
FoREnSiC

A Formal Repair Environment for Simple C
Version 1.0.0

Authors
Roderick Bloem, Rolf Drechsler, Görschwin Fey, Alexander Finder,

Georg Hofferek, Robert Könighofer, Jaan Raik, Urmas Repinski, André Sülflow

c©2011-2013 by University of Bremen,
Graz University of Technology, and
Tallinn University of Technology

All rights reserved.

Notices

This tool has been developed within the DIAMOND European project, con-
tract number FP7-2009-IST-4-248613 (http://www.fp7-diamond.eu/). The
information in this document is provided ”as is”, and no guarantee or warranty
is given that the information is fit for any particular purpose. The user thereof
uses the information at its sole risk and liability.

For more information about the tool, contact the FoREnSiC developers directly
(forensic@lists.iaik.tugraz.at).

c©2011-2013 by University of Bremen,
Graz University of Technology, and
Tallinn University of Technology

All rights reserved.

i

http://www.fp7-diamond.eu/
mailto:forensic@lists.iaik.tugraz.at

Contents

1 Introduction 1
1.1 An Appetizer . 1
1.2 Features and Benefits . 2
1.3 Limitations . 4
1.4 License . 4
1.5 Structure of this Manual . 4

2 Installing FoREnSiC 5

3 Using FoREnSiC 8
3.1 Starting FoREnSiC . 8
3.2 Annotating Programs . 8
3.3 Selecting a Back-End . 10

4 Understanding FoREnSiC 12
4.1 The Architecture . 12
4.2 The Front-End . 13

4.2.1 Unsupported C Language Elements 13
4.2.2 Translating into the Internal Model 13
4.2.3 Special Cases . 14
4.2.4 Code Location Information 14

4.3 The Internal Model . 14
4.3.1 Structure of the Model . 15
4.3.2 Example . 18

4.4 The Symbolic Back-End . 20
4.4.1 The Symbolic Execution Engine 21
4.4.2 The Concolic Execution Engine 24
4.4.3 The Diagnostic Data . 26
4.4.4 The Diagnosis Engine . 27
4.4.5 The Repair Engine . 28
4.4.6 Implementation . 33
4.4.7 Examples . 34

4.5 The Simulation-Based Back-End 36
4.5.1 Simulation-Based Error Localisation and Repair 36
4.5.2 The Observation Points 36
4.5.3 Statistical Error Localisation Using Dynamic Slicing . . . 37
4.5.4 Mutation-Based Repair 37
4.5.5 Execution of the Simulation-Based Back-End 39
4.5.6 Example . 40

ii

4.6 The Cut-Based Back-End . 43
4.6.1 The Diagnosis Engine . 44
4.6.2 The Repair Engine . 44
4.6.3 Execution of the WoLFram Back-End 44

5 Summary 46

List of Figures

1.1 Different characteristics of different debugging methods. 3

4.1 The architecture of FoREnSiC. 12
4.2 A UML class diagram illustrating the structure of the model. . . 16
4.3 An illustration of the model for a small example program. 19
4.4 The architecture of the symbolic back-end. 20
4.5 Example: Symbolic execution. 22
4.6 Counterexample-guided repair refinement. 29
4.7 Repair with on-the-fly program analysis. 31
4.8 The architecture of the cut-based back-end. 44

List of Tables

1.1 Overview and classification of the back-ends. 4

4.1 Example: The repair process for tcas v28.c. 36

List of Abbreviations

ANSI - American National Standards Institute

iii

API - Application Programming Interface
AST - Abstract Syntax Tree
GCC - GNU Compiler Collection
GIMPLE - An intermediate representation used in GNU compilers
HDL - Hardware Description Language
ISO - International Organization for Standardization
LHS - Left-hand side
MAX-SAT - Maximum Satisfiability
RHS - Right-hand side
RTL - Register Transfer Level
SAT - (Boolean) Satisfiability
SMT - Satisfiability Modulo Theories
SSA - Static Single Assignment
UML - Unified Modeling Language

iv

Chapter 1

Introduction

Many methods and tools exist to automate error detection in software or hard-
ware. The techniques range from automatic test case generation and execution
to formal methods like model checking. But once an error has been detected,
the difficult part of the debugging work only begins: the error has to be lo-
cated and corrected. This is usually done manually. Manually locating and
correcting errors is time-consuming, frustrating, and costly. On the other hand,
performing these tasks automatically is difficult, both regarding methodology
and computational complexity. FoREnSiC addresses these challenges.

FoREnSiC is a tool to automate error localisation and correction for C programs.
FoREnSiC stands for “Formal Repair Environment for Simple C”, but actually
the title is not fully accurate any more. FoREnSiC has grown to be more.
First of all, FoREnSiC is not purely formal. The techniques implemented in
FoREnSiC range from simulation-based methods to semi-formal and formal ones.
Second, it does not only address repair of programs but also error detection
and localisation. Finally, FoREnSiC cannot only debug C programs but also
hardware, with a C program functioning as a specification for this hardware.

1.1 An Appetizer

Let’s have a look at an example to see what FoREnSiC is all about. Consider
the following function (see examples/max.c).

4 int max (int x , int y) {
5 int res = x ;
6 if (y > x)
7 res = x ;
8 assert (res >= x && res >= y) ;
9 return res ;

10 }

It is supposed to compute the maximum of two integer numbers, but it contains
a bug in Line 7. Instead of x, the programmer should have written y. The

1

variables x and y are inputs to the function. A specification of the function is
given in form of an assertion. For some input values the specification is satisfied
but for others it is violated, so the program is not fully correct.

Instead of thinking hard what the problem in this program might be and how
it can be fixed, we can simply run FoREnSiC to analyze the program for us. We
get the following output1:

[RES] Diagnoses :
[RES] Line 7 : ”x”
[RES] Line 5 : ”x” and Line 6 : ”y > x”
[RES] Repairs :
[RES] Replace Line 7 : ”x” by ”y”
[RES] Replace Line 7 : ”x” by ”y + 1”
[RES] Replace Line 7 : ”x” by ”y + 2”
[RES] Replace Line 5 : ”x” by ”y + 1000”

and Line 6 : ”y > x” by ”−x + y <= 0”
[RES] Replace Line 5 : ”x” by ”y + 999”

and Line 6 : ”y > x” by ”x − y > 0”
[RES] Replace Line 5 : ”x” by ”y + 999”

and Line 6 : ”y > x” by ”x − y >= 0”

The reported diagnoses express that FoREnSiC suspects either the x in Line 6 or
the expressions in both the lines 4 and 5. It also suggests replacements for these
expressions. Not all of them are what one would expect for a function which
computes the maximum. The reason is that the specification is not complete.
It does not require that res is either x or y. If the specification is refined in this
respect (examples/max2.c), FoREnSiC suggests the following fixes.

[RES] Replace Line 7 : ”x” by ”y”
[RES] Replace Line 7 : ”x” by ” r e s − x + y”
[RES] Replace Line 7 : ”x” by ”−r e s + x + y”
[RES] Replace Line 5 : ”x” by ”y”

and Line 6 : ”y > x” by ”x − y >= 0”
[RES] Replace Line 5 : ”x” by ”y”

and Line 6 : ”y > x” by ”−x + y <= 0”
[RES] Replace Line 5 : ”x” by ”y”

and Line 6 : ”y > x” by ”−x + y < 0”

For this simple program, FoREnSiC was able to compute error locations and
corrections in a fraction of a second.

1.2 Features and Benefits

Automatic error localisation and correction are very challenging tasks, especially
for software. The ideal automatic debugging method can handle all features
provided by the programming language, it is able to diagnose and fix any bug,
it pinpoints potential error locations precisely and without false-positives, it
suggests fixes which are not only correct but also easily understandable, and it

1To reproduce the output execute build/src/forensic-bin -i ../examples/max.c -b

syb --syb cond=True --syb rep mrpd=3 --print=RWE from a shell in the directory tool.

2

Figure 1.1: Different characteristics of different debugging methods.

scales to huge programs. Clearly, these goals cannot all be maximized at the
same time; different techniques provide different advantages.

Figure 1.1 depicts a rough classification of debugging methods together with
their main characteristics. Formal methods typically transform the program
into logic formulas and use logic solving to find diagnoses and repairs. They
provide high reasoning power but are computationally expensive. Dynamic
methods execute the model with a given set of inputs. They are very scalable but
notoriously incomplete. Semi-formal methods provide a compromise between
these two extremes. They often execute the program but provide additional
information about execution paths.

A key feature of FoREnSiC is that it does not only implement one but several
debugging methods in different back-ends. The different back-ends and methods
can be accessed in a unified way. This allows the user to easily switch from one
method to another. It also allows to compare or combine methods.

Table 1.1 gives a rough overview over the back-ends currently available in
FoREnSiC. The symbolic back-end uses symbolic execution and SMT-solving
to identify potential error locations and corrections. The specification has to be
given in form of assertions in the code. The simulation-based back-end searches
for diagnoses and repairs by repeatedly executing the program on a given set of
input vectors. Dynamic slicing is used to improve the accuracy of the diagnoses.
Repairs are computed by mutating the faulty components. The specification can
be given in form of expected outputs for the input vectors and using assertions.
Finally, the cut-based back-end performs error detection, localization, and cor-
rection in hardware designs using a C program as a specification. This is done
by checking functional equivalences using SAT/SMT-solving techniques.

The value of FoREnSiC is not only in its back-ends. FoREnSiC is also an en-
vironment for implementing new program analysis, verification, and debugging
techniques. It provides a rich infrastructure which can be used. It contains
a front-end which is able to transform a C program into a very simple graph-
based representation. It also provides data structures to represent logic formu-
las. Logic solvers such as SMT-solvers are accessible via simple interfaces to
solve these formulas.

3

Table 1.1: Overview and classification of the back-ends.
Symbolic
Back-End

Simulation-Based
Back-End

Cut-Based
Back-End

Debugging subject C program C program RTL-Circuit
Specification Assertions Expected outputs

and assertions
C program

Method Semi-formal Dynamic Formal
Error localisation 4 4 4

Error correction 4 4 8

1.3 Limitations

FoREnSiC cannot handle concurrent programs. It is not able to fix deadlocks
and race conditions. FoREnSiC is a research prototype and it has not been
extensively tested. Bug reports as well as other feedback, suggestions for im-
provements, and personal experiences with the tool are of course always very
welcome. Use the address forensic@lists.iaik.tugraz.at. FoREnSiC has
no graphical user interface yet. Usability will be improved in future releases.

1.4 License

FoREnSiC is an open-source software. It is distributed under the GNU Lesser
General Public License (LGPL), Version 2.1, with the copyright held by the
University of Bremen, Graz University of Technology, and Tallinn University of
Technology. A copy of the license can be found in the distribution and under
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.

1.5 Structure of this Manual

This manual is structured as follows. Section 2 (Installing FoREnSiC) explains
how to install FoREnSiC. Section 3 (Using FoREnSiC) contains all informa-
tion which is needed to use FoREnSiC, but it does not explain how it actually
works. More detailed information about FoREnSiC, its architecture, and how
it works can be found in Section 4 (Understanding FoREnSiC). A deeper
understanding of FoREnSiC may be useful if the obtained debugging results are
not satisfying. Often, changing parameters helps, but finding appropriate pa-
rameter values often requires some deeper understanding of the implemented
methods. Another scenario is that you want to improve FoREnSiC or extend it
with a new back-end, for which you need a deeper understanding as well.

4

mailto:forensic@lists.iaik.tugraz.at
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

Chapter 2

Installing FoREnSiC

FoREnSiC runs under Linux operating systems only. In order to install it, per-
form the following steps.

