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Abstract— The advancement in process technology has made it possible
to integrate multiple processing modules on a single chip. As a result
of this, there is a sharp increase of communication traffic on the
communication bus architecture. In this case, the traditional single bus
based architecture may fail to meet the real-time constraints. The major
concern of the scaled technology is an effect of coupling capacitance
due to the trend of shrinking pitches, i.e., the distance between two
wires. Its consequence is higher crosstalk noise, which degrades the signal
integrity and modifies the power consumption of the wires. This motivates
the synthesis of a custom on-chip bus architecture, which is efficient in
terms of power and performance. Further, the memory of a complex
multiprocessor system has a significant contribution to power and delay.

In this paper, we present a co-synthesis of on-chip buses and memories,
which finds an optimal bus architecture, memory sizes, and the number
of memories. The bus synthesis problem is formulated as an optimization
problem as proposed in [11], [9]. Then it is solved efficiently using an
optimization tool. The memory synthesis problem is based on the graph
partitioning algorithm, which partitions a data dependency task graph
into a set of sub graphs with the minimum number of data dependencies
called cut. The experiments carried out on the real-life multimedia
applications validate the proposed technique for the co-synthesis of bus
architecture and memory.

I. INTRODUCTION

Due to the advancement in process technology and the increasing
demand of performance requirements for the next generation multi-
media, broadband, and network applications, it is expected that by
year 2009 more than 4 billion transistors will be integrated on a single
chip according to the ITRS’05 roadmap [1]. As a result of these, more
and more functionalities are being integrated onto a single chip which,
in turn, results in a sharp increase of overall on-chip communication
traffic among the integrated modules. In such complex systems, on-
chip communication is expected to become a major performance
bottleneck. Traditional approaches are mainly based on the synthesis
of a single shared bus based architecture, which may not meet the
real time constraints.

The early works on communication bus synthesis are mainly
based on the simulation of an entire Hw/Sw system, which takes
huge amount of time while exploring a large design space. The
first approach for synthesizing a single global bus was proposed
in [5], which finds the minimum bus width in order to minimize
the chip size. In [14] an automatic bus generation for an MPSoC
architecture was proposed. The approach considers for three different
types of buses, which can be generalized to a shared bus, point-to-
point, and FIFO based architecture. A bus architecture for a given
bus width is generated considering real-time constraints. In [13] a
method of communication synthesis based on the library elements
and constraints graph was presented, where the library elements
are a collection of communication links and communication nodes.
The approach focuses mainly on synthesizing a communication bus
topology for a point-to-point communication architecture. In [17] a
bus model for communication in embedded systems with arbitrary

978-1-4244-1710-0/07/$25.00 (© 2007 IEEE

topologies was proposed, where a point-to-point communication is a
special case for the real-time application. Their algorithm selects the
number of buses, the type of each bus, the message transferred on
each bus, and schedules the communication bus. In [6] a synthesis
flow which supports shared buses and point-to-point connection
templates was presented. In [9], [10] an energy conscious on-chip
bus synthesis technique was presented. All the above techniques
are for synthesizing on-chip bus architectures, however, non of
them synthesizes memories. Recently, in [12], an approach for co-
synthesis of bus and memory was presented for MPSoC architectures.
The technique synthesizes on-chip bus and memory, however, the
synthesized bus architecture is not custom in terms of bus widths. It
is rather based on the standard bus templetes provided by vendors.

In this paper, the bus synthesis algorithm is based on the approach
proposed in [11], [9], which synthesizes a custom bus architecture.
The synthesis problem is formulated as an optimization problem and
finds the optimal bus widths and the number of buses. The memory
synthesis is based on the graph partitioning algorithm, which clusters
a set of tasks that have data dependencies. While partitioning a graph,
the algorithm finds the minimum number of cuts among the clusters
in order to minimize the communication via a bridge. This, in turn,
results in the clusters of tasks, which seldom access the memory of
another bus. The term cut is the number of edges connecting the
clusters. It determines how many times an on-chip module accesses
a memory using a bridge. Finally, the algorithm sums the data size
of each cluster to find the memory size and maps each cluster onto
a memory.

The reminder of this paper is organized as follows. Section II
introduces a motivational example for co-synthesis of bus and mem-
ory. Section III gives a mathematical formulation and optimization
techniques for on-chip bus synthesis problem. The memory synthesis
algorithm based on graph partitioning is described in Section IV. In
Section V, we present experimental results to validate our method
of on-chip bus and memory synthesis and finally, in Section VI, we
give the conclusion of this work.

