@ Universitat Bremen

SystemC — Features of
SystemC 2.0

Rolf Drechsler
Daniel Grol3e
University of Bremen

@ Universitat Bremen

SystemC 2.0 — Communication and

Synchronization
- /7]
e Hardware signal for communication is not
sufficiently general for system-level

e At system-level you need more:
- Delayed connections
- Buffered connections (FIFO, message queues)
- Communication through arbitrary events

— Synchronization (access to shared data) using
mutexes

=> Concept of Interfaces, Ports and Channels

w Universitat Bremen

Abstract Communication

e Connect a module port through an interface witl
a channel

implementation of

read|)

write()
buffer_size()
buffer_counter()

Modul 4

@ Universitat Bremen

Interfaces
0

e Defines a set of access methods, but does not
Implement these methods (abstract class)

e Has no data fields

e A port sees only those channel methods that ar
defined by the interface

e A port is not able to access any other method o
data field in the channel

e Define by deriving from class sc_interface

@ Universitat Bremen

Ports
- /7]

e Processes can access a channel methods
through ports

e More than simple read and write Is possible:
- Transmit additional data (e.g. data address)

- Get status of a channel (e.g. data available)
- More complex sensitivity (wait for request)

e Binding of a channel to a port by operator (..)

@ Universitat Bremen

Channels (1)
S

e Container for communication functionality
e Implement one or more interfaces

e A channel must be
— be derived from sc_channel class

— be derived from one (or more) classes derived from
sc_interface

- provide implementations for all pure virtual functions
defined in its parent interfaces

@ Universitat Bremen

Channels (2)
S

e Distinction between

- Primitive channels
e Do not contain processes or modules
e Can not access other channels

— Hierarchical channels
e Complete SystemC-Modules
e Can access other channels

e Example of primitive channels:
sc_signal<T>, sc_fifo<T>, sc_mutex

@ Universitat Bremen

Example: FIFO
S

e FIFO of 10 characters, along with a producer
and a consumer process, communicating
through the FIFO

@ Universitat Bremen

Communication and
Synchronization

Interfaces

Events

Ports to Interfaces

@ Universitat Bremen

Example: FIFO (1)

Write Interface

Read Interface

@ Universitat Bremen

Example: FIFO (2)
Declaration of Interfaces

class write _if : public sc_interface

{
public:
virtual void write(char) = 0O;
virtual void reset() = 0O;
%
class read_if : public sc_interface
{
public:

virtual void read(char&) = O;
virtual int num_available() = 0O;

@ Universitat Bremen

Example: FIFO (3)
Declaration of FIFO channel
I

class fifo: public sc_channel, void write(char c) {
public write_if, if (fifo_full())
public read_if wait(read_event);
{ data] <you calculate>] = c;
private: ++num_elements;
enum e {max_elements=10}; write_event.notify();
char data[max_elements]; }

int num_elements, first;
sc_event write_event,
read_event;

bool fifo_empty() {...};
bool fifo_full() {...};

void read(char &c) {
if (fifo_empty())
wait(write_event);
c = data[first];
--num_elements;
first= ...;
read_event.notify();

public:
fifo() : num_elements(0),

first(0);

@ Universitat Bremen

Example: FIFO (4)
FIFO channel (cont’d)

void reset() {
num_elements = first = O;

}

int num_available() {
return num_elements;

}
}. // end of class fifo

@ Universitat Bremen

Example: FIFO (5)
S

e Note the following extensions beyond
SystemC 1.0:

- wait() call
e wait(sc_event) => dynamic sensitivity
e wait(time)
e wait(time_out, sc_event)
- Events
e are the fundamental synchronization primitive
e have no type, no value (only: sc_event e)
e always cause sensitive processes to be resumed

e can be specified to occur:
— Immediately/ one delta-step later/ some specific time later

@ Universitat Bremen

Completing the FIFO Example (1)
S

SC_MODULE(producer) { SC_MODULE(consumer) {

public:
sc_port<write_if> out;

SC_CTOR(producer) {
SC_THREAD(main);

}

void main() {
char c;
while (true) {
out->write(c); // write c to FIFO
if(...)
out->reset(); // reset FIFO
}
}

public:
sc_port<read_if> in;

SC_CTOR(consumer) {
SC_THREAD(main);

}

void main() {
char c;
while (true) {

in->read(c); // read c
If (in->num_available()>5)

//perhaps speed up processing

}
}

@ Universitat Bremen

Completing the FIFO Example (2)
S

SC_MODULE(top) {
public:
fifo *pfifo;
producer *pproducer;
consumer *pconsumer;

SC _CTOR(top) {
pfifo = new fifo(“fifo”);
pproducer=new producer(“Producer”);
// bind the FIFO to the producer”s port

pproducer->out(fifo);

pconsumer=new consumer(*Consumer”);

// bind the FIFO to the consumer”s port
pconsumer-=>in(fifo);

@ Universitat Bremen

Completing the FIFO Example (3)
S

e Note:

— Producer module
e SC_port<write if> out;
— Producer can only call member functions of write _if interface
— Consumer module
e SC_port<read if>in;
— Consumer can only call member functions of read_if interface
— Producer and consumer are
e unaware of how the channel works
e just aware of their respective interfaces

- Channel implementation is hidden from
communicating modules

@ Universitat Bremen

Completing the FIFO Example (4)
o

e Advantages of separating communication from
functionality
— Trying different communication modules

- Refine the FIFO Iinto a software implementation
e Using queuing mechanisms of the underlying RTOS

- Refine the FIFO into a hardware implementation

e Channels can contain other channels and modules
— Instantiate the hw FIFO module within FIFO channel

— Implement read and write interface methods to properly work
with the hw FIFO

— Refine read and write interface methods by inlining them into

nrodiicar and coancirimMmar rndaoac

@ Universitat Bremen

SystemC Roadmap

e SystemC 1.0: Hardware Design Flow
- RTL and Behavioral Hardware Modeling

e SystemC 1.X: Master-Slave Comm. Library

e SystemC 2.0: System Design Flow

- General purpose: communication and
synchronization

- Communication Refinement
- Multiple, customizable models of computation
-~ Dynamic thread creation

@ Universitat Bremen

SystemC Roadmap (cont’d)
S

e SystemC 2.X: Extensions to System Design
Flow

—- Fork & Join
— Interrupt / abort for behavioral hierarchy
- Timing specification and constrains
e SystemC 3.X: Software Design Flow
— Abstract RTOS modeling & scheduler modeling

e SystemC 4.X: Analog/Mixed Signal Systems
Modeling

@ Universitat Bremen

SystemC Language Architecture
S

Standard Channels for Methodology-Specific Channels
Various MOCs Master/Slave Library
Kahn Process Networks etc.
Upper layers Static Dataflow, etc.
are builf cleanly
LIRAL IO Elementary Channels
Signal, Timer, Mutex, Semaphore, Fifo, efc.
Lower layers
f‘mgﬁfﬁi)ir Core Language Data Types
fayers Modules Logic Type (01XZ)
' Ports Logic Vectors
Processes Bits and Bit Vectors
Interfaces Arbitrary Precision Integers
Channels Fixed Point Numbers
Events C++ Built-In Types (int, char, double, etc.)
G++ User-Defined Types
C++ Language Standard

@ Universitat Bremen

Summary
e —

e SystemC is a C++ based modeling environment
- Powerful constructs for system-level design
—- Full RTL capabilities

e Common language infrastructure for
— All levels of abstraction
— For both hardware and software

e Based on ANSI-standard C++ - not a new language
e Future Releases (www.systemc.org)

