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Abstract— Only a concise synthesis and verification flow allows
to cope with complex circuits and systems consisting of several mil-
lion components. In the meantime, verification has become the
dominating factor causing up to 80% of the overall design costs.
But still verification can only be applied if a formal model exists.
Therefore the initial translation of the specification - given as a
workbook in natural language - to a formal description on register-
transfer level (RTL) is usually not checked. By this, current verifi-
cation approaches do not provide anydesign understanding.
In this paper we propose a new approach that allows automatic
generation of properties for a given design. These properties are
formally verified using model checking. The resulting properties
are translated into a description that is easy to read and to under-
stand for the designer, who can add this description to the set of
properties or a testbench. The methodology - independently of the
designer and verification engineer - provides design understanding
and by this significantly contributes to the quality of the process.

I. I NTRODUCTION

In modern circuit and system design, verification becomes the
major bottleneck and in the meantime dominates the cost for
synthesis. Up to 80% of the overall design costs are due to
verification. The classical approach to verification is based on
simulation, but creation of large testbenches and also the (man-
ual) checking or creation of monitors are very time consuming
and error prone. But pure simulation is not sufficient to check
the correct functional behavior, i.e. the coverage that is obtained
is too low (see e.g. [1]).

In addition to simulation, formal verification techniques have
been proposed and in the meantime are used in many industrial
flows. In some cases formal methods have even replaced simu-
lation, e.g. in equivalence checking [6]. As recent publications
show, not only the quality of the verification improves, but also
the costs in terms of man power can decrease [11]. Instead of
setting up testbenches to check functional correctness, proper-
ties are mathematically proven to be correct and hold in any
situation. Beside equivalence checking and property checking,
approaches based on symbolic simulation or assertion checking
proved to be very powerful in practice [5]. Unfortunately all
these techniques can only be applied if aformal descriptionof
the circuit exists - either on behavioral level or on RTL.

But with increasing design complexity it becomes more and
more important to get an understanding of the design, i.e. to
check whether the implemented formal model corresponds to
the intention and ideas of the person who wrote the initial spec-
ification (usually in form of a workbook). This specification is
commonly given in natural language and by this may contain
inconsistencies, non-precise descriptions or even contradicting
requirements.

In this paper we present a new approach that is based on for-
mal techniques. In contrast to previous techniques the goal is not
to prove the correctness of given formulas or properties, but to
automatically generate properties that are shown to the designer.
The properties are generated based on a set of signals and a sim-
ulation trace. The set of signals is selected by the user, while
the trace is derived from a testbench or random simulation. Gen-
erated properties are translated into a readable format such that
they can easily be understood. The tool is based on a pattern
matching technique and can be configured to generate valid, but
also invalid properties. By this the designer gets feedback about
the functional behavior of the system and can “discuss” with the
tool. In contrast to previous approaches this method focuses on
design understanding. It can be applied without having a formal
model of the specification and by this targets at design verifica-
tion instead of implementation verification - in contrast to most
other tools. This difference will be explained in more detail be-
low.

The paper is structured as follows: In Section II we describe in
more detail the underling ideas and the methodology. First, the
classical design method is briefly reviewed and the resulting ver-
ification approaches are discussed. Then, the new technique is
presented and advantages and disadvantages are discussed. De-
tails on the implementation of the tool are given in SectionIII.
The pattern matching algorithm is discussed and criteria for se-
lecting “useful” properties are given. In Section IV experimental
results are given and finally the paper is summarized.

II. M ETHODOLOGY

In this section we first briefly review the classical design flow
and resulting implications for verification techniques. Then, the
new methodology is introduced. The integration into the design
flow is described and resulting benefits are discussed.
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A. Classical Verification

Still, verification is downstream in the design process as
shown in Figure1:

1. The initial idea is written down in a textual specification.
Even though the specification might contain some formal
parts, it is usually given in a natural language. This specifi-
cation is then handed to the design team.

2. The textual specification is formalized and used to build a
system model. This can be on a behavioral level or on RTL.
Usually a common programming language like C or C++ is
used to implement the system model.

3. The model is then coded in a hardware description language
(HDL). This HDL model is built according to the textual
specification.

4. The HDL model is checked

• against the system model by means of testbenches or

• against the specification by means of property check-
ing.

5. The HDL model is synthesized.

Following the usual notation, the verification of the specifica-
tion is addressed asdesign verification, while implementation
verification covers the steps from the first formal description
down to the final layout (including various stages of equivalence
checking, etc.).

Design verification is only addressed in Step 4.