1. Download the source distribution of FoREnSiC from http://www.informatik.

uni-bremen.de/agra/ger/forensic.php

2. Make sure that your system has the following tools and libraries installed.
Required are

• a GNU C and C++ compiler1 (gcc and g++),

• the GNU make2 tool,

• the macro processor m43,

• the compression libraries zlib and libbz2 with development sup-
port,

• the tool cmake4,

• an Objective CAML5 interpreter and compiler (ocaml and ocamlc),
and

• the doxygen6 documentation system.

On Debian-based Linux distributions (such as Ubuntu) the tools can be
obtained with the commands

sudo apt−get install build−essential
sudo apt−get install m4

sudo apt−get install zlib1g−dev
sudo apt−get install libbz2−dev
sudo apt−get install cmake

sudo apt−get install ocaml

sudo apt−get install doxygen

1http://gcc.gnu.org/
2http://www.gnu.org/s/make/
3http://www.gnu.org/s/m4/
4http://www.cmake.org/
5http://caml.inria.fr/
6www.doxygen.org/

5

http://www.informatik.uni-bremen.de/agra/ger/forensic.php
http://www.informatik.uni-bremen.de/agra/ger/forensic.php
http://gcc.gnu.org/
http://www.gnu.org/s/make/
http://www.gnu.org/s/m4/
http://www.cmake.org/
http://caml.inria.fr/
www.doxygen.org/

or by installing the respective packages using the packet manager. For
other Linux distributions, similar packages exist. If not, follow the links
to download and install the tools and libraries.

3. Create a directory where all the third-party tools on which FoREnSiC relies
should be installed. We will refer to the absolute path to this directory as
<TP INSTALL> in the following.

4. Set the environment variable FORENSICTP to <TP INSTALL>. In bash this
works with the command

export FORENSICTP=<TP_INSTALL>

This environment variable must be set both during the installation process
and when running FoREnSiC. To avoid having to set this variable whenever
a new shell is opened, the above line can simply be included into the
configuration file of the bash, which is usually ∼/.bashrc.

5. Add to the environment variable LD LIBRARY PATH the two directories
<TP INSTALL>/mpfr-2.4.2/lib and <TP INSTALL>/gmp-4.3.2/lib. This
is necessary for running FoREnSiC. The most convenient way to do so is
by adding the line

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH : $FORENSICTP/
mpfr−2.4.2/ lib / : $FORENSICTP/gmp−4.3.2/ lib/

to the ∼/.bashrc configuration file.

6. Install all third-party tools and libraries required by FoREnSiC. This in-
cludes

• Boost 1.45.0, see http://www.boost.org/,

• CBMC 3.9, see http://www.cprover.org/cbmc/,

• CREST’s extension of CIL, see http://code.google.com/p/crest/,

• CppUnit 1.12.1, see http://sourceforge.net/projects/cppunit/,

• GMP 4.3.2, see http://gmplib.org/,

• MPFR 2.4.2, see http://www.mpfr.org/,

• MPC 0.8.1, see http://www.multiprecision.org/,

• GCC 4.5.0, see http://gcc.gnu.org/,

• Yices 1.0.28, see http://yices.csl.sri.com/, and

• Z3 3.1, see http://research.microsoft.com/en-us/um/redmond/

projects/z3/.

For your convenience, we have provided an installation script which down-
loads and installs all these tools and libraries. Before you execute it, check
out the licenses of the listed tools. To execute the script, open a bash in
the directory thirdparty/ and execute install-all.sh. This may take
some time (some hours, even). The main reason is that Boost and GCC
are compiled on your machine. Go and drink some coffee meanwhile.

6

http://www.boost.org/
http://www.cprover.org/cbmc/
http://code.google.com/p/crest/
http://sourceforge.net/projects/cppunit/
http://gmplib.org/
http://www.mpfr.org/
http://www.multiprecision.org/
http://gcc.gnu.org/
http://yices.csl.sri.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

7. Check if all third-party tools have been installed successfully. For ev-
ery tool listed above there should be now a corresponding directory in
<TP INSTALL>. If not, search for error messages (i.e., for the keyword “er-
ror”) in the output of the install script, try to resolve the problems and re-
execute the installation script. Instead of re-executing install-all.sh,
you can execute the install script for the tool which failed only. This saves
time.

8. Compile FoREnSiC itself. This is done by opening a shell in the directory
tool/ and typing “make”. An executable of FoREnSiC will be created in
tool/build/src/forensic-bin.

9. Test FoREnSiC by typing “make check”. If all tests pass, then the instal-
lation should have been successful.

10. Type “make doc” to create the Doxygen documentation of the source
code. The documentation is then accessible from tool/doc/doxygen.html.

7

Chapter 3

Using FoREnSiC

This section explains briefly how to use FoREnSiC. It does so without explaining
how FoREnSiC works internally. Hence, this Section has to be understood as
a quick-start guide. The question how FoREnSiC is used in the best way for a
particular purpose can only be answered with more back-ground information,
which is given in Section 4.

3.1 Starting FoREnSiC

After building FoREnSiC by typing make into a shell opened in the directory
tool, an executable is created in the file tool/build/src/forensic-bin. This
executable is the command-line application FoREnSiC. It is configured via
command-line options. To get a list and a short description of all options,
execute FoREnSiC with the -h or --help option. That is, type

build/src/forensic−bin −h

in your shell. Don’t be frightened by the large number of options. The most
important ones are the -i option to specify an input file and the -b option
to specify a back-end. There are different back-ends implementing different
error localisation and correction methods. See Section 3.3 for an overview and
Section 4 for more information about the working principle of the different
back-ends. Most options only fine-tune the behavior of the back-ends. They are
mainly meant for advanced users. Non-experts can go with the default values.

3.2 Annotating Programs

In order to make FoREnSiC understand what the inputs and outputs of the pro-
gram under analysis are, the program can be annotated with special functions.
All these special functions are declared in the header file forensic instr.h

in tool/src/library/. If this header file is included, all calls to the special
functions will be ignored by the compiler. This means that the annotations for

8

FoREnSiC can be kept in the program without any harm for compiling and exe-
cuting the program. The functions only have a special meaning inside FoREnSiC.

Not every back-end supports every annotation. Confer to the description of the
back-end to see which annotations are supported.

Modeling Input

The function FORENSIC input some type(x) indicates that the variable x is an
input. There exist different versions of these functions for different types of the
variable x. Depending on the type of x, some type may be substituted by char,
short, int, long, long long, unsigned char, unsigned short, unsigned int,
unsigned long, unsigned long long, float, double, or long double. There
is also a function FORENSIC input string(char** x, int MAXLEN) which can
be used to indicate that a string (a char-array) is an input. The second argu-
ment of the function specifies the maximum length or the string. There are no
dedicated functions for compound types such as structs or unions. In order to
declare a struct or union to be an input, its fields have to be declared as inputs
manually. Moreover, there are no functions which can express that a pointer is
an input.

Different back-ends may treat variables as inputs also if they are not explicitly
marked with FORENSIC input some type(x). Examples are the parameters of
the entry function or uninitialized local variables.

Modeling Output

The counter-part to the functions FORENSIC input some type() are the func-
tions FORENSIC output some type(), using the same syntax. These functions
are used to indicate that a certain variable at a certain location in the program
is somehow communicated to the environment of the program. They are useful
for specifying the desired behavior of the program using expected output values
for given input values.

Specifying Desired Behavior

Many back-ends support the assert-macro to specify safety properties of the
program. In addition to that, FoREnSiC provides a macro FORENSIC assume(x),
where x is is some predicate. This function expresses the assumption that the
predicate x holds at the current location in the program. If the assumption does
not hold, the program is allowed to behave arbitrarily. The macro is defined as
if(!(x)) {exit(0);}.

Example

The following example program illustrates the usage of the FoREnSiC annota-
tions. It computes the sum of all integers from 0 to max (including max).

9

1 void main () {
2 int max , count , sum = 0 ;
3 FORENSIC_input_int (max) ;
4 FORENSIC_assume (max >= 0) ;
5 for (count = 0 ; count <= max ; count++)
6 sum += count ;
7 assert (sum == (max ∗ (max + 1)) / 2) ;
8 FORENSIC_output_int (sum) ;
9 }

The variable max is marked as an input of this program, the variable sum is
declared to be the output. Line 4 expresses an assumption on the input: its
value is assumed to be greater or equal to zero. The program works correctly
only if this assumption is fulfilled. In Line 7, an assertion is used to check
whether the computation was done correctly using Gauss’ formula for the sum
of integers.

If a program should model that an input is read repeatedly from some source,
then the FORENSIC input some type() function can also be used in a loop. The
same holds for outputs.

3.3 Selecting a Back-End

Consider again Table 1.1, which gives an overview and a rough classification of
FoREnSiC’s back-ends.

The symbolic back-end performs automatic error localisation and correction
in incorrect C-programs using semi-formal methods. The specification must
be given using assertions in the code. Note that this also allows to use refer-
ence implementations as a specification: simply write a wrapper which executes
the program and the reference implementation on the same inputs and then
compare the outcomes using suitable assertions. This has the nice effect that
the notion of equivalence can be defined freely by the user. The program is
analyzed using symbolic or concolic execution. Symbolic execution does not
support arrays, pointers, structs, unions, and floating-point computations at
the moment. When using concolic execution, these constructs are allowed in
the program. However, they are handled only approximatively at the moment.
Arrays are handled like sets of variables. The symbolic back-end does not re-
alize that arr[i] follows arr[i-1]. Consequently, it cannot locate or repair
bugs which result from erroneous array indexing. The situation is similar for
structs, unions and pointers. The back-end supports all annotations of the form
FORENSIC input some type() except for FORENSIC input string(). Calls to
FORENSIC output some type() are ignored. The user can also encapsulate parts
of the program by <ASSUME CORRECT> and </ASSUME CORRECT> tags. The code
between these tags is assumed to be correct, it is not diagnosed or repaired.
This back-end is still under active development.

The simulation-based back-end has the same goal, namely to debug incorrect
C programs. As a specification, the user can provide input vectors with corre-

10

sponding expected outputs. In addition to that, assertions in the code can be
used. The back-end implements a simulation-based method. It does not impose
serious restrictions on the subset of C that can be handled, except for the restric-
tions of the front-end (see Section 4.2.1). The back-end supports all annotations
of the form FORENSIC input some type() and FORENSIC output some type().

The cut-based back-end implements a debugging technique for hardware de-
signs using C programs. That is, in contrast to the other back-ends, the C
program serves as a specification (for the hardware design) here. The hard-
ware design may be given in Verilog or VHDL at the register transfer level. In
the C program this back-end does not support pointers, and multidimensional
arrays. It supports the FORENSIC input some type() annotations except for
FORENSIC input string(). The annotations FORENSIC output some type()
are not supported. The cut-based back-end is embedded in the tool WoLFram [19]
and provided as binary in the context of FoREnSiC.

11

Chapter 4

Understanding FoREnSiC

This section gives insight into the working principle of FoREnSiC and its back-
ends. This additional information about the working principle can be useful for
fine-tuning the behavior of a back-end to obtain better results for a particular
debugging problem. The information provided in this section is also vital if you
want to extend FoREnSiC, e.g., by improving a back-end or adding a new one.

4.1 The Architecture

Figure 4.1 depicts the architecture of FoREnSiC in a simplified form. A (po-
tentially faulty) C program is the main input for the tool. The front-end of
FoREnSiC parses this C program and produces an internal model of the pro-
gram. FoREnSiC has several back-ends operating on the model of the program.
They implement different error localisation and correction methods. The user
selects the back-end which is best suitable for her problem.

Certain back-ends require additional inputs. This may include test vectors with
expected outputs or other forms of specifications, hardware implementations to
check equivalence with, or the string representation of the C program. These
additional needs are not drawn in the figure for simplicity. FoREnSiC does not

Figure 4.1: The architecture of FoREnSiC.