II. MOTIVATIONAL EXAMPLE

In this section we give a motivation for co-synthesis of on-
chip buses and memories and show that the synthesized buses and
memories are optimal in terms of 1.) bus widths and the number
of buses and 2.) memory sizes and the number of memories,
respectively. We consider a partitioned and mapped Hw/Sw system.
Based on the partitioned and mapped system, a communication
task graph G¢(C,II) with nine communication tasks and their data
dependencies is extracted as shown in Fig. 1(a). In the figure, tasks
{ca,c5,¢7}, {cs,co}, {c1,c2,c3}, and {cs} are initiated by on-chip
modules M1, M2, M3, and M4, respectively. After scheduling of tasks
c € C as shown in Fig. 1(b), 16 and 24-bit buses are synthesized.
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Fig. 1. Communication tasks and their schedule. (a) Example communication
tasks. (b) The optimal schedule of tasks.

The tasks c1, c2, c3, and cg are mapped to a 24-bit wide bus, while
the tasks c4, cs, 7, cs, and cg are mapped to a 16-bit wide bus.
For the synthesis of memory sizes and the number of memories,
we first extract an undirected data dependency tasks graph Gp (C, IT)
from the directed communication task graph G¢(C,II). In graph
Gp(C,II), each vertex is a communication task ¢, while an edge
between two vertices gives a data dependency between two com-
munication tasks. From the data dependency tasks graph Gp(C,II),
we find the maximum cliques with edges connecting each clique as
shown in Fig. 2(a). The main aim is to cluster the data associated
with tasks ¢ € C, which have data dependencies and map each cluster
to a memory. From the given cliques of tasks ¢ € C' as shown in
Fig. 2(a), we further cluster the cliques in order to find the minimum
number of memories unless there is a memory access conflict (when
two tasks access a memory at a same time). Fig. 2(b) and (c) show
the synthesized memories and data associated with communication
tasks. In the first figure, data of tasks ¢ € C, which are initiated by
modules M1 and M2 are mapped to MEM1. While data of tasks
initiated by modules M3 and M4 are mapped to MEM2. In the
figure, there are three cuts, which mean that either on-chip modules
M1 and M2 or M3 and M4 access memory MEM2 or MEM1 for
three times using a bridge. Similarly, Fig. 2(c) depicts the synthesized
memory sizes, number of memories, and the number of cuts. In the
figure, the number of cuts is less than the synthesized memory of
Fig. 2(b). This, in turn, results in less power and delay overhead due
to communication via a bridge. Thus, the synthesis results of Fig. 2(c)
give the optimal memory sizes and the number of memories with the
minimum number of bridge accesses. The memory size is evaluated
by summing all tasks ¢ € C' in a cluster. The synthesized on-chip
buses and memories with their interconnection are shown in Fig. 2(d).

III. BUS SYNTHESIS

The on-chip bus synthesis problem is formulated as an optimization
problem, which performs scheduling, allocation, and binding of tasks
¢ € C and finds the optimal bus widths and the number of buses.
During the scheduling, the slack of each task ¢ € C' is exploited
to share the bus(es). The formulation of the optimization problem is
given as follows [11], [9],
minimize:

Z Costy - 1; (€))

TER
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Fig. 2. Co-synthesis of on-chip buses and memories. (a) Clique of data
dependency tasks and their dependencies. (b) Synthesized memories with
number of cuts = 3. (c) Synthesized memories with number of cuts = 2. (d)
Synthesized bus architecture and memories with interconnection of on-chip
modules and bridge.
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The main objective is to minimize the communication bus cost (bus
widths and the number of buses) as shown in Eq. (1), where r; € R is
a library of on-chip communication buses with different bus widths.
The Cost, of each bus r; is expressed in terms of bus width. In
Eq. (2), start time s, and execution time w, of each task 7 should
be less than or equal to its deadline di,. Further, a task 7 can start its
execution only after its predecessor (communication task c¢) completes
transferring data as shown in Eq. (3). A binary decision variable
Xet,r € {0,1}, indicates scheduling of a communication task ¢ at
time ¢ € {0,---, A}, with bus width r. Eq. (4) gives a dependency
between successor (communication task ¢) and predecessor (data pro-
cessing task 7',). Since the delay C LTI, , (communication lifetime
interval) of a task c is a function of data size and bus width r (see
Eq. (7)), Eq. (5) gives a delay constraint such that the overall delay of
each task c must be less than or equal to deadline di.. The gate delay
is calculated according to Eq. (8) [16], where Vg4, Vis, and Vip, are
supply, body bias, and threshold voltages, respectively. Terms x1, k2,
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K3, and « are the technology dependent parameters. While scheduling
communication tasks for different bus widths r, Eq. (9) gives the
constraint for bus widths. In the above formulation, the objective
function is linear in optimization variable 7; and the delay constraint
Eq. (7) is non-linear in the optimization variable r;, thus, the above
bus synthesis problem belongs to the convex quadratic optimization
problem, which finds a global optimal solution in a polynomial time
complexity [8].

