardware description languages, such as VHDL or Ver-

ilog, use fixed size bit vectors for describing the in- and outputs

of a circuit. To implement such bit vectors functional, dependent

types are used [7]. The CompCert [19] compiler provides such data

types as a library for Coq which we utilized to describe signed and

unsigned types. This implementation of dependent types allows us

to specify the communication between the individual components

of a hardware design in the same way as CλaSH does. Line 2 of

Listing 3 shows a dependent type for an unsigned 32 bit vector. Se-

quential circuits in functional HDLs are modeled as state machines.

The function definition for CλaSHs Mealy machine in Coq looks

like this: mealy (f: S → I → (S×O)) (s: S) (l: list(I)) : list(O). An input

1 D e f i n i t i o n t i c k (s : s t a t e) : s t a t e

2 D e f i n i t i o n t r a n s i t i o n F u n c t i o n (da t a : (s t a t e ∗ Unsigned32 . i n t)) (dummy : boo l) : =

3 match da t a with
4 | (s t a t e , c oun t e r) => l e t s t a t e ' : = t i c k s t a t e in
5 i f coun t e r = (c l o ckF r equency ∗ de l ay)

6 then ((s t a t e ' , un s i gned32_ze ro) , s t a t e ')

7 e l se ((s t a t e , i nc rement coun t e r) , s t a t e)

8 end .

9 D e f i n i t i o n t o pEn t i t y : = mealy t r a n s i t i o n F u n c t i o n

10 (S t a t e ca r sRed p ed e s t r i a n sR ed tramsRed , uns i gned32_ze ro) .

Listing 3: Coq specification of the trafficLightController.

1 Theorem p e d e s t r i a n s T r a f f i c L i g h t G r e e n :

2 f o r a l l s : s t a t e , f o r a l l c a r s : t r a f f i c L i g h t C a r ,

3 f o r a l l p e d e s t r i a n s : t r a f f i c L i g h tWa l k e r ,

4 f o r a l l t rams : t r a f f i c L i g h t T r am ,

5 (S t a t e c a r s p e d e s t r i a n s t rams = t i c k s / \ p e d e s t r i a n s = p ed e s t r i a n sG r e en) −>

6 (c a r s <> ca r sGreen / \ t rams <> tramsGreen) .

Listing 4: Specification of the safety property in Coq.

list list(I) is mapped on an output list list(O) by a transition

function f. This function takes two parameters: a state of the type

S and an input of the type I which calculates the output (S×O).
This tuple contains the new state and the output for the Mealy

machine. The types S, I and O are inferred at compile time, as seen

in Line 10 of Listing 3 which makes this implementation of the state

machine generic. The state machines initial state is a tuple that

contains the initial state for the traffic lights State carsRed pedes-
triansRed tramsRed and an initial counter value unsigned32_zero.
The clockFrequency and the delay are constant functions. The tran-
sitionFunction definition implements the transition function for the

Mealy machine. Our specification of the trafficLightController is not
related to an input list, as the data tuple contains all information.

Our definition of the transition function (f), however, requires an
input, but the input is ignored in this case (dummy). The tick func-

tion, as seen in Line 1 of Listing 3, transforms a given state (s) into a
new state. The state transitions are analog to the ones described in

Listing 2. The inductive type state implements the different traffic

lights for the cars, pedestrians and trams.
After specifying the hardware design we need to verify that

this specification corresponds to the safety property described in

Listing 1. Listing 4 shows this safety property in Coqs specification

language. It says: for all states we call tick for and the resulting

traffic light for the pedestrians is green, then it is not green for the

cars and for the trams. To specify arbitrary hardware designs in

Coq, all we need is a specification of the state machine (Mealy or

Moore) in combination with dependent types to describe the desired

design and to extract it into a valid CλaSH model automatically.

4.2 Automatic Generation of CλaSH Models
To generate a CλaSH [2] model at the ESL level, we extended Coq’s

extraction mechanism to generate such a model from an arbitrary

specification [20]. This mechanism supports two ways to extract

a specification. First, it extracts everything that is related to the

function that should be extracted, i.e. other called functions or used

data types. Second, it replaces functions or data types by those of the

target language. In our case Coqs Unsigned32.int type was replaced
by CλaSHs Unsigned 32 type, as seen in Listing 5 which shows

the automatic generated CλaSH model of the above specification.