12

really impose restrictions on back-ends. It only provides an infrastructure that
can be used. The format of the diagnostic information produced by the back-
ends is not (yet) unified. Every back-end presents diagnostic information in its
own way to the user.

The following sections explain the different parts of the architecture and the
different back-ends in more detail.

4.2 The Front-End

The front-end is based on the GCC plug-in API version 4.5.0 and hooks into the
GIMPLE pass [10]. The front-end processes the input program as a tree in low
level GIMPLE SSA (single static assignment) form. The compiler is invoked
without the linking stage, so it is possible to process programs without a main
function or with undefined functions. To get the SSA form, one can invoke gcc
with the option -fdump-tree-ssa.

The front-end should work on 32-bit and 64-bit platforms, but it is required
that every part of the toolchain (forensic-bin, gcc plugin, gcc) is compiled on
the same host. The input program has to be a correct ANSI C (C90) program,
including the GNU dialect of ISO C90. If the compiler finds an error, no model
is built. Warnings are ignored by the plug-in. Currently only one input file is
supported.

4.2.1 Unsupported C Language Elements

Some C features cannot be represented in the FoREnSiC model:

• keyword volatile as type modifier

• Bit-fields

• storage duration specifiers (auto, register, extern) are ignored; the key-
word static is an exception

• empty infinite loops like: while(1){}

Moreover, switch statements are not supported in the model, but they are
transformed into a series of nested if-else statements.

4.2.2 Translating into the Internal Model

The translation to the internal model (see 4.3) does not any longer represent a
valid ANSI C program. Mainly because the auto-generated identifiers for the
SSA temporary variables like D.1234 are not allowed in C. Some operators and
control structures are not used in the SSA form, like the increment (++) operator
or for and while loops.

13

Furthermore, because the input file is completely preprocessed by the compiler
at the stage of our plug-in, there is no direct information in the model for com-
piler directives like #include, #pragma etc. Also unused elements like variables
or structs are omitted.

Arrays are often represented with pointers, indexing is done with pointer arith-
metic, but not in all cases. The decision is done by the GCC, further information
can be found in the GCC internal documentation.

The model is an exact representation of the GIMPLE SSA tree, except for
switch statements as described above.

Strings are represented like arrays, e.g.: &"Message"[0].

4.2.3 Special Cases

Because the low level GIMPLE SSA tree is only an intermediate representation
for internal use by the GCC, there are cases in which the plug-in is unable to find
a correct translation in the model or does not understand a specific GIMPLE
tree. In these cases, there is an error message thrown of some type, but due to
the multitude of possible GIMPLE statements, trees and nodes, some cases are
not covered yet. An example for such a special case is the internal use of ranged
array indices:

int list[0:D.3136] [value-expr: *list.4];

int[0:D.3136] * list.4;

4.2.4 Code Location Information

Many elements in the model have fields for location information such as file-
name, line and column number. Available information is filled into the model.
However, GCC gives only ”points to” information and not range information.
Thus, the location of a statement is determined by the first char of an identifier
(declaration), the position of the equal sign (assignment), the left parenthesis
(method call) or the first char of a method name (method declaration). The
last known position is assigned to generated statements and identifiers, because
they are ”related” to this one.

4.3 The Internal Model

This section explains the internal data structures which are used to represent a
C program. The front-end transforms the program into this internal represen-
tation. The back-ends then use these data structures for automated debugging.
The information given about the model in this section is rather detailed. The
reason is that, if you want to work with the model, improve a back-end, or even
create a new back-end, detailed information about the model will be needed.

14

4.3.1 Structure of the Model

Figure 4.2 illustrates the structure of the internal model in form of a UML
class diagram. It focuses on which data is stored where. For information about
the methods to traverse the data structure, read out the information, or to
manipulate the data structure, have a look at the Doxygen documentation in
tool/doc/doxygen.html.

ProgramData and FunctionData

The result produced by the front-end is an object of type ProgramData. Via
this object, all information about the program can be accessed. A ProgramData

object stores the global variables of the program and their type. Furthermore,
it stores information about the functions of the program in FunctionData ob-
jects. The information about a function of the program includes, in essence, the
parameters and their type, the local variables and their type, and the return
type of the function. The actual body of the function, i.e., the executable code
of the function, is represented as a flowchart.

Flowcharts

Every node of the flowchart is represented by a FlowChartNode object. An
object of type FunctionData knows all FlowChartNodes which belong to it. It
also has a reference to a special FlowChartNode which represents the root node
of the flowchart. The FlowChartNode itself does not directly contain informa-
tion about the statement it represents. This information is outsourced into
a Statement object. Every FlowChartNode has exactly one Statement object.
The FlowChartNode itself only contains information about the interlinking with
other FlowChartNodes. That is, it knows its predecessors and successors. Ev-
ery FlowChartNode except for the root node of the flowchart has at least one
predecessor.

The model distinguishes three types of FlowChartNodes. OperationNodes rep-
resent operational statements of the code. For instance, the statement x = a

+ 4; would be represented as an operation node. Other examples are function
calls or return statements. Most OperationNodes have exactly one successor.
However, if the OperationNode represents the last node of a function (such as
a return statement) it may also have no successor.

ConditionNodes model conditions which evaluate to true or false. They repre-
sent branching points in the program. They always have exactly two successors.
One is taken when the condition evaluates to true, the other one when it eval-
uates to false. For instance, expressions like a > b + 1 occurring as conditions
in if-statements of loops are modeled using ConditionNodes.

Finally, PhiNodes are special nodes that do not directly correspond to a code
fragment of the C program. They store information saying how to unify vari-
able names on merging paths when the program is represented in static single
assignment (SSA) form. PhiNodes have only one successor.

15

ProgramData
#global_var_types : map<string, Type*>

FunctionData
#return_type : Type*
#local_var_types : map<string, Type*>
#param_types : map<string, Type*>

 1
 *

FlowChartNode
#basicblock_index : int 1 *

 all nodes

root node

 * 1

predecessors

Statement
#string_rep : string
#line_nr : int
#col_nr : int
#file_name : string

AstNode

ast root

OperationNode

ConditionNode

PhiNode

OperationStatement

ConditionStatement

0..1

successor

1

 true-successor

1

 false-successor

0..1

 successor

AstNode

IdNode
#identifier : string
#ssa_version : int

NumberConstNode
#value : int/float

OpNode
#operator : Operator

StringConstNode
#string_const : string

BasicType
#basic_type_kind : BasicTypeKind

Type
#nr_of_pointer_indirections : int
#indirection_size : int[]
#is_const : bool
#is_static : bool
#line_nr: int
#col_nr : int
#file_name : string

CompoundType
#compound_type_kind : CompoundTypeKind
#name : string
#field_names : string[]

0..1 1
initialization AST

*

 1

fields

type

 *

 1

 operands

Figure 4.2: A UML class diagram illustrating the structure of the model.

16

Statements and their Abstract Syntax Tree

While ConditionNodes maintain the control flow, the data flow of a program
is modeled with Statements and their abstract syntax tree (AST). Statements
store their string representation as well as their location in the C program.
The AST of a statement is a tree-like decomposition of the statement into its
operators and operands. The AST is represented by a tree of AstNode objects
and the Statement holds a reference to the root of the tree.

There are four kinds of AstNodes. IdNodes represent identifiers in the statement.
Most importantly, these are variable names and function names. Identifiers are
represented as string. A unique integer ssa version is used to create unique
variable names when using the SSA form. IdNodes are always leaves of the
AST.

StringConstNodes represent string constants. For instance, the string in the
statement printf("abd"); would be represented as a StringConstNode. These
objects are leaves in the AST as well.

An OpNode represents an operation applied to other AstNodes. Such nodes form
the inner nodes of the AST. OpNodes store the kind of operation applied. Pos-
sible operations are arithmetical operations (+, -, . . .), logical operations (&&,
||), bitwise operations (&, . . .), comparison operations (>, . . .), but also casts,
pointer dereferencing, array index operations, and function calls. A function
call is handled as an OpNode where the first child is an IdNode containing the
name of the function. The remaining children represent the parameters of the
function.

Finally, there is the NumberConstNode which represents a constant number
in the program. Besides the value it also stores the type of the constant
(e.g., int, unsigned long, etc.; recall that you can write 16 or 16UL in C).
NumberConstNode are leaves in the AST as well.

Data Types

Data types are represented as instances of class Type. We distinguish between
BasicTypes and CompoundTypes. A BasicType represents a primitive type
such as void, char, unsigned char, short, . . . , unsigned long long, float,
double, or long double. The BasicTypeKind is basically an enumeration of
constants for all these primitive types.

CompoundTypes are types that consist of other types, i.e., structs or unions. The
CompoundTypeKind can take on exactly these two values. A CompoundType has
a name and a list of fields and their names. Each field in the CompoundType is
a Type, so either a BasicType or again a CompoundType.

Pointers and arrays are modeled in the following way. Since every type can
occur as a pointer (or a pointer to a pointer, etc.), we store the number of
pointer indirections to every type (in the field nr of pointer indirections of
Type). If it is zero, this means that we have a normal type. If it is one, we
have a pointer of this type. If it is two, we have a pointer to a pointer of this
type, and so on. If we have a multidimensional array where the size is statically

17

known, this size is stored for each dimension in indirection size. This reflects
the fact that arrays and pointers are not fundamentally different — an array
is just a pointer to its start and a size. Besides this information for pointers
and arrays, the Type stores the location in the C-file where the type is declared,
flags indicating whether the type is static or constant, and an AST representing
initializing code for the type.

4.3.2 Example

This section illustrates how the model is structured using a simple example. We
use our front-end to convert the following function (examples/max only.c) into
a model.

1 int max (int x , int y) {
2 int res = x ;
3 if (y > x)
4 res = x ;
5 assert (res >= x && res >= y) ;
6 return res ;
7 }

Using the command-line option --dotmv, a picture of the model can be exported
in DOT format. Figure 4.3 contains such a picture for the above function. It
has been produced by typing1

build/src/forensic−bin −f gcc −i . . / examples/max_only . c
−−dotmv=4

dot −Tpdf . / model . dot −o . / model . pdf

in a shell opened in the directory tool/.

Let us discuss Figure 4.3 now in more detail. Normally, the global variables
would be listed in the box titled “Globals”, but our program does not have any
global variables. The blue box contains all information to the function max. The
parameters and local variables of the function are listed in the respective boxes,
together with their type. Note that the local variables D.2728 and iftmp have
been introduced by the front-end to simplify the code. The root of the flowchart
is marked with “Start”, the terminal node is marked with “End”. In general,
there can by many terminal nodes in one flowchart.

Black boxes in the flowchart represent OperationNodes, green boxes depict
ConditionNodes, and brown boxes contain PhiNodes. Arrows between the boxes
represent successor relations, i.e., they express the control flow. The golden
boxes contain the AstNodes. The structure of the AstNode and their content
should be rather self explaining.

This example should have given a first idea about how the model looks like. In
order to get a deeper understanding, print the model for more complex programs
and study it. Recall that the --dotmv argument allows you to define the level

1dot is a program to visualize graphs. On Debian-based systems you can install it with
the command sudo apt-get install graphviz. Otherwise, download it from http://www.

graphviz.org/.