Remark 1 Since the main focus of this paper is on the verifica-
tion of the design entry, all verification issues related to design
implementation, like e.g. verifying the correctness of the synthe-
sis process, are not further considered in the following.

Moreover in a large design project frequent changes of the
specification may occur. These changes are incorporated into
the design by repeating the steps shown above.

This process leads to a late detection of failures within the
design process. When a failure is detected even modifying the
specification can be necessary. This causes long delays during
the design process.
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Fig. 2. Proposed methodology

B. New Approach

Here, we propose to incorporate techniques for formal verifi-
cation at earlier stages of the process. As soon as first blocks can
be simulated at a cycle accurate level properties should be auto-
matically deduced. This helps to get insight and offers a different
view at the design. By this, conceptual errors as well as coding
errors can be detected earlier. Also the deduced properties can be
used as a starting point for formal verification and by this reduce
the time needed to set up the verification environment.

The idea is to provide a tool to the designer that allows to
gather more insight into his own design. For an overview see
Figure2. Usually the system model already contains the cycle
accurate I/O-behavior of most blocks. Therefore, as soon as first
portions of the design can be simulated at the accuracy of clock
cycles, formal properties are derived from the given description,
i.e. from the system model or the HDL description. These prop-
erties exhibit some behavior of the design. The designer or a
verification engineer has then to decide, if the property is correct
or not. I.e. the compliance of the property with the textual spec-
ification has to be checked. If the property is found to be valid
it can be used as a starting point for formal verification. If the
property is incorrect, either the given simulation trace does not
show all behaviors of the given block or the block is erroneous.
By this, a direct feedback between textual specification, system
model, HDL description, and verification is established.

This feedback between the different design stages helps to im-
prove design quality. Instead of only assuming a property the de-
signer can explicitly search for a property and check the compli-
ance with the specification. Moreover pulling verification meth-
ods into the earlier stages of the design process enables an early
detection of design errors. A mismatch between specification
and HDL model is usually only detected during verification. But
the proposed method unveils this mismatch already while coding
a block. The iteration becomes superfluous.

Still the verification step can not be discarded. But as the
set up of testbenches, also properties are already targeted during
coding or even when only the system model is given. As soon as
a trace is guaranteed to exhibit all important behavior the corre-
sponding stimuli become part of the testbench. The same holds
for deduced properties. These are added to the property suite for
later formal verification. By this, a starting point for formal ver-
ification is created during coding already and time is saved, as
not all properties have to be written manually.



C. Discussion

The presented methodology leads to a different aspect of the
design than other techniques do. At a similarly early stage of
the circuit design phase usually only lint checking or assertion
checking are applied. But in case of linting only general prop-
erties that guarantee e.g. correct handling of arrays are checked.
Using assertions semantic checks can be carried out by means
of powerful properties [8]. But in this case the designer has to
write the assertions himself, i.e. an assumption about the design
is formulated as a corresponding property. The proposed method
allows to retrieve insight from a simulation trace. No further
knowledge about the design is needed.

In the software domain a similar methodology has been pre-
sented in [9]. In that case Java programs have been considered
and execution traces have been searched for a set of predefined
invariants. These invariants were afterwards statically checked.
Here, the property detection works in a different way and is fitted
to verification of hardware.

The properties considered in the following only argue about
a fixed number of clock cycles, i.e. we make use ofBounded
Model Checking(BMC) [2]. This allows to reduce the sequential
problem of proving a property to a combinational one. Given a
property that describes the behavior withinl cycles the design is
unrolledl times:l copies are connected in sequential order. Next
state bits of a previous copy become state bits for the next copy.
The property is proven on this combinational circuit.

III. I MPLEMENTATION

In this section the implementation of the proposed methodol-
ogy is discussed in detail. For a better understanding the tool for
property deduction is explained before the selection of properties
is considered. Finally, the application of property deduction and
the integration with methods for formal verification is studied.

A. Automatic Property Generation based on Pattern Matching

In the following the necessary basic notions to make the paper
self-contained are given. These are circuits, traces and the type
of properties considered.

A circuit has n primary inputs (i1 . . . in), m state bits
(s1 . . . sm, e.g. flip-flops) andp primary outputs (o1 . . . op). A
value of an input, output or state bit at timet is indicated by[t],
e.g. the value of inputij at timet is indicated byij [t]. The val-
ues of outputs and state bits are determined by Boolean functions
that depend on the values of inputs and state bits at the previous
time step.