These replacements have to be configured ones by hand. CλaSH

1 t i c k : : S t a t e 0 −> S t a t e 0

2 t r a n s i t i o n F u n c t i o n : : ((,) S t a t e 0 (Unsigned 3 2)) −> CLaSH . Prelude . Bool −> (,)

3 ((,) S t a t e 0 (Unsigned 3 2)) S t a t e 0

4 t r a n s i t i o n F u n c t i o n da t a0 _ =

5 case da t a0 of {

6 (,) s t a t e coun t e r −> l e t { s t a t e ' = t i c k s t a t e } in
7 case (CLaSH . Prelude . = =) coun t e r ((CLaSH . Prelude . ∗) (5 0 ∗ (1 0 ^ 6)) 1 5) of {

8 CLaSH . Prelude . True −> (,) ((,) s t a t e ' 0) s t a t e ' ;

9 CLaSH . Prelude . False −> (,) ((,) s t a t e (inc rement coun t e r)) s t a t e } }

10 t o pEn t i t y : : CLaSH . Prelude . Bool −> (,) ((,) S t a t e 0 (Unsigned 3 2)) S t a t e 0

11 t o pEn t i t y = mealy t r a n s i t i o n F u n c t i o n ((,) (S t a t e ca r sRed p ed e s t r i a n sR ed tramsRed

) 0)

Listing 5: Automatic generated CλaSH model of Coq’s trafficLightController
specification.

in particular relies on a special notation for dependent types. For

this reason, we cannot extract the types from the CompCert library

directly. The same applies to the Mealy machine as we need CλaSHs
native implementation to execute and synthesize the model. The

goal of such replacements is to use the semantic equivalent types

of the target language and only extract the functional behavior.

From the functional model, we are able to automatically synthe-

size an implementation. CλaSH supports different low-level HDLs,

such as VHDL, Verilog and SystemVerilog and its type system en-

sures that every model is synthesizeable.

5 EVALUATION
In order to evaluate the design flow proposed in this paper, we

specified a set of benchmarks which describes combinational as well

as sequential circuits. To show the reduction of the implementation

effort of the proposed design flow compared with the established

one, we applied both flows to our set of benchmarks. The final

RTL implementations of both flows are synthesized on an FPGA to

compare the consumed space and the maximum clock frequency.

5.1 Benchmarks
The following set of benchmarks have been implemented for evalu-

ation purposes:

• MAC: The combinational multiply-and-accumulate (MAC)

circuit.

• Chaser Light: This circuit implements a sequential chaser

light that iterates over the LEDs of the FPGA we used for

evaluation purposes.

• Traffic Light: This circuit implements an extended version of

the sequential traffic light controller described in Section 4.

• Airbag Controller: This circuit represents a sequential airbag
controller that links sensors with their corresponding airbags

and triggers them independently.

• Ticket Machine: This circuit is a sequential ticket machine,

e.g. for a tram. It offers different kinds of tickets, e.g. for

children, groups or saving prices.

5.2 Implementation Effort
In this section, we compare the implementation effort of the es-

tablished design flow, described in Section 2.1 with the proposed

one, described in Section 3.3. To do this, we implemented every

benchmark in the languages both design flows rely on. The imple-

mentation effort of the individual implementations ranges from

0.5h (MAC) to 8h (Ticket Machine)

5.2.1 Established Hardware Design Flow. The benchmarks have

been implemented in the following languages for the established de-

sign flow: SysML/OCL [22, 23], SystemC [17] and VHDL [1] which

results in three manual implementations. This manual implemen-

tation effort can be applied to larger hardware designs, since it

cannot be eliminated as described in Section 2.1. The verification

of the SysML/OCL specification as well as the generation of test-

benches for the SystemC model and the VHDL implementation

further increase the implementation effort.

5.2.2 Proposed Hardware Design Flow. The benchmarks for the

proposed design flow have to be implemented only in Coq [4],

since the CλaSH [2] model as well as the final VHDL [1] imple-

mentation have been generated automatically. The implementation

effort of the Coq specification has been the same as for the individ-

ual implementations required by the established design flow. Even

though the verification of the specification in Coq would increase

the implementation effort, the reduction of this effort remains as

the hardware design has to be specified only ones instead of three

times as discussed above.

The evaluation of the implementation effort of the established

design flow and the proposed one shows that the one proposed in

this work decreases this effort significantly which accelerates the

hardware design process. While the established one requires three

manual implementations, on the FSL, the ESL and the RTL level,

the proposed one only requires one at the FSL level. From this FSL

specification themodel at the ESL level and the final implementation

at the RTL level are generated automatically.

5.3 Quality of the Results
Doing design tasks automatically usually leads to an automatization

overhead, i.e. the resulting designs are often not as efficient/com-

pact as when the design has been determined manually. In order to

evaluate that, the final VHDL [1] implementations of our bench-

mark set for the established as well as the proposed design flow

have been synthesized on an FPGA (terasIC DE10-Lite), to measure

the consumed space (LUTs/Register) and the maximum clock fre-

quency (Fmax). For synthesizing these implementations we used

the Intel
®
Quartus Prime Software Suite. The results are provided in

Table 1. The table shows that the proposed design flow is practical

as all VHDL implementations have been synthesized on the FPGA.