18

http://www.graphviz.org/
http://www.graphviz.org/

Function: max
f: ./examples/max_only.c, l: 1, c: 5

Globals:

none

Local Vars:

D.2728: int
 l: 6, c: 3

iftmp.0: int
 l: 5, c: 9

res: int
 l: 2, c: 7

Start

res=x;

l:2 c:7 bb:2

./examples/max_only.c

y>x

l:3 c:5 bb:2

./examples/max_only.c

Op

ASSIGN

Parameters:

x: int

y: int

return: int

res=x;

l:4 c:9 bb:3

./examples/max_only.c

Y

res_1=PHI <res_4(2),res_6(3)>

l:4 c:9 bb:4

./examples/max_only.c

N

Op

GREATER

Id

res

res_4

Id

x

x_3

Op

ASSIGN

res>=x

l:5 c:9 bb:4

./examples/max_only.c

Op

PHI_NODE

Id

y

y_5

Id

x

x_3

Id

res

res_6

Id

x

x_3

res>=y

l:5 c:9 bb:5

./examples/max_only.c

Y

iftmp.0=0;

l:5 c:9 bb:7

./examples/max_only.c

N

Op

GREATER_EQUAL

Id

res

res_1

Op

PHI_ARGS

Op

PHI_ARG

Op

PHI_ARG

Id

res_4

Number

type: unsigned int

raw value: 2

parsed value: 2

Id

res_6

Number

type: unsigned int

raw value: 3

parsed value: 3

N

iftmp.0=1;

l:5 c:9 bb:6

./examples/max_only.c

Y

Op

GREATER_EQUAL

iftmp.0_2=PHI <iftmp.0_7(6),iftmp.0_8(7)>

l:5 c:9 bb:8

./examples/max_only.c

Op

ASSIGN

Id

res

res_1

Id

x

x_3

Op

ASSIGN

Id

res

res_1

Id

y

y_5

assert(iftmp.0);

l:5 c:9 bb:8

./examples/max_only.c

Op

PHI_NODE

Id

iftmp.0

iftmp.0_7

Number

type: int

raw value: 1

parsed value: 1

D.2728=res;

l:6 c:3 bb:8

./examples/max_only.c

Op

FUN_CALL

Id

iftmp.0

iftmp.0_2

Op

PHI_ARGS

Op

PHI_ARG

Op

PHI_ARG

Id

iftmp.0_7

Number

type: unsigned int

raw value: 6

parsed value: 6

Id

iftmp.0_8

Number

type: unsigned int

raw value: 7

parsed value: 7

return D.2728;

l:6 c:3 bb:8

./examples/max_only.c

Op

ASSIGN

Id

assert

Id

iftmp.0

iftmp.0_2

End
Op

RETURN

Id

D.2728

D.2728_9

Id

res

res_1

Id

D.2728

D.2728_9

Id

iftmp.0

iftmp.0_8

Number

type: int

raw value: 0

parsed value: 0

Figure 4.3: An illustration of the model for a small example program.

Figure 4.4: The architecture of the symbolic back-end.

of details that should be included in the illustration of the model.

4.4 The Symbolic Back-End

This back-end performs error localisation and error correction in incorrect C
programs. In principle, the specification must be given in form of assertions
in the code. However, when the repair engine is operated in a special mode
(when it performs on-the-fly program analysis) it can also use test cases as a
specification. The symbolic back-end is categorized as a semi-formal method,
because the symbolic execution step on which it relies is semi-formal. It is able
to detect, locate, and correct errors in the program. As a fault model, the back-
end assumes that the error is on the right-hand side of an assignment or in a
condition. The front-end often assign expressions (e.g., arguments of function
calls) to temporary variables, so the back-end is able to locate and correct
bugs in many expressions. However, it cannot handle, e.g., missing statements,
missing function calls, etc. This back-end is neither complete nor sound. That
is, it does not guarantee that a diagnosis or repair is found, even if one exists.
It also does not guarantee that all the found diagnoses and repairs are correct.

The symbolic back-end is outlined in Figure 4.4. Basically, this back-end works
in three steps. The first step is a program analysis step which results in di-
agnostic information about the program under consideration. This program

20

analysis step can be done in two different ways: using symbolic execution or
using concolic execution. Both ways lead to the same information about the
program. In essence, the resulting Diagnostic Data contains formulae in some
logic that state under which circumstances the program conforms to the spec-
ification. The diagnosis engine attempts to identify sets of components of the
program which can be modified in such a way that the program becomes cor-
rect. Finally, the repair engine attempts to synthesize new implementations for
the incorrect components. Both the diagnosis engine and the repair engine use
SMT-solving to accomplish their task. In the following, the debugging method
is explained in more detail. Even more background information can be found
in [13, 14].

4.4.1 The Symbolic Execution Engine

Symbolic execution [6, 12] is a technique which allows to reason about the
correctness of a program automatically. This forms a basic building block for
answering questions like

• Can a certain component of the program be replaced in such a way that
the program is correct afterwards? (Diagnosis)

• How would such a replacement have to look like? (Repair)

In order to reason about the correctness of a program one has to analyze its
behavior. The most straightforward way to do so is to execute it. The problem
with this approach is that the program behavior depends on inputs, and typi-
cally one cannot execute a program for all possible inputs. Symbolic execution
provides a solution for this dilemma. Instead of executing the program with
concrete values for the inputs, it is executed using symbols as inputs. Symbols
are like variables: they can represent any possible value. Symbolic execution
keeps track of the symbolic values of all variables, where a symbolic value can
be an arbitrary expression over symbols and constants. Whenever a branching
point in the program is encountered, the execution forks. For every branch, a
condition, formulated over the input symbols and stating when the branch is
taken, is computed. Along an execution path, the branch conditions are ac-
cumulated to a path condition. A path condition states when a certain path
through the program is taken. The assertions in the code (our specification)
allow to classify execution paths into correct and incorrect executions: an ex-
ecution ending in an assertion violation is then an incorrect one. Reasoning
about the correctness of the program reduces then to the reasoning about the
feasibility of the path conditions associated with incorrect execution paths. This
can in turn be automated using SAT/SMT solving techniques.

Example

Figure 4.5 illustrates symbolic execution on an example. Two symbols X and
Y are used for the unknown values of x and y. Boxes contain execution states,
dashed lines link them to the program, and arrows indicate the execution flow.

21

Figure 4.5: Example: Symbolic execution.

In Line 3, the execution forks since both branches are feasible. The condition
which has to be fulfilled for the program to reach a certain state is denoted as
PC. The path conditions can be read from the PC-fields in the leaves of the
tree. This program has two paths with conditions X + 1 > Y and X + 1 ≤ Y .

Symbolic Execution for Error Localisation and Correction

Standard symbolic execution performed on the program under analysis only
allows to check whether the program is correct, i.e., whether there exist input
values for which an assertion is violated. In order to allow for error localisation
and correction, the program is transformed in the following way before it is
executed symbolically. Each assignment LHS = RHS is replaced by

1 old_value = LHS ;
2 LHS = RHS ;
3 FORENSIC_repair (c , LHS , v1 , v2 , . . . , vn) ;

where FORENSIC repair is a special function. Its first argument is a unique
identifier of the component (the assignment statement) in the program. The
second argument contains the variable to which the RHS is assigned. The
remaining arguments v1. . . vn are the names of the variables which are in scope
when the statement is executed.

Each condition if(A OP B), where OP ∈ {>, <, >=, <=, ==, !=}, is instrumented
in a similar way:

1 op1 = A ;
2 op2 = B ;
3 FORENSIC_repair_cond (c , cond , op1 , op2 , OP , v1 , . . . , vn) ;
4 if (cond != 0)

This is not only done for conditions in an if-statement but also for conditions
of loops. More complex conditions are decomposed by the front-end. All this
instrumentation is done directly on the model.

The functions FORENSIC repair and FORENSIC repair cond express that the
corresponding components of the program may be faulty. The components can
behave arbitrarily in the transformed program. The functions are handled in

22

a special way during symbolic execution. When executing FORENSIC repair, a
new symbol r is created. This new symbol is not an input symbol but what will
be called a repair symbol in the following. The repair symbol is associated with
some additional information. This includes the symbolic value of the second
argument of the function. This is the value the symbol gets if the component
is assumed to be correct and, hence, remains unchanged. This value will be
denoted Orig(r) in the following. The component c that produced symbol r
is denoted as CmpOf(r). Furthermore, the symbolic values of all variables
v1. . . vn are stored. These values are denoted as Vals(r) in the following. They
are needed to synthesize new expressions involving the variables in the error
correction step. The newly created symbol r forms the new value of LHS when
FORENSIC repair is finished. FORENSIC repair cond is handled similarly. The
main difference is that the new symbol which is created is Boolean and that its
value if it is assumed to be correct is Orig(r) = op1 OP op2. The newly created
symbol r is assigned to the variable cond.

Configuration of the Symbolic Execution Engine

The program analysis using symbolic execution is activated with the option
--syb conc=False. Otherwise, program analysis is done using concolic exe-
cution (see Section 4.4.2). Whether or not conditions should be treated as
potentially faulty components can be configured with the option --syb conc.

The semantics of the program has to be mapped to formulas. The expressiveness
of these formulas can be configured with the --syb th option. --syb th=lin

means that only linear expressions are allowed in the formula. Linear expres-
sions are of the form k +

∑
ki · Xi, where all ki are integer constants and all

Xi are variables. The comparison operators {>, <, >=, <=, ==, !=} are allowed to
relate expressions, Boolean connectivities are allowed to combine predicates. In
SMT terminology this is called (unquantified) Linear Integer Arithmetic and
is abbreviated as QF LIA [1]. Consequently, when using --syb th=lin, the se-
mantics of bitwise operations, divisions, etc. cannot be captured exactly. As an
approximation in such a case, the symbolic execution engine creates a new input
symbol to represent the result of an operation which is not supported. With
--syb th=bit bitvector arithmetic (QF BV [1]) is used to express the semantics
of the program. This logic allows to express the semantics of all operations
on integer variables that are allowed in C. The --syb th option does not only
specify the logic used in the symbolic execution engine but also in the diagnosis
engine and in the repair engine.

The option --syb sv specifies the solver to be used for SMT solving in the sym-
bolic back-end. In principle, the solvers are functionally equivalent, they only
differ in performance. One exception is the Yices solver (--syb sv=yices api)
which does not support the full bitvector arithmetic as defined in [1]. Thus,
if --syb sv=yices api is used in combination with --syb th=bit, approxima-
tions are done in some cases (divisions, modulo operations, and bit-shifts by a
variable number of positions).

The symbolic execution engine is able to output a symbolic execution tree (a tree
as shown in Figure 4.5 but with some more details) in DOT format. This tree can

23

be used to understand in detail how the program was analyzed using symbolic
execution. However, since these trees can become quite large, a visualization
using the dot program only makes sense for small programs. The --syb se df

option specifies the name of the file into which the tree is written.

The symbolic back-end is designed to perform only incomplete program analysis.
This allows for higher scalability, but the computed diagnosis and repairs are not
guaranteed to be correct or fully accurate. The thoroughness of the program
analysis done by the symbolic execution engine can be configured with the
options --syb se ml and --syb se mf. With --syb se ml a maximum number
of iterations through any loop of the program can be configured. Putting a
bound on this number is necessary because without such a bound symbolic
execution may take too long. Often the number of loop iterations is not fixed
but depends on the inputs, and any number of loop iterations is possible with
some input. If the maximum number of loop iterations is set to, e.g., four, then
symbolic execution does not produce any information about the behavior of the
program for inputs which cause more than four iterations. Consequently, the
diagnoses and repairs found subsequently may not be fully accurate for such
inputs. However, there is the hope that if the program works for at most four
loop iterations, it would also work for more. The --syb se mf option serves a
similar purpose. It limits the number of functions on the call stack, i.e., the total
call depth. This is especially important for programs which contain recursive
function calls.

