
SystemC – Features of
SystemC 2.0

Rolf Drechsler
Daniel Große
University of Bremen

SystemC 2.0 – Communication and
Synchronization

l Hardware signal for communication is not
sufficiently general for system-level

l At system-level you need more:
– Delayed connections
– Buffered connections (FIFO, message queues)
– Communication through arbitrary events
– Synchronization (access to shared data) using

mutexes

=> Concept of Interfaces, Ports and Channels

Abstract Communication

l Connect a module port through an interface with
a channel

Interfaces

l Defines a set of access methods, but does not
implement these methods (abstract class)

l Has no data fields
l A port sees only those channel methods that are

defined by the interface
l A port is not able to access any other method or

data field in the channel
l Define by deriving from class sc_interface

Ports

l Processes can access a channel methods
through ports

l More than simple read and write is possible:
– Transmit additional data (e.g. data address)
– Get status of a channel (e.g. data available)
– More complex sensitivity (wait for request)

l Binding of a channel to a port by operator (..)

Channels (1)

l Container for communication functionality
l Implement one or more interfaces
l A channel must be

– be derived from sc_channel class
– be derived from one (or more) classes derived from

sc_interface
– provide implementations for all pure virtual functions

defined in its parent interfaces

Channels (2)

l Distinction between
– Primitive channels

l Do not contain processes or modules
l Can not access other channels

– Hierarchical channels
l Complete SystemC-Modules
l Can access other channels

l Example of primitive channels:
sc_signal<T>, sc_fifo<T>, sc_mutex

Example: FIFO

l FIFO of 10 characters, along with a producer
and a consumer process, communicating
through the FIFO

Communication and
Synchronization

Channel

Module1 Module2

Events

Interfaces

Ports to Interfaces

Example: FIFO (1)

FIFO

Producer Consumer
Write Interface

Read Interface

Example: FIFO (2)
Declaration of Interfaces

class write_if : public sc_interface
{

public:
virtual void write(char) = 0;
virtual void reset() = 0;

};

class read_if : public sc_interface
{

public:
virtual void read(char&) = 0;
virtual int num_available() = 0;

};

Example: FIFO (3)
Declaration of FIFO channel

class fifo: public sc_channel,
public write_if,
public read_if

{
private:

enum e {max_elements=10};
char data[max_elements];
int num_elements, first;
sc_event write_event,

read_event;
bool fifo_empty() {…};
bool fifo_full() {…};

public:
fifo() : num_elements(0),

first(0);

void write(char c) {
if (fifo_full())

wait(read_event);
data[<you calculate>] = c;
++num_elements;
write_event.notify();

}

void read(char &c) {
if (fifo_empty())

wait(write_event);
c = data[first];
--num_elements;
first = …;
read_event.notify();

}

Example: FIFO (4)
FIFO channel (cont’d)

void reset() {
num_elements = first = 0;

}

int num_available() {
return num_elements;

}
}; // end of class fifo

Example: FIFO (5)

l Note the following extensions beyond
SystemC 1.0:
– wait() call

l wait(sc_event) => dynamic sensitivity
l wait(time)
l wait(time_out, sc_event)

– Events
l are the fundamental synchronization primitive
l have no type, no value (only: sc_event e)
l always cause sensitive processes to be resumed
l can be specified to occur:

– immediately/ one delta-step later/ some specific time later

Completing the FIFO Example (1)

SC_MODULE(producer) {
public:

sc_port<write_if> out;

SC_CTOR(producer) {
SC_THREAD(main);

}

void main() {
char c;
while (true) {

out->write(c); // write c to FIFO
if(…)
out->reset(); // reset FIFO

}
}

};

SC_MODULE(consumer) {
public:

sc_port<read_if> in;

SC_CTOR(consumer) {
SC_THREAD(main);

}

void main() {
char c;
while (true) {

in->read(c); // read c
if (in->num_available()>5)
//perhaps speed up processing

}
}

};

Completing the FIFO Example (2)

SC_MODULE(top) {
public:

fifo *pfifo;
producer *pproducer;
consumer *pconsumer;

SC_CTOR(top) {
pfifo = new fifo(“fifo”);
pproducer=new producer(“Producer”);
// bind the FIFO to the producer´s port
pproducer->out(fifo);

pconsumer=new consumer(“Consumer”);
// bind the FIFO to the consumer´s port
pconsumer->in(fifo);

};

Completing the FIFO Example (3)

l Note:
– Producer module

l sc_port<write_if> out;
– Producer can only call member functions of write_if interface

– Consumer module
l sc_port<read_if> in;

– Consumer can only call member functions of read_if interface

– Producer and consumer are
l unaware of how the channel works
l just aware of their respective interfaces

– Channel implementation is hidden from
communicating modules

Completing the FIFO Example (4)

l Advantages of separating communication from
functionality
– Trying different communication modules
– Refine the FIFO into a software implementation

l Using queuing mechanisms of the underlying RTOS

– Refine the FIFO into a hardware implementation
l Channels can contain other channels and modules

– Instantiate the hw FIFO module within FIFO channel
– Implement read and write interface methods to properly work

with the hw FIFO
– Refine read and write interface methods by inlining them into

producer and consumer codes

SystemC Roadmap

l SystemC 1.0: Hardware Design Flow
– RTL and Behavioral Hardware Modeling

l SystemC 1.X: Master-Slave Comm. Library
l SystemC 2.0: System Design Flow

– General purpose: communication and
synchronization

– Communication Refinement
– Multiple, customizable models of computation
– Dynamic thread creation

SystemC Roadmap (cont´d)

l SystemC 2.X: Extensions to System Design
Flow
– Fork & Join
– Interrupt / abort for behavioral hierarchy
– Timing specification and constrains

l SystemC 3.X: Software Design Flow
– Abstract RTOS modeling & scheduler modeling

l SystemC 4.X: Analog/Mixed Signal Systems
Modeling

SystemC Language Architecture

Summary

l SystemC is a C++ based modeling environment
– Powerful constructs for system-level design
– Full RTL capabilities

l Common language infrastructure for
– All levels of abstraction
– For both hardware and software

l Based on ANSI-standard C++ - not a new language
l Future Releases (www.systemc.org)