These implementations might consume more space, which is due

to the fact that engineers can optimize more efficient by hand than

tools. Looking at the maximum clock frequency of the Traffic Light
and the Ticket Machine it shows that for some implementations the

difference between those generated by the proposed design flow

and by those of the established one is marginal. This shows that the

design flow, proposed in this paper, can be employed in practice.

Our results show that the design flow proposed in this work

eliminates the problems of the established one, described in Sec-

tion 2.2. Specified and verified hardware designs generate an RTL

implementation by propagating verification results automatically.

Testbenches at the ESL and RTL level are no longer needed which

makes the proposed design flow unsusceptible for implementation

errors at these levels as no manual intervention is needed.

Table 1: Evaluation by comparing the consumed space and the maximum clock frequency.

established flow proposed flow

Circuit LUTs / Register Fmax LUTs / Register Fmax

MAC 61 / 0 - 61 / 0 -

Chaser Light 78 / 60 252.02 MHz 121 / 69 191.46 MHz

Traffic Light 163 / 45 231.75 MHz 759 / 36 230.79 MHz

Airbag Controller 128 / 110 240.96 MHz 299 / 125 185.98 MHz

Ticket Machine 747 / 196 74.48 MHz 1141 / 146 66.36 MHz

Note that the MAC circuit is combinational. For this reason, it does neither consume registers nor has a

maximum clock frequency.

6 CONCLUSION
In this work, we proposed a design flow to automatically generate

a hardware design implementation at the RTL level from a for-

mal and verified specification. The established flow which uses

SysML/OCL [22, 23] and SystemC [17] cannot provide such an

automatic translation process as it is not possible to generate an ar-

bitrary executable SystemC model from a SysML/OCL specification

and synthesize it afterwards into an RTL implementation automati-

cally. This motivates our approach, and we address this problem

by combining the proof assistant Coq [4] with the functional hard-

ware description languages CλaSH [2]. We extended the automatic

code extraction mechanism of Coq to automatically generate an

executable CλaSH model from a non-executable but provable spec-

ification. CλaSH describes combinational as well as synchronous

sequential circuits (either as a Mealy or a Moore machine). The

model is synthesized into an RTL implementation automatically.

Thus, the proposed design flow reduces the implementation effort

compared with the established one. Since we can propagate the

verification results from the FSL level down to the RTL level, we are

not required to generate testbenches. This accelerates the hardware

design process significantly. A set of different hardware designs

were used as benchmarks to evaluate the proposed design flow and

have been synthesized on an FPGA. This shows the applicability of

our flow and introduced it as an alternative to the established one

which opens the door for further research in this area.

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of Edu-

cation and Research (BMBF) within the project SELFIE under grant

no. 01IW16001 as well as the LIT Secure and Correct System Lab

funded by the State of Upper Austria.

REFERENCES
[1] Ashenden, P. J. The designer’s guide to VHDL, 2nd Edition. TheMorgan Kaufmann

series in systems on silicon. Kaufmann, 2002.

[2] Baaij, C., Kooijman, M., Kuper, J., Boeijink, A., and Gerards, M. Cλash:
Structural descriptions of synchronous hardware using haskell. In Euromicro
Conference on Digital System Design (DSD) (2010), pp. 714–721.

[3] Baaij, C., and Kuper, J. Using rewriting to synthesize functional languages to

digital circuits. In Trends in Functional Programming (TFP) (2013), pp. 17–33.
[4] Bertot, Y., and Castéran, P. Interactive Theorem Proving and Program Devel-

opment - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical

Computer Science. An EATCS Series. Springer, 2004.

[5] Bjesse, P., Claessen, K., Sheeran, M., and Singh, S. Lava: Hardware design in

haskell. In The ACM SIGPLAN International Conference on Functional Program-
ming(ICFP) (1998), pp. 174–184.

[6] Bove, A., Dybjer, P., and Norell, U. A brief overview of agda - A functional

language with dependent types. In Theorem Proving in Higher Order Logics
(TOPHOLS) (2009), pp. 73–78.

[7] Brady, E., McKinna, J., and Hammond, K. Constructing correct circuits: Verifi-

cation of functional aspects of hardware specifications with dependent types. In

Trends in Functional Programming (TFP) (2007), pp. 159–176.
[8] Chen, M., Mishra, P., and Kalita, D. Automatic RTL test generation from

systemc TLM specifications. ACM Trans. on Embedded Computing Systems 11, 2
(2012), 38:1–38:25.