4.4.2 The Concolic Execution Engine

Concolic execution [11, 17] is a variant of symbolic execution. The main differ-
ence to symbolic execution is that the program is executed on both concrete and
symbolic inputs simultaneously. The path through the program is determined
by the concrete inputs. A path condition is computed for this execution path.
In order to achieve this, the program is instrumented in such a way that every
operation is not only executed normally but also symbolically. Hence the name
“concolic” execution, which is an artificial word composed of “concrete” and
“symbolic”. The path condition is not computed as one monolithic condition
over the input symbols. It is computed as a conjunction of conditions, where
every conjunct corresponds to the condition of a branching point along the ex-
ecution path. This allows the creation of inputs that will cause the execution
to follow a different path through the program in the next iteration: One of the
conjuncts is negated, conjuncts corresponding to later branches are discarded,
and the resulting condition is solved for concrete inputs using an SMT solver.
This gives inputs that trigger the same execution path until the branching point
where the corresponding condition has been negated. At this point, the other
branch will be taken. Different search strategies for different paths through the
program can be implemented [2]. The resulting path conditions enable auto-
mated reasoning about program correctness, just as for symbolic execution.

24

Example

Consider the program in Figure 4.5. It may be executed concolically with the
inputs x=0 and y=0 in the first iteration. These inputs cause the execution
to take the path via Line 4. Along this path, the path condition X + 1 >
Y is computed. Here, X and Y denote the values of the variables x and y,
respectively. One conjunct of the path condition now is negated. There is only
one conjunct in this example, so X + 1 ≤ Y is obtained. This formula is solved
for a satisfying assignment to get inputs that trigger a different execution path.
A possible solution is X = 0 and Y = 1. The program is executed using these
inputs in the next iteration. The concolic execution takes the other path and
computes the path condition X + 1 ≤ Y .

Concolic Execution for Error Localisation and Correction

Similar to symbolic execution, the program is transformed before it is executed
concolically. This is done to allow for error localisation and correction. This
transformation works as described in Section 4.4.1. The difference is that the
transformation is done textually on the input program and not on the model.
In detail, the following steps are performed.

1. The program is simplified using CIL [15]. The simplified file is written
to instr tmp/input.cil.c. If FoREnSiC reports diagnoses and repairs
which are difficult to link to the original program, consult this file to see
how it was simplified.

2. The simplified program is transformed as explained in Section 4.4.1. The
result is written to the file instr tmp/input.rep.c. Have a look at this
file if you want to find out which statements of the program are considered
as potentially faulty components.

3. The transformed program is instrumented for concolic execution. That
is, function calls are inserted which allow to keep track of the symbolic
values of all program variables during the execution. This instrumentation
is done using CREST’s extension of CIL [2]. The instrumented file can be
found in instr tmp/input.rep.cil.c.

4. The instrumented file is compiled into an executable. It can be found in
instr tmp/input.rep.

The created executable is now executed repeatedly using different inputs. Every
execution yields a path condition for the program path that has been executed.
The path condition is used to compute inputs that activate a different path in
the next iteration.

Configuration of the Concolic Execution Engine

Concolic execution is activated with the option --syb conc=True. Since the
concolic execution engine is an extension of CREST it also inherits the different

25

search strategies for execution paths [2]. The search strategy can be set with
the --syb ce se option. Some strategies can be configured with a search depth
using the --syb ce de option. The option --syb ce it defines the maximum
number of concolic execution runs. That is, it defines the number of paths
through the program that should be analyzed at maximum. The higher this
number, the more precise will be the obtained information about the program
behavior. Of course, a higher number will also require more computational
resources. The --syb ce ab argument specifies the maximum length of a path
to analyze. The length is defined via the overall number of elements that are
pushed to the operand stack during concolic execution. It corresponds to the
number of executed statements only very roughly. Just like the --syb se ml

and the --syb se mf argument for symbolic execution, this parameter limits
the depths in which the program is analyzed and avoids that concolic execution
hangs in an endless loop or infinite recursion. The parameters --syb cond,
--syb sv, --syb th affect the concolic execution engine as already explained in
Section 4.4.1.

4.4.3 The Diagnostic Data

The diagnostic data consists of

• the set CMP of all components c identified in the program,

• a function Vars mapping each component c to the names of the variables
in scope when c is executed,

• the input symbols i representing unknown input values,

• the repair symbols r representing unknown behavior of the components of
the program,

• the function CmpOf mapping each repair symbol to the component which
produced it,

• the function Orig mapping each repair symbols to the value that is re-
turned by the original version of the component in the same situation,

• the function Vals mapping each repair symbol r to the symbolic values of
all variables in scope when component CmpOf(r) was executed to produce
the symbol r,

• the disjunction πF (i, r) of all path conditions corresponding to paths which
ended in an assertion violation, and

• the disjunction πP (i, r) of all path conditions corresponding to paths which
ended in a normal termination of the program.

All this information is collected during symbolic (or concolic) execution, as ex-
plained in Section 4.4.1. The brackets in πF (i, r) and πP (i, r) indicate that these
predicates are formulated over the input symbols i and the repair symbols r.
Note that πP (i, r) is not necessarily equal to ¬πF (i, r). One possible reason for

26

a difference is that not all paths through the program may have been analyzed
using symbolic (or concolic) execution. In the following, πP (i, r) and πF (i, r)
will be used to establish different notions of correctness.

4.4.4 The Diagnosis Engine

We say that a diagnosis is a set of components that can be modified in such
a way that the program becomes correct. This definition makes sense because
components that can be modified in such a way that the program becomes
correct may be responsible for the incorrectness. The diagnosis engine computes
minimal diagnoses, i.e., diagnoses for which no subset of components is a proper
diagnosis.

A given set ∆ of components is a diagnosis iff the formula

∀i .∃r . πP (i, r) ∧
∧

{r∈r|CmpOf(r) 6∈∆}

r = Orig(r) (4.1)

is satisfied. That is, for all inputs i, there must exist some values that can
be returned by the components (some values for the symbols r) such that the
program behaves conforming to the specification. Components which are not
part of the diagnosis must return the value that is returned by the original
implementation of the component (stored as Orig(r)). If the above formula is
satisfied, then this means that there exist some values that can be returned
by the components in ∆ such that the program becomes correct. This means
that the components in ∆ can, in principle, be modified in such a way that the
program becomes correct.

Computation of diagnoses

Equation 4.1 contains a quantifier alternation which makes it computationally
hard to solve. Therefore, in the implementation, Equation 4.1 is not checked
for all inputs but only for a given set of concrete input values. Only inputs for
which the original program fails are used because inputs for which the original
program conforms to the specification make Equation 4.1 vacuously satisfiable.
When using concolic execution, the concrete input values that are used to ac-
tivate certain paths of the program are used. When using symbolic execution,
satisfying assignments of the path conditions are computed to obtain concrete
values for the inputs. When using a finite set of concrete input values, the uni-
versal quantification turns into a finite conjunction. The resulting formula can
be solved with an SMT-solver directly. Using concrete values for the inputs can
lead to false positives in diagnosis computation, but it increases the efficiency.

Equation 4.1 can be used to compute diagnoses in a naive way: every set of
components can be check if it is a diagnosis. FoREnSiC uses a more advanced
algorithm to compute minimal diagnoses more quickly. It is based on the the-
ory of model-based diagnosis [16, 7]. It computes minimal conflicts, which are
minimal sets of components from which at least one element has to be modi-
fied to obtain a correct program. In principle, such sets can be computed by
repeatedly solving Equation 4.1. FoREnSiC uses a faster method which exploits

27

the fact that such a minimal conflict corresponds to a minimal unsatisfiable
core of the formula. The SMT-solver is used to compute an unsatisfiable core
directly. The details are described in [13] and in the Doxygen documentation of
the class DiagnosisConstraintSystem. Finally, all minimal hitting sets for the
collection of all minimal conflict sets are computed. This is done by building a
hitting set tree as explained in [16].

Configuration of the Diagnosis Engine

The diagnosis engine can be operated in two different modes, a conservative
mode (--syb dia c=True) and a progressive mode (--syb dia c=False). The
two modes differ in how they treat the incompleteness in program analysis. In
the conservative mode, the program is only considered correct if a termination
of the program can be enforced without an assertion violation. This is achieved
using Equation 4.1 directly. In the progressive mode, the program is deemed
correct if all known assertion violations can be avoided. This is achieved by
replacing πP (i, r) by ¬πF (i, r) in Equation 4.1. Note that this has the effect that
also endless loops are considered as correct behavior. The conservative method
may miss diagnoses, the progressive mode may find too many diagnoses. Both
have their merits.

The parameter --syb dia md specifies the maximum number of diagnosis to
compute and the parameter --syb dia ms specifies the maximum size (in terms
of the number of faulty components) of a diagnosis to compute. Diagnoses
are computed in order or increasing cardinality. Usually, diagnoses with lower
cardinality are considered to be more likely and helpful. This means that, when
aborting the computation before all diagnoses have been computed, only less
likely diagnoses are missed. The parameter --syb dia ni defines the number
of concrete input values to use for error localisation. The higher this number,
the higher will be the accuracy of the diagnoses.

4.4.5 The Repair Engine

For every diagnosis, the repair engine attempts to synthesize new expressions
for the faulty components such that the program becomes correct.

Templates for Expressions

The search for expressions is reduced to the search for constants by creating
templates for unknown expressions. For instance, the template k0 + k1*var1

+ k2*var2, where k0,k1,k2 are unknown integer constants, can represent any
linear expression over the program variables var1 and var2. The unknown
integer constants will be called template parameter in the following. If the
theory of linear integer arithmetic is used for SMT-solving (--syb th=lin), the
engine searches for expressions using such linear templates only. The reason is
that the semantics of more complex expressions cannot be captured in linear
integer arithmetic. If bitvector arithmetic is used, the following sequence of
templates is tried:

28

Figure 4.6: Counterexample-guided repair refinement.

Name Structure for two variables
linear k0 + k1*var1 + k2*var2

dnf k0 | (k1 & var1) | (k2 & var2)

cnf k0 & (k1 | var1) & (k2 | var2)

shift-dnf k0 | (k1 & ((var1<<k2)>>k3)) | (k4 & ((var2<<k5)>>k6))

shift-cnf k0 & (k1 | ((var1<<k2)>>k3)) & (k4 | ((var2<<k5)>>k6))

In the current version of FoREnSiC, adding new templates to this list requires
programming. An extension which allows users to define new templates using a
simple syntax is planned. At the moment, templates for conditions are always of
the form EXPR TEMPL OP 0, where EXPR TEMPL is a template for a non-Boolean
expression and OP ∈ {>, <, >=, <=, ==, !=}.

Standard Method for Computing Repairs

Let ∆ ⊆ CMP be the diagnosis which is to be repaired. The starting point for
computing repairs is the condition πP (i, r). All repair symbols r that have been
produced by a component c /∈ ∆ are replaced by the expression Orig(r). All
repair symbols r that have been produced by components c ∈ ∆ are replaced by
a repair template. The program variables in the template are Vars(CmpOf(r)).
These program variables are in turn replaced by their symbolic value, which
is stored in Vals(r). The resulting condition contains only input symbols and
template parameters. It will be denoted Correct(i, k) in the following because
it evaluates to true if the program conforms to the specification (when executed
on certain inputs i and the faulty components have been replaced as defined via
the template parameters k).

The goal is now to compute template parameter values such that for all inputs
the program conforms to its specification. That is, the formula

∃k : ∀i : Correct(i, k)

needs to be solved. Because this formula contains a quantifier alternation, many
solvers cannot handle it directly. Therefore, FoREnSiC uses the idea of [18]
and [3] to compute repairs by iterative refinements which are guided by coun-
terexamples. This is illustrated in Figure 4.6.