A simulation traceof tcyc clock cycles is denoted by an array
of vectorsv[0], . . . , v[tcyc − 1]. Eachv[t] records the values of
inputs, state bits and outputs at timet:

v[t] = (i1[t], . . . , in[t], s1[t], . . . sm[t], o1[t], . . . op[t])

For example consider the waveforms in Figure3(a). These can
directly be mapped into the vector notion which is shown in Fig-
ure3(b). Thus, necessary data can be generated from any simu-
lation trace e.g. the widely used VCD format.
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Fig. 3. Representation of simulation traces
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Fig. 4. 1-bit-shift-register

Note, that internal signals can not be considered using this
notation, but the extension is straightforward. In the following
signalrefers to an input, output or state bit.

In this work a property for a circuit is considered to be a
propositional formula. Variables are the inputs, state bits and
outputs of the circuit associated to a certain time step. Thelength
of the windowfor a property is given by the largest time step ref-
erenced by any variable plus one (the first time step is considered
to be zero). The property is shifted to an arbitrary time stept by
addingt to each time reference. A property is valid for a cir-
cuit, if it holds for any simulation trace at any time step for this
circuit.

Example 1 Consider the circuit in Figure4. This is a 1-bit-
shift-register with 2 state registerss1, s2 and a registered output
o1. The shift-register has two modes of operation: keep the cur-
rent value (i2 = 1) and shifting (i2 = 0). During shifting the
value of inputi1 is shifted into the register. Therefore after three
clock cycles the value is observed at the outputo1.

This behavior is described by the property “Ifi2 is zero in
three consecutive time steps, the value ofi1 in the first time step
equalso1 in the fourth time step” or written as a formula:

i2[t] · i2[t + 1] · i2[t + 2] → (i1[t] = o1[t + 3]) (1)

The length of the window for this property is4.

This notion of a property is also used by industrial model check-
ing tools (e.g. [3]). Having a window for the property is not
a restriction in practice. Very often the length of the window
corresponds to a particular number of cycles needed for an oper-
ation in the design. In case of the shift-register this is the number
of cycles needed to bring an input value to the output. For a so-
phisticated design, like a processor, this can be the depth of the
pipeline, i.e. the number of cycles to process an instruction.



PropGen(I, tmax, v[0], . . . , v[tcyc − 1])
(0) foreach time relationT
(1) p(T ) = 0
(2) foreach time step0 ≤ t < tcyc

(3) pat= getPattern(I,T ,v,t);
(4) p(T ) := p(T ) + pat

(5) end
(6) end

Fig. 5. Sketch of the property generation

B. The Basic Procedure

The generation of properties uses pattern search in a simula-
tion trace. A particular pattern in the trace shows a relationship
between signals and by this indicates an underlying property. By
taking into account all patterns that occurred, the property is gen-
erated.

The concept to deduce properties from traces is similar to the
approach introduced in [7]. The basic procedure is given in Fig-
ure5: Given are a tuple of signalsI and a maximal windowtmax

for the properties to be generated as well as a simulation tracev

of lengthtcyc. In the property each of the signals is assigned to a
particular time step in the window, that is not given in advance.
An assignment of time steps to signals is calledtime relationin
the following. The iteration of all possible time relationsT is
the outer loop (line 0). At the beginning nothing is known about
the property, it is initialized to the constant function 0. Then, at
each time step of the trace the behavior of the signals is deter-
mined in terms of a pattern (line 3) and included in the property
(line 4). The property for a particular time relationT is valid
within the trace by construction, because all occurring patterns
are considered.

A pattern is the vector that gives the values of signals at the
time steps determined by the time relation. The time relationT

assigns to a signalsig ∈ I the time offset within the property
T (sig). For a window starting at timet the value inserted for
signalsig is sig[t+T (sig)], thus the pattern is determined by the
trace. Values for a pattern are determined bygetPattern. Then,
the behavior reflected by the pattern is included in the property.

Technically, the extracted pattern is a cubepat. This is joined
with all previous cubes for the current time relation by calculat-
ing p(T ) := p(T ) + pat. The cube is given by transcribing the
pattern into a conjunction of literals of the variables inI at the
time steps determined byT . For a value of 0 in the pattern the
negative literal is used, for the value 1 the positive literal is used.
Therefore one cube determines one valid assignment to the sig-
nals, the disjunction of all these cubes leads to the propertyp(T ).