[9] Chlipala, A. Certified Programming with Dependent Types - A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press, 2013.

[10] Choi, J., Vijayaraghavan, M., Sherman, B., Chlipala, A., and Arvind. Kami:

a platform for high-level parametric hardware specification and its modular

verification. Proceedings of the ACM on Programming Languages (PACMPL) 1,
ICFP (2017), 24:1–24:30.

[11] Debbabi, M., Hassaïne, F., Jarraya, Y., Soeanu, A., and Alawneh, L. Verification
and Validation in Systems Engineering - Assessing UML / SysML Design Models.
Springer, 2010.

[12] Drechsler, R., Soeken, M., and Wille, R. Formal Specification Level. In Forum
on Specification and Design Languages (FDL) (2012), pp. 37–52.

[13] Falk, J., Haubelt, C., and Teich, J. Efficient representation and simulation

of model-based designs. In Forum on Specification and Design Languages (FDL)
(2006), pp. 129–135.

[14] Flor, J. P. P., Swierstra, W., and Sijsling, Y. Pi-ware: Hardware description and

verification in agda. In International Conference on Types for Proofs and Programs
(TYPES) (2015), pp. 9:1–9:27.

[15] Gammie, P. Synchronous digital circuits as functional programs. ACM, Comp.
Surveys 46, 2 (2013), 21:1–21:27.

[16] Geuvers, H. Proof assistants : history, ideas and future. Sadhana 34, 1 (2009),
3–25.

[17] Grotker, T. System Design with SystemC. 2002.
[18] Inc, A. S. I. Systemc synthesizable subset version 1.4.7. https://www.accellera.org/

images/downloads/standards/systemc/SystemC_Synthesis_Subset_1_4_7.pdf.

[19] Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., and Ferdinand,

C. Compcert – a formally verified optimizing compiler. In Embedded Real Time
Software and Systems (ERTS) (2016), SEE.

[20] Letouzey, P. Extraction in coq: An overview. In Computability in Europe (CIE)
(2008), pp. 359–369.

[21] Martin, G., Bailey, B., and Piziali, A. ESL Design and Verification: A Prescription
for Electronic System Level Methodology. Morgan Kaufmann Publishers Inc., 2007.

[22] Object Management Group. Object Constraint Language. Tech. Rep.

formal/2014-02-03, OMG, 2012.

[23] Object Management Group. OMG Systems Modeling Language (OMG SysML).

Tech. Rep. formal/2015-06-04, OMG, 2015.

[24] Przigoda, N., Wille, R., and Drechsler, R. Analyzing inconsistencies in UM-

L/OCL models. Journal of Circuits, Systems, and Computers 25, 3 (2016).
[25] Sheeran, M. Designing regular array architectures using higher order functions.

In Functional Programming Languages and Computer Architecture (FPCA) (1985),
pp. 220–237.

[26] Stoppe, J., Wille, R., and Drechsler, R. Data extraction from systemc designs

using debug symbols and the systemc API. In isvlsi (2013), pp. 26–31.
[27] Takach, A. High-level synthesis: Status, trends, and future directions. IEEE

Design & Test 33, 3 (2016), 116–124.
[28] Weissnegger, R., Pistauer, M., Kreiner, C., Schuss, M., Römer, K., and Steger,

C. Automatic testbench generation for simulation-based verification of safety-

critical systems in UML. In International Conference on Pervasive and Embedded
Computing and Communication Systems (PECCS) (2016), pp. 70–75.

[29] Wille, R., Grosse, D., Haedicke, F., and Drechsler, R. Smt-based stimuli

generation in the systemc verification library. In Forum on Specification and
Design Languages (FDL) (2009), pp. 1–6.

https://www.accellera.org/images/downloads/standards/systemc/SystemC_Synthesis_Subset_1_4_7.pdf
https://www.accellera.org/images/downloads/standards/systemc/SystemC_Synthesis_Subset_1_4_7.pdf

	1 Introduction
	2 Motivation
	2.1 The Established Hardware Design Flow
	2.2 Problems of the Established Design Flow

	3 General Idea
	3.1 Proof Assistant Based Hardware Design Flow
	3.2 Functional Hardware Description Languages
	3.3 Proposed Hardware Design Flow

	4 Implementation of the Proposed Hardware Design Flow
	4.1 Specification and Verification of Hardware Designs in Coq
	4.2 Automatic Generation of CaSH Models

	5 Evaluation
	5.1 Benchmarks
	5.2 Implementation Effort
	5.3 Quality of the Results

	6 Conclusion
	References