IV. MEMORY SYNTHESIS

The memory synthesis algorithm presented in Algorithm 1, takes
an undirected data dependency task graph G'p(C,II) as input, which
is extracted from a communication task graph G¢(C,II). The algo-
rithm finds the optimal memory sizes and the number of memories
with the minimum number of cuts. The term cut is the number of
edges that connect the clusters. It determines how many times an
on-chip module accesses a memory using a bridge. Thus, the aim is
to map the data of communication tasks to an individual memory in
order to minimize the number of communications between a module
and a memory via a bridge. This, in turn, reduces power and delay
overhead due to the communication. The clustering of tasks is based
on the graph partitioning problem called clique partitioning [15],
which finds a set of cliques from the given data dependency task
graph G¢(C,II).

At line 1 and 2, the algorithm reads the data dependency task graph
and the synthesized number of buses. From line 4 to 13, a super graph
G/ (S, E') is derived from the graph G p(C, IT). Each node s; € S is
a super node [15] that can contain a set of one or more vertices ¢; €
C. Edge E' is identical to E except that the edges in E’ link to super
nodes in S. At line 4 and 5, the algorithm initializes sets S and E' to
empty sets. From 6 to 9, each vertex ¢; € C of Gp(C,II) is moved
to a separate super node s; € S of G’ . Tn the graph G’I(S7 EI) each
vertex ¢; € C represents a communication task. An edge e;; € E
between two vertices c; and c; represents a data dependency. From
line 15 to 38 the algorithm finds the cliques of the data dependency
graph. The algorithm stays in the while loop defined at line 15 until
the set E is not empty. In this loop the algorithm finds the super
node of the graph, where each super node consists of all the nodes
in connected nodes Syum1 and Syume2 With the maximum number
of common nodes. By definition a super node s; € S is a common
node of the two super nodes s;, s, € S if there exmt edges e; j,
eir € E'. At line 21, the function COMMONNODE(G Siy S5) returm
the set of super nodes that are common nodes of s; and s; in G At
line 22, if the returned number of common nodes is greater than the
variable MostCommons then the content of the variable is updated at
line 24. When the MostCommons nodes are found, from line 30 to 32,
two super nodes are merged into a single super node, sNumi1Num2,
which consists of all the vertices in SNum1 and SNum2. From line 36
to 38, the algorithm adds edges among the super nodes. The variable
CommonSet consists of all the common nodes of Snum1 and SNum2.
At line 39 of the algorithm, a new while loop starts to synthesize
memory sizes and the number of memories from the available cliques
of a data dependency task graph G p (C, IT). The loop is repeated until
the number of cuts is minimum and there is no more memory access
conflict. The function ClusterClique at line 41 clusters the cliques in
order to minimize the number of memories. Each time the algorithm
finds the maximum number of edges connecting two cliques and
clusters them to make a new super node. The loop is repeated until
there is no minimum number of cuts and there is no memory access
conflict. After the completion of the while loop defined at line 39,
the algorithm gives a set of super nodes, which are mapped to an
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MEMORY S YNTHESIS()
1 Gp(C,II) < GETDATADEPTASKS();

2 n « GETNUMOFBUSES();

3 /*Create a super graph G/(S, E/) * /

4 S 0

5 E 0

6 forc;, € C

7 do

8 s; —{ciks

9 S—SU{si};

10 endfor

11 fore;; € E

12 do | ,

13 E «— F U{e,;)j};

14 endfor

15 while £ # 0

16 do

17 /#Find S Nyum1, SNum2 having most common node*/
18 ]VIOS}&Commons — —1;

19 fore; € F

20 do ,

21 ¢i,j — |COMMONNODE(G , 54, 55);

22 if ¢; j; > MostCommons

23 then

24 MostCommons «— ¢; j;

25 Numl = i; Num2 = j;

26 endif

27 endfor ,

28 CommonSet < COMMONNODE(G , Spum1; Snum?2);
29 /*Merge SNum1 and SNym2 IO SNumi1Num2*/
30 SNum1Num2 < SNum1 U SNum2;

31 S — S — SNum1 — SNum2;

32 S — SU{SNum1Num2};

33 /*Add edge from SN ym1Num2 to super nodes*/
34 for s; € CommonSet

35 do | , ,

36 E — E U{e; yuminumati

37 endfor

38 endwhile

39 while cuts # minimum A MemAccessCon flict # true
40 do ,

41 cluster < CLUSTERCLIQUE(S, E' );

42 endwhile

43 for ¢y € cluster

44 do

45 memSize; «— SUM(DataSize(cy));

46 endfor

47 return

Algorithm 1: Memory synthesis algorithm.

individual memory. At line 45, the data size of all the communication
tasks in a super node s; are summed to find the memory size for each
memory.