Example 2 Consider the trace given in Figures3(a) and 3(b).
Let the tuple of signalsI be(i2, i1, s1). And letT (i2) = T (i1) =
0 andT (s1) = 1. Now, for each time stept the pattern is given
by (i2[t], i1[t], s1[t + 1]). These patterns are indicated in Figure

3(b) by bubbles. At time steps0,1 and2 a new pattern is found,
each of which leads to a cube:

0) (0, 1, 1) → i2[0] · i1[0] · s1[1]

1) (0, 1, 1) → i2[0] · i1[0] · s1[1]

2) (0, 0, 0) → i2[0] · i1[0] · s1[1]

No additional patterns are found at later time steps. The result-
ing property is the sum of the cubes, i.e.

p(T ) = i2[0] · i1[0] · s1[1] + i2[0] · i1[0] · s1[1]

The number of time relations is large, since each of the signals
can be assigned to any time step from0 to tmax − 1. This leads
to t

|I|
max time relations. But the search space can be pruned using

the following rules:

1. At least one time reference must be zero.

Otherwise the same time relation is considered more than
once. I.e. a time relation starting at0 would be shifted to a
starting point greater than0.

2. No signal is considered twice in the same time step. If a
signal occurs more than once inI, different time steps are
assigned to the different instantiations of the signal.

Otherwise one value of the pattern would be considered
twice, which is superfluous.

3. An input is never considered in the last time step of the
window.

An input has no influence on a state bit or output, if it occurs
at the last time step of the window.

Another observation helps to further reduce the search space.
Given |I| there can occur at most2|I| possible patterns with re-
spect to a particular time relation. If all possible patterns occur,
the sum of the cubes returns the constant function1 as a prop-
erty, i.e. a property that is trivially true. Thus, this time relation
does not lead to a useful property and further scanning the trace
is skipped.

A restriction of the current algorithm is that only one time
relation is considered for generation of the property. As a result
no property that includes several time relations can be generated.
This is the case, e.g. for existential quantification: in the proposi-
tional property this breaks down to a disjunction of several time
relations.

The resulting property itself is not represented by explicit
cubes, but symbolically by aBinary Decision Diagram(BDD)
[4]. This can not lead to memory blow-up because|I| - the
number of signals considered - is relatively small. Additionally
BDDs introduce some abstraction from the cube representation,
e.g. don’t cares are easily determined.



C. Selection of Properties

C.1 Choosing a Useful Property

For each time relation that is not pruned by the rules shown
above, a valid property is generated. Then it has to be decided
which of this large number of properties are “useful”. This obvi-
ously can not be done fully automatically. But indeed some help
can be provided.

As stated at the end of the last section a property that is triv-
ially true, i.e. equal to constant1, is of no use. Also if the relation
between some signals in time is determined by the underlying
circuit, the number of occurring patterns is small compared to
2|I|. In the other case, if the relation of the signals is not de-
termined by the circuit, the values in the patterns seem to be
randomly distributed and thus the number of occurring patterns
is close to2|I|.

Example 3 Consider the shift-register given in Figure4, I =
(i2, i1, s1) and a trace reflecting any state and any input se-
quence for the shift-register. For the time relation given in Ex-
ample2 the following holds true:

• “If i2[t] = 0, thens1[t + 1] is equal toi1[t]”. This breaks
down to two cubes representingi2[0] · (i1[0] ≡ s1[1]).

• “If i2[t] = 1, thens1[t + 1] and i1[t] are independent”,
leading to the cubei2[0].

This are six cubes in total.
Now, consider a time relation, where the value ofs1 is taken

at a time step greater than 1. In this case the value can not be
predicted from the other two values. Therefore all patterns occur
and the property becomes the constant function 1, i.e. trivially
true.

This observation can be used to order the properties generated
from the trace. Resulting properties are ordered by decreasing
numbers of different patterns that were observed. This ranking is
used to decide about the “usefulness” of properties. The ranking
also helps to prune evaluations of other time relations. Only a
limited number of properties with the least number of patterns is
retained.

C.2 Guided Property Generation

When being confronted with a large design more focused
properties can be useful. This can be formulated as an as-
sumption to restrict the property generation. In case of the
shift-register there are two different modes of operation. Either
i2 = 0, i.e. the register shifts at each clock cycle ori2 = 1,
i.e. the register keeps the current state. The method so far only
allows to generate properties for any relation between the sig-
nals. Often a property focused to a certain mode of operation
can be more desirable.

This focusing can be done by an extension of the property
with an assumption. This assumption restricts some signals in
I to a certain value, to the value of another signal inI or to
a particular time step within the window. Only a pattern that
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Fig. 6. Application of property deduction

does not violate the assumption is included in the property. The
assumption can also be rewritten as a propositional formulaa.
Thus, the resulting property becomesP (T ) = a → p(T ), where
p(T ) is generated as above, but only from patterns fulfilling the
assumption.

Example 4 Assume, that in case of the shift-register, the oper-
ating mode