There is a database I of input vectors which is initially empty. In every iteration,
a repair candidate is computed in form of template parameter values such that
the program becomes correct for the inputs in the database I. This is done by

29

computing a satisfying assignment vk for the symbols k in condition∧
i∈I

Correct(i, k). (4.2)

If Equation 4.2 is unsatisfiable, the program cannot be repaired with the given
templates and the procedure aborts. Otherwise, it is checked if vk repairs the
program for all inputs, i.e., if

¬Correct(i, vk) (4.3)

is unsatisfiable. In this condition, the template parameters k have been replaced
by their respective values vk. If Equation 4.3 is unsatisfiable then a correct repair
has been found. The template parameter values vk are mapped back to the
expressions they represent, and the repair is presented to the user. Otherwise, a
satisfying assignment for the input symbols is computed. These concrete input
values are a counterexample for the correctness of the repair candidate. The
counterexample is added to I and another iteration is started, which produces
a better candidate. This is repeated. If further repairs should be computed,
additional constraints are added to Equation 4.2 requiring that k is different to
all previously computed repairs.

Repair with On-The-Fly Program Analysis

The repair engine can be operated in a special mode (using --syb rep mode=2),
which differs slightly from the standard approach explained in the previous sec-
tion. This mode performs program analysis on-the-fly during the repair process,
and will be explained in this section. As before, we compute repairs by refining
repair candidates based on counterexamples. The key difference is that we do
not use the correctness information in our diagnostic data as it has been pro-
duced for error localization. The reason is that this correctness information can
be quite incomplete, especially for larger programs, where complete program
analysis is not feasible. Instead, we analyze program behavior on-the-fly during
the repair process. Doing so, we can analyze the program specifically for the be-
havior that is relevant for the repair process, i.e., for the counterexamples that
are encountered during the repair process. In other words, program analysis can
be focused towards the information needed for repair, and can disregard infor-
mation about program behavior which is not needed at the moment. Another
advantage is that the process of repair candidate computation is decoupled from
the process of repair candidate verification. This allows for greater flexibility in
the specification format and in the verification technique. In the following, we
will sketch this repair method briefly. More details can be found in [14].

Figure 4.7 illustrates the approach. The main inputs are an incorrect program,
a specification, and a diagnosis ∆ ⊆ CMP, i.e., a set of potentially faulty expres-
sions. The approach starts by replacing all components c ∈ ∆ in the diagnosis
by a template for a new expression, just like in the previous approach (this
step is not shown in Figure 4.7 for simplicity). All other expressions are left
as defined in the original program. The approach computes repairs by iterative
refinements of repair candidates. For that, it uses a database of correctness con-
straints. The database contains constraints ϕ(k) on the template parameters

30

Figure 4.7: Repair with on-the-fly program analysis.

which have to be satisfied by any correct solution to the repair problem. Initially,
the database is empty. In the first step of a loop, a repair candidate is computed
as a satisfying assignment to all correctness constraints. An SMT-solver is used
to find a satisfying assignment for the conjunction of all correctness constraints
ϕ(k). If such a satisfying assignment is found, then these concrete values for the
template parameters correspond to concrete expressions to substitute for the
(potentially) faulty ones. Doing this replacement gives a concrete repair candi-
date program, which can be checked for correctness in the next step. Here the
repair method provides some flexibility. The prerequisite is that the verification
technique must be able to produce a counterexample in case of incorrectness.
A counterexample is simply a concrete input vector for which the specification
is violated. The flexibility in the verification technique also leads to flexibil-
ity in the specification format. At the moment, our implementation supports
test cases (input vectors together with corresponding expected output vectors
and/or assertions) and test case execution for repair candidate verification. It
also supports assertions only and concolic execution for repair candidate veri-
fication. In the future, we are also planning to interface with software model
checkers such as CBMC [4] or SatAbs [5] for repair candidate verification. The
candidate verification step has two possible outcomes. If the candidate is found
to be correct, the loop aborts and reports the candidate as a repair. Other-
wise, the program behavior is analyzed for the produced counterexample. This
is done using concolic execution and produces an additional correctness con-
straint which makes sure that the next repair candidate will be correct for this
counterexample at least. The additional correctness constraint is added to the
database, and the next iteration starts. This loop is iterated, producing better
and better repair candidates, until a correct one is found. If the correctness
constraints become unsatisfiable, then this indicates that no repair exists with
the given template and the loop is aborted. The implementation also imposes
a user-given limit on the number of loop iterations, and sets a time-out for the
repair candidate computation step in order to ensure termination. More details
about the working principle of the different steps can be found in [14].

31

Configuration of the Repair Engine

The basic mode of the repair engine can be set with the --syb rep mode option.
When set to the value 0, the standard method (as explained above) is used.

With --syb rep mode=1, a separate program analysis step (using symbolic or
concolic execution) is triggered for every diagnosis before the repair process
starts. The rationale behind this idea is as follows. In the transformed program
(see Section 4.4.1), the number of feasible execution paths is typically way higher
than in the original program. The reason is that the transformation allows all
components to behave arbitrarily. For error correction, it suffices if only the
components that are going to be repaired are left open. All other components
can be set to their original implementation. Analysis of this program leads to
higher coverage of the relevant behavior and thus, typically, to repairs of higher
quality. The disadvantage is the additional time needed for the extra program
analysis steps.

With --syb rep mode=2, the repair method with on-the-fly program analy-
sis, as sketched in the previous section, is applied. When setting the option
--syb rep otf check=test, this repair method uses test cases as a specifica-
tion, and test case execution for repair candidate verification. The option -iv

defines the name of the file which contains the test input vectors. The file must
contain one input vector per line. The values within one line must be sepa-
rated by whitespaces. The file containing the corresponding expected output
vectors can be defined with the -ovr argument. This file must be formatted in
the same way. Whenever the program produces an output (i.e., the function
FORENSIC output some type()) is called, the actual output value is compared to
the expected one given by the -ovr file. If output vector in the -ovr file contains
more output values than what is produced by the program, the remaining out-
puts are simply ignored. If it contains less output values, the remaining output
values produced by the program are ignored. With --syb rep otf check=syb,
the repair method with on-the-fly program analysis used symbolic or concolic
execution to check repair candidates for correctness. For that, assertions in the
code are used as specification. A correctness formula is build as disjunction of
the passing or non-failing path conditions. An SMT-solver call is then used to
check for the existence of counterexamples. In the future, the list of possible
values for the --syb rep otf check option may be extended further.

Just like the diagnosis engine, the repair engine also supports the conservativity
option (in all modes). The conservative approach (--syb rep c=True) attempts
to find a repair such that a successful termination (one that does not involve an
assertion violation) of the program is enforced for all inputs. The progressive
approach (--syb rep c=False) attempts to find a repair such that known as-
sertion violations are avoided for any input. For the former, the correctness is
formulated using πP (i, r) as explained above. For the latter, the correctness is
defined using ¬πF (i, r) instead. The former treats program behavior that has
not been analyzed as faulty, the latter as correct. The former may not find a
repair even if one exists, the latter may find repairs which are actually incorrect.

With --syb rep maxsat=True, FoREnSiC uses a performance optimization dur-
ing the computation of repairs. It tries to find simple repair candidates and

32

nasty counterexamples. A repair candidate is simple if many template parame-
ters are zero or have a special value which makes terms in the template disap-
pear. The search for simple candidates is encoded as a Maximum Satisfiability
(MAX-SAT) problem, as explained in [13]. Nasty counterexamples are ones
that contain large, uncorrelated values for the inputs. The computation of such
counterexamples is encoded as a MAX-SAT problem as well. Experiments indi-
cate that this optimization leads to significantly faster convergence of the repair
refinement loop.

The parameter --syb rep ms defines the maximum cardinality of a diagnosis
to repair. Using this parameter one can, for instance, compute all diagnoses
but repair only single-fault diagnoses. The parameter --syb rep mrpd defines
the maximum number of repairs to compute per diagnosis. The parameter
--syb rep mnr defines the maximum number of repairs to compute in total.
--syb rep mr allows to set a limit on the number of repair refinements. The
option --syb rep chk=True makes FoREnSiC check if the computed repairs re-
ally make the program correct using the software model-checker CBMC [4]. Note
that this option is still experimental.

4.4.6 Implementation

This section gives an overview on the implementation of the symbolic back-end.
The classes can be found in tool/src/back end/symbolic/. The entry point
for the symbolic back-end is the class SymbolicBackend. It triggers program
analysis, diagnosis and repair with the right parameters. Detailed information
about all classes, their working principle and their interfaces can be found in
the Doxygen documentation (in tool/doc/doxygen.html).

The transformation of the model for symbolic execution is implemented in
the class ModelInstrumenter. The transformation for concolic execution is
done in the CILInstrumenter. Symbolic execution itself is performed by the
SymbolicInterpreter and its sub-classes. Concolic execution is done using
the ConcolicInterpreter. The search for different execution paths in con-
colic execution is implemented in the class CrestConcolicSearch. Additional
information (a type, the original value, values of variables in scope) to sym-
bols is stored in SymbolInfo objects. Symbolic expressions are represented as
SymbolicExpr objects. There are different variants of these objects depend-
ing on the SMT-theory which is used (LinearExpr for linear integer arithmetic,
BitvectorExpr for bitvector arithmetic, BitvectorExprYices for the subset of
bitvector arithmetic understood by the Yices solver). Symbolic predicates are
represented as SymbolicPredicate objects. SMTSolver is an interface to an
SMT solver. It allows to check SymbolicPredicates for satisfiability, compute
a satisfying assignment, unsatisfiable cores, or to solve Maximum Satisfiability
(MAX-SAT) problems. Different implementations of the SMTSolver perform
these operations with different solvers (e.g., the YicesSolver, the Z3Solver, or
the SMTLib2Solver).

The DiagnosisConstraintSystem can check whether a given set of components
forms a diagnosis. It builds up the corresponding formula (see Equation 4.1)
and solves it using an SMT-solver. On top of that, the ModelBasedDiagnoser

33

implements the model-based diagnosis algorithm as described in [16] to find
minimal diagnoses quickly. The hitting set tree is built up using HSTreeNodes.

The standard repair engine is implemented in the class TemplateRepairEngine.
It uses the class RepTemplExpander to create and instantiate templates. Re-
pair templates are represented as a tree of RepTemplNode nodes. There are
different kinds of nodes in this tree. A RepTemplVar represents a program vari-
able in the template, a RepTemplParam represents a template parameter, and
a RepTemplOpNode represents an operation on variables and parameters. The
LinRepairEngine refines the TemplateRepairEngine with aspects that con-
cern the theory of linear integer arithmetic. It performs some tricks to keep the
predicates linear during repair computation. The LinMaxSatRepairEngine and
the BitMaxSatRepairEngine implement the heuristics to speed up the repair
refinement process.

The repair method with on-the-fly program analysis [14] is implemented in
the class OnTheFlyRepairEngine. It uses a CorrectnessChecker to verify
repair candidates. The CorrectnessChecker is just an interface and can be
implemented in different ways. One implementation of the interface is the
TestingCorrectnessChecker. It verifies repair candidates by executing test
cases. The ConditionCorrectnessChecker represents another implementation
of the interface. It uses concolic execution to build up a correctness formula,
and uses this correctness formula to verify repair candidates.

4.4.7 Examples

This section shows how some versions of the TCAS program from the Siemens
suite [9] can be debugged using the symbolic back-end with concolic execu-
tion. These benchmarks may also be a good starting point for playing with the
symbolic back-end. The TCAS program implements a traffic collision avoid-
ance system for aircrafts. It has 12 integer inputs and is implemented in ap-
proximately 180 lines of C code. The program comes in 41 faulty versions,
which are contained in the directory examples/tcas concolic/. The refer-
ence implementation is used as a specification. The script execute syb 5.sh

in examples/tcas concolic/ runs FoREnSiC on all versions. Results of the
debugging processes can be found in the sub-directory results.

Debugging tcas v1.c

The original version of the TCAS program contains the line:

89 result = ! (Own_Below_Threat ()) | | ((Own_Below_Threat ())
&& (! (Down_Separation >= ALIM ()))) ;

In tcas v1.c this line is changed to

89 result = ! (Own_Below_Threat ()) | | ((Own_Below_Threat ())
&& (! (Down_Separation > ALIM ()))) ;

34

That is, the faulty version contains a “>” instead of a “>=” in the last part of this
line. Using the parameters as set by the execute syb 5.sh script, FoREnSiC
produces the following diagnostic information2:

[RES] Diagnoses :
[RES] Line 65 : ”500”
[RES] Line 89 : ”ALIM() ”
[RES] Line 89 : ”Down Separation > ALIM() ”
[RES] Repairs :
[RES] Replace Line 89 : ”Down Separation > ALIM() ” by

”Down Separation − ALIM() >= 0”
[RES] Replace Line 89 : ”Down Separation > ALIM() ” by

”−Down Separation + ALIM() <= 0”

That is, FoREnSiC finds three single-fault diagnoses, the last one being the ex-
pected one. It attempts to repair every diagnosis but succeeds only for the last
one. The two repairs which are found are obviously equivalent to the corre-
sponding expression in the reference implementation.

Debugging tcas v28.c

The original version of the TCAS program contains the line:

89 return (Climb_Inhibit ? Up_Separation + NOZCROSS :
Up_Separation) ;

The constant NOZCROSS is equal to 100. In tcas v28.c this line is modified to

89 return ((Climb_Inhibit == 0) ? Up_Separation + NOZCROSS :
Up_Separation) ;

That is, the condition in the ternary if is negated in the faulty version. FoREnSiC
identifies three components in the above line: The condition (Climb Inhibit ==

0) is component c4, the then-part (Up Separation + NOZCROS) is component
c5, and the else-part (Up Separation + NOZCROS) is c6.

With the parameter configuration used in execute syb 5.sh, the diagnosis en-
gine does not find out that c4 may be wrong, it only finds out that c5 and c6
may both be wrong. Consequently, FoREnSiC starts to re-synthesize the com-
ponents c5 and c6 simultaneously. Table 4.1 shows this synthesis process in
detail. It contains the results of the different iterations of the counterexample-
guided repair refinement process. Except for a short odyssey between iteration
8 and 15, the refinement process works quite focused towards its goal. A cor-
rect repair is found after 18 iterations already. Note that two components have
been re-synthesized here simultaneously. For single faults, the repair process
often succeeds even much faster. The computed repair is perfectly readable and
useful.

2Depending on the architecture of your computer, the results may be different.

35

Table 4.1: Example: The repair process for tcas v28.c.
Iteration c5 c6 Correct

1 0 0 8
2 0 728 8
3 0 1902 8
4 0 3235 8
5 0 Down Separation + 1 8
6 0 Up Separation 8
7 0 Up Separation + 1000 8
8 0 Up Separation + 1 8
9 0 Up Separation + 2 8
10 0 Up Separation + 3 8
11 0 Up Separation + 4 8
12 0 Up Separation + 5 8
13 0 Up Separation + 6 8
14 0 Up Separation + 7 8
15 0 Up Separation + 8 8
16 0 Up Separation + 100 8
17 Other Tracked Alt + 1000 Up Separation + 100 8
18 Up Separation Up Separation + 100 4

4.5 The Simulation-Based Back-End

4.5.1 Simulation-Based Error Localisation and Repair

A simulation-based debug algorithm containing error localisation and correction
has been implemented in FoREnSiC. A dynamic slicing based method for error
localisation combined with a dedicated set of mutation operators for automated
correction of errors has been implemented and is presented in this subsection.

Since the simulation functionality is the most frequent and time-consuming part
of the simulation-based debug, it is best to implement it as reliable and fast as
possible. Therefore the simulation-based back-end in FoREnSiC is implemented
via simulating the C functionality. This guarantees short run-times and also
matches the behavior of the original C code.

4.5.2 The Observation Points

Observation Points define the output responses under analysis of the de-
bugged design. These responses are compared to the ones of the specification,
or reference design. The observation points can be seen as places within the
design under debug, where the decision is made whether the design satisfies
its specification or not. The Observation Points in FoREnSiC are defined us-
ing the FORENSIC output...(...) functions. They are declared in the file
forensic instr.h.

Observation Points can alternatively be implemented using the assert()

statement in the design. In that case there is no need of a specification or

36

a reference design, no file output is performed, no reference outputs are gener-
ated. The decision whether the simulation is passed or failed is made during
the simulation of assertions of the processed design.

For further details on observation points please refer to 3.2 Annotating C
programs.

4.5.3 Statistical Error Localisation Using Dynamic Slicing

Error localisation is started if the outputs of the implementation do not match
the reference outputs of the specification. In other words, when design verifica-
tion fails. In this subsection the simulation-based error localisation algorithm
based on dynamic slicing and statistical ranking of code statements are de-
scribed.

The simulation-based localisation algorithm is based on storing the simulation
traces and calculating the dynamic slices out of them for all observable outputs
of the system. Depending on whether an output response obtained by a given
slice is correct or not, the slice is marked as a passed or a failed one, respectively.
A statistical and coverage-based approach has been implemented to assign a
score to flowchart nodes based on the number of times they are included into
failed slices with respect to the number of times they occur within passed slices.
Finally, the nodes of the model, i.e. FlowChartNodes (refer to 4.3 The Internal
Model) are ranked according to this score, referred to as the suspiciousness
score.

After the counters are set the decision is made what are the best candidates for
repairs. If we have a single error in the model then every failed execution trace
must include also the erroneous FlowChartNode and the number of failed slices
can be used as the suspiciousness score for the candidate.

If we have two or more errors in the design then it is possible to apply the
following equation [8] to calculate the suspiciousness score for a node s:

suspiciousness(s) =

failed(s)
totalfailed

passed(s)
totalpassed + failed(s)

totalfailed

where failed(s) is the number of failed slices for the diagnostic candidate s and
totalfailed is the total number of failed slices for the design. Similarly, passed(s)
is the number of passed slices for s and totalpassed is the total number of passed
slices for the design. The rank depends not only on failed information now, but
on a passed counter for every candidate and on a total number of passed and
failed executions. The candidates are sorted according to their suspiciousness
and the list of candidates for repair is generated.

4.5.4 Mutation-Based Repair

After error localisation has been completed it is possible to try to fix the fault in
the design. In the simulation-based back end, a mutation-based repair algorithm
is used.

37

Mutation is a process, where syntactically-correct functional changes are in-
serted into the program. Traditionally, mutations are performed by perturbing
the behavior of the program in order to see if the test suite is able to detect
the difference between the original program and the mutated versions. The ef-
fectiveness of the test suite is then measured by computing the percentage of
detected, or killed, mutations.

In FoREnSiC, we apply mutation operators for correcting erroneous circuits. The
goal was to devise an error-matching based correction approach, which would be
capable of modeling realistic design errors. In mutation-based repair it is crucial
to select a limited number of mutation operators, because the perturbation and
simulation of erroneous design implementations with a large number of error
locations and mutant operators becomes prohibitively time-consuming.

The mutation operators include replacement of C language operators, which
have been divided into several groups: arithmetic operators, relational oper-
ators, assignment operators, unary operators, etc. In addition, numeral mu-
tations are performed by replacing each decimal digit in the numeric values
one-by-one with other decimal values. This includes both, integer and floating
point numbers and it covers also the array indexes. Also, constants are mutated
by inserting unary operators + and - as well as replacing them by zero.

Since we target system-level hardware descriptions in C, we only focus on al-
gorithmic aspects of the description and do not consider software-specific con-
structs and related errors, such as dynamic-memory allocation, pointer arith-
metic, and file I/O.

In particular, the mutation-based repair algorithm fixes errors using the follow-
ing mutation operators:

• AOR (arithmetic operator replacement) including +, -, *, /, %;

• ROR (relational operator replacement): ==, !=, >, <, >=, <=

• LCR (logical connector replacement): &&, ||

• ASOR (assignment operator replacement): +=, -=, *=, /=, %=, =

• UOR (unary operator replacement): +, -, ~, !

• Bitwise operator replacement: >>, <<, &, |, ^

• Bitwise assignment operator replacement: >>=, <<=, &=, |=, ^=

• Increment/decrement operator replacement: x++, ++x, x--, --x

• Operator mutations which are adding one (C→C+1), subtracting one
(C→C-1), setting to zero (C=0), and finally negating C→-C.

• Number mutation (decimal digit replacement in integers, floats, and array
indexes): 0. . . 9.

Subsequent to the error location step described in Subsection 4.5.3, which ranks
the statements of the program, the suspected error locations are iteratively

38

tried according to their rank. The operators in the statements are, in turn,
iteratively substituted by mutation operators, i.e., valid operators from the same
group. That is replacing arithmetic operators by arithmetic operators, relational
operators by relational ones etc. These iterations stop when the simulation
result confirms that the mutated program provides output responses equal to the
golden output responses, in other words, a correction has been found. Otherwise
the process continues until there exist untried error locations and/or mutant
operators, or when a user-specified time limit is reached.

The mutation-based correction method implemented in FoREnSiC is an error-
matching approach. Error-matching is known to have the limitation that it is
generally not capable of fixing errors that are not included to the model. On
the other hand, the mutation-based error-matching provides easy-to-read cor-
rections of system-level descriptions. In addition, the mutation-based approach
can fix some of the not modeled errors by proposing alternative but equivalent
fixes.

4.5.5 Execution of the Simulation-Based Back-End

The simulation-based back-end is executed using -b BACKEND or --backend=BACKEND
command line option, where BACKEND is ”simmut” or ”simslmut”. It has a
number of additional options to control the execution. Those are:

• -i INPUT FILE or --in=INPUT FILE the location of the processed design.

• -iv INPUTS VALUES or --inval=INPUT VALUES inputs for the design and
the specification. The format of the input files is defined by FOREN-
SIC input. . . (. . .) functions inside the design and inside the specifica-
tion. FORENSIC input. . . (. . .) executions will read the data separated by
spaces. Data for consequential executions should be in separate lines. The
actual location where the data will be readied from is INPUTS VALUES file,
INPUTS VALUES arg has the arguments for the execution. One of these
files can be empty if there is no corresponding data for execution.

• -ovr REFERENCE OUTPUT VALUES or --outvalr=REFERENCE OUTPUT VALUES

is the location where the reference outputs will be written to if a specifi-
cation is provided (reference input). If the specification is omitted, then
REFERENCE OUTPUT VALUES will be used as reference outputs.

• -ir REFERENCE INPUT FILE or --inr=REFERENCE INPUT FILE defines the
location of a reference specification.

• --fasm=FAULT ASSUMPTION defines if single or multiple fault assumption
is used.

1 single fault assumption

2 multiple fault assumption

Default is 1.

Full description of the command-line arguments can be obtained if using --help

or -h option.

39

4.5.6 Example

In the following a hands-on tutorial presenting error localisation on a C code
example is presented.

The Input Files

As an input file for the design error debug are the design under debug and
the specification. Assume that we have one error inside the design, the mis-
use of an arithmetical operator for example. In the following listing, the code
of the bubble sort algorithm example is presented where at Line 10, the con-
dition if(a[j]>a[j+1]) is replaced by if(a[j]<a[j+1]). The name of the
erroneous input file is “bubble hiera err.c”.

1 #include <stdio . h>
2

3 void bubble (int ∗a , int n)
4 {
5 int i , j , t ;
6 for (i=n−2;i>=0;i−−)
7 {
8 for (j=0;j<=i ; j++)
9 {

10 if (a [j]<a [j+1]) /∗ must be a [j]>a [j+1]∗/
11 {
12 t=a [j] ;
13 a [j]=a [j+1] ;
14 a [j+1]=t ;
15 }
16 }
17 }
18 }//end function .
19

20 void main ()
21 {
22 int a [6] , n=6;
23 int i ;
24 a [0]=89 ;
25 a [1]=−4;
26 a [2]=−67;
27 a [3]=5 ;
28 a [4]=78 ;
29 a [5]=11 ;
30 bubble (a , n) ;
31 for (i=0; i<=n−1; i++) {
32 printf(”%3d ” ,a [i]) ;
33 }
34 } //end program .
35 /∗ Finally sorted array is : −67 −4 5 11 78 89 ∗/

Listing 4.1: The erroneous C program

40

The specification should not necessarily be in the same format as the program
code. It can be for example the Reference Outputs File with correct val-
ues. In this example, however, we will use the correct implementation as the
specification.

The Observation Points

Before starting processing the design with the FoREnSiC tool, it is necessary
to set up Observation Points. The best practice is to define Observation

Points in the same location where the printf() statements in the original
code are located. These are usually meaningful locations for output already
defined by the designer (refer to 4.5.2 The Observation Points).

Thus, after modifications the design looks like:

1 #include <stdio . h>
2 #include <forensic_instr . h>
3

4 void bubble (int ∗a , int n)
5 {
6 int i , j , t ;
7 for (i=n−2;i>=0;i−−)
8 {
9 for (j=0;j<=i ; j++)

10 {
11 if (a [j]<a [j+1]) /∗ Fault Location ∗/
12 {
13 t=a [j] ;
14 a [j]=a [j+1] ;
15 a [j+1]=t ;
16 }
17 }
18 }
19 }//end function .
20

21 void main ()
22 {
23 int a [6] , n=6;
24 int i ;
25 a [0]=89 ;
26 a [1]=−4;
27 a [2]=−67;
28 a [3]=5 ;
29 a [4]=78 ;
30 a [5]=11 ;
31 bubble (a , n) ;
32 for (i=0; i<=n−1; i++) {
33 FORENSIC_output_int (a [i]) ;
34 // printf(”%3d ” ,a [i]) ;
35 }
36 } //end program .

41

Listing 4.2: The faulty C program with instrumentation.

The correct outputs are commented to avoid excessive outputs during process-
ing. Inside the specification, the Observation Points should be inserted in the
same place to produce valid outputs:

1 #include <stdio . h>
2 #include <forensic_instr . h>
3

4 void bubble (int ∗a , int n)
5 {
6 int i , j , t ;
7 for (i=n−2;i>=0;i−−)
8 {
9 for (j=0;j<=i ; j++)

10 {
11 if (a [j]>a [j+1])
12 {
13 t=a [j] ;
14 a [j]=a [j+1] ;
15 a [j+1]=t ;
16 }
17 }
18 }
19 }//end function .
20

21 void main ()
22 {
23 int a [6] , n=6;
24 int i ;
25 a [0]=89 ;
26 a [1]=−4;
27 a [2]=−67;
28 a [3]=5 ;
29 a [4]=78 ;
30 a [5]=11 ;
31 bubble (a , n) ;
32 for (i=0; i<=n−1; i++) {
33 FORENSIC_output_int (a [i]) ;
34 // printf(”%3d ” ,a [i]) ;
35 }
36 } //end program .
37 /∗ Finally sorted array is : −67 −4 5 11 78 89 ∗/

Listing 4.3: The correct specification with instrumentation.

Launching the Tool

At the moment we have a specification, the design and the possibility to launch
verification, error localisation and correction. As mentioned before, the exe-

42

cutable forensic-bin of FoREnSiC is located in tool/build/src.

If we want to process the design with simulation-based diagnosis and mutation-
based repair with dynamic slicing, then the parameters for the FoREnSiC should
be:

-b simslmut -i path to bubble hiera err.c -ir path to/ bubble hiera.c

Execution Results

The execution should be processed with no errors. Compile errors that appear
during the execution imply that the applied mutation for repair is not valid. In
this case, correction is counted as invalid.

The last line of the correction is:

1 [INF] Execution passed . Valid Repair is ’<=’ −> ’>=’
mutation in ’D .2658<=D . 2663 ’ (line 11 , col 13) .

This is a valid repair that fixes the fault. The location of the fault is given
in line 11 column 13 of the design, and the repair is a relational operator
replacement.

In the internal representation of the design the if(a[j]<a[j+1]) statement
is divided into many smaller statements, and D.2658 and D.2663 are temporal
variables, but the location of the error and error type is known. Locating and
fixing the error is not a problem any more.

4.6 The Cut-Based Back-End

The cut-based back-end is modeled as illustrated in Figure 4.8. The back-end
transforms the internal model of FoREnSiC into an intermediate representation
while converting the C program to an FSM. Coincidentally, the FSM of an HDL
implementation can be derived straightforward. The diagnosis engine consists
of two parts: the simulation-based cutpoint detection and the formal reason-
ing engine which verifies the cutpoints found while equivalence checking two
descriptions. The repair engine uses the diagnosis results for the computation
of repair candidates and validates the application of a repair using the formal
reasoning engine.

Mainly, the focus of the cut-based back-end is on debugging HDL designs given
in Verilog or VHDL using a reference implementation in C. However, the tool
can also be used to debug each kind of combination between HDL and C, e.g.,
a C implementation using a reference in C or HDL, an HDL implementation
using a reference in C or HDL.

43

C Program

Front-End

Equivalence-Checking Back-End

Transformation

Model

Diagnoses

Diagnosis Engine

Intermediate
Representation

Repair
Engine

Repairs

Cutpoint
Detection

Equivalence
Check

Simulation Data

Verilog/VHDL
implementation

Figure 4.8: The architecture of the cut-based back-end.

4.6.1 The Diagnosis Engine

The diagnostic step identifies errors in the implementation by an equivalence
check between the specification and the implementation. In case of differences,
a counterexample is returned.

4.6.2 The Repair Engine

If a counterexample has been returned, the repair engine attempts to determine
repairs for the implementation using the specification. To achieve this, the en-
gine computes a frontier of cutpoints, i.e. functional equivalences between both
descriptions (hardware and software). Repair candidates are signals in the out-
put cone of this frontier. Cutpoints between implementation and specification
are found by random input simulation and afterwards verified by a SAT solver.
Whether a repair candidate from the implementation is chosen to be replaced
by parts of the specification is also determined by simulation. Afterwards the
replacement is validated using the formal reasoning engine. Valid repairs are
set as future cutpoints. If the primary outputs are verified to be cutpoints, the
applied repair candidates are reported back to FoREnSiC.

4.6.3 Execution of the WoLFram Back-End

The WoLFram back-end is executed using -b BACKEND or --backend=BACKEND

command line option, where BACKEND is ”wolfram”. This step only transforms
the given C specification into the WoLFram specific file format. For repair or
diagnosis, the options --repair=BACKEND or --diagnosis=BACKEND have to be
used. It has a number of additional options. Those are:

44

• -wlf i IMPLEMENTATION FILE or --wlf i=IMPLEMENTATION FILE the path
to the implementation.

• -wlf u UNROLL LENGTH or --wlf u=UNROLL LENGTH the number of cycles
the implementation and specification have to be unrolled at the maximum.
A low threshold will speed up the verification process but may lead to
incomplete checks.

• -wlf p PIPELINE or --wlf p=PIPELINE if the implementation is a pipelined
version of the specification, this parameter should specify the number of
cycles needed to reach the final stage of the pipeline, i.e. the end of com-
putation.

45

Chapter 5

Summary

FoREnSiC is a framework aiming at error detection and correction in C pro-
grams. Currently, FoREnSiC contains a formal and a simulation-based back-end
for debugging C programs. A third back-end generates output to be used for
equivalence checking C versus a hardware description. Moreover, the infrastruc-
ture can be re-used in other applications related to verification and processing
of C code.

Please send any comments, requests, or just experience reports to
forensic@lists.iaik.tugraz.at.

46

mailto:forensic@lists.iaik.tugraz.at

Bibliography

[1] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2010.

[2] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In
International Conference on Automated Software Engineering, pages 443–
446. IEEE, 2008.

[3] K.-H. Cfhang, I. L. Markov, and V. Bertacco. Fixing design error with
counterexamples and resynthesis. In Asia and South Pacific Design Au-
tomation Conference, pages 944–949. IEEE, 2007.

[4] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C pro-
grams. In Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 2988 of Lecture Notes in Computer Science, pages 168–176.
Springer, 2004.

[5] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen
Yorav. SATABS: SAT-based predicate abstraction for ANSI-C. In Tools
and Algorithms for the Construction and Analysis of Systems, volume 3440
of Lecture Notes in Computer Science, pages 570–574. Springer, 2005.

[6] L. A. Clarke. A system to generate test data and symbolically execute pro-
grams. IEEE Transactions on Software Engineering, 2(3):215–222, 1976.

[7] J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial
Intelligence, 32(1):97–130, 1987.

[8] V. Debroy and W. E. Wong. Using mutation to automatically suggest
fixes for faulty programs. In Third International Conference on Software
Testing, Verification and Validation, pages 65–74. IEEE, 2010.

[9] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact.
Empirical Software Engineering, 10(4):405–435, 2005.

[10] Inc. Free Software Foundation. GNU Compiler Collection (GCC) Internals,
2010.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. In Programming Language Design and Implementation, pages 213–
223. ACM, 2005.

47

[12] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

[13] R. Könighofer and R. Bloem. Automated error localization and correction
for imperative programs. In Formal Methods in Computer Aided Design,
pages 91–100. IEEE, 2011.

[14] R. Könighofer and R. Bloem. Repair with on-the-fly program analysis. In
Haifa Verification Conference. Springer, 2012. To appear.

[15] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate
language and tools for analysis and transformation of C programs. In
Compiler Construction, volume 2304 of Lecture Notes in Computer Science,
pages 213–228. Springer, 2002.

[16] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

[17] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for
C. In European Software Engineering Conference/International Symposium
on Foundations of Software Engineering, pages 263–272. ACM, 2005.

[18] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. A. Seshia.
Combinatorial sketching for finite programs. In Proceedings on Architec-
tural Support for Programming Languages and Operating Systems, pages
404–415. ACM, 2006.

[19] A. Sülflow, U. Kühne, G. Fey, D. Große, and R. Drechsler. WoLFram –
a word level framework for formal verification. In International Workshop
on Rapid System Prototyping, pages 11–17. IEEE, 2009.

48

	Introduction
	An Appetizer
	Features and Benefits
	Limitations
	License
	Structure of this Manual

	Installing FoREnSiC
	Using FoREnSiC
	Starting FoREnSiC
	Annotating Programs
	Selecting a Back-End

	Understanding FoREnSiC
	The Architecture
	The Front-End
	Unsupported C Language Elements
	Translating into the Internal Model
	Special Cases
	Code Location Information

	The Internal Model
	Structure of the Model
	Example

	The Symbolic Back-End
	The Symbolic Execution Engine
	The Concolic Execution Engine
	The Diagnostic Data
	The Diagnosis Engine
	The Repair Engine
	Implementation
	Examples

	The Simulation-Based Back-End
	Simulation-Based Error Localisation and Repair
	The Observation Points
	Statistical Error Localisation Using Dynamic Slicing
	Mutation-Based Repair
	Execution of the Simulation-Based Back-End
	Example

	The Cut-Based Back-End
	The Diagnosis Engine
	The Repair Engine
	Execution of the WoLFram Back-End

	Summary