V. EXPERIMENTAL VALIDATION

We validate the effectiveness of the proposed technique using
real-life multimedia applications, i.e., an audio decoder [2] and a
speech recognition system [3]. The audio decoder includes four main
decoding steps, which are inverse quantization, channel decoupling,
reconstruct curve, and IMDCT. After manually partitioning and
mapping of the decoder [11], the IMDCT was mapped to a single
hardware and the rest of the functionalities were mapped to a
processor. Furthermore, the raw audio data was mapped to a compact
flash (CF) memory with a CF-interface and the extracted audio data
was mapped to an audio buffer for streaming. Similarly, the second
speech recognition system consists of three main components: front
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Fig. 3. Synthesized bus architecture with three buses and memory blocks.

end, decoder, and linguist. The front end includes series of data
processing tasks such as pre-emphasis, hamming window, FFT (fast
Fourier transformation), mel frequency filter, IFFT, cepstral mean
normalization, and feature extraction to generate the features from the
speech. The training takes as input a large number of speech along
with their transcriptions into phonemes to provide the speech models
for the phonemes. The recognition is based on the HMM (hidden
Markov model) to decode the speech. We used the American English
lexicon consisting of 32 phonemes and a database of 17 different
words (spelling out the names of the months, numbers, and digits) [7],
[11]. The length and the number of phonemes in a speech varies from
application to application. After partitioning of the speech recognition
system, the front end was mapped to a dedicated hardware including
FFT and filters. The task training and recognition were mapped to
a PowerPC processor. Based on the partitioned and mapped system,
communication tasks and their data size were extracted by profiling
the Hw/Sw system [7].

The on-chip communication buses are given as a library of buses
with different bus widths, which ranges from 16 to 128-bit wide. The
bus synthesis algorithm was implemented in C as a pre-processing
model to interface with a convex solver of MOSEK [4]. Further,
the memory synthesis algorithm was implemented in C as a graph
partitioning problem, which partitions a set of communication tasks
(associated with data) into a set of sub graphs with the minimum
number of cuts among the sub graphs. For a given partition with the
minimum number of cuts, each sub graph is mapped to a memory
block. Fig. 3 shows the synthesized number of buses, memory blocks,
and the interconnection of on-chip modules with buses. There are two
bridges in order to communicate modules of one bus to the modules
of another bus. The synthesized bus widths are 24, 32, and 48-bit
wide. Table I shows the size of each memory block and the number
of cuts between memories. In the column entitled No. of cuts of
the table, MEM1 and MEM2 have 6 cuts, MEM2 and MEM3 have
10 cuts, while MEM1 and MEM3 have no cut. i.e., the smaller the
number of cuts the better the performance in terms of delay and power
overhead due to the communication through a bridge. Thus, the data
associated with communication tasks mapped to MEM1 has no data
dependency with the data associated with the communication tasks,
which are mapped to MEM3. However, the tasks that are mapped to
MEMI1 and MEM2, and MEM2 and MEM3 have data dependencies.
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Mem. Block | Mem. Size | No. of Cuts
MEMI1 1.8 KB (MEM1 and MEM2)=6
MEM2 2.4 KB (MEM2 and MEM3)=10
MEM3 377 KB (MEMI1 and MEM3)=0
TABLE 1

SYNTHESIZED MEMORIES, THEIR SIZE, AND NUMBER OF CUTS.

VI. CONCLUSION

Traditional on-chip bus synthesis approaches are mainly based on
the simulation of an entire Hw/Sw system. After simulation, the
communication requirement is mapped to a bus architecture provided
by a vendor. However, the resulting synthesized bus architecture may
not be efficient due to the under utilization of bus resources. In this
paper, we proposed a custom on-chip bus architecture and memory
co-synthesis techniques for a given application. The bus synthesis is
formulated as a scheduling, allocation, and binding problems, and
finds the optimal bus widths and the number of buses. The memory
synthesis is formulated as a graph partitioning problem, which takes
a data dependency task graph and synthesizes memory sizes and the
number of memories. The experiments conducted on the real-life
multimedia applications validate the effectiveness of the proposed
technique.
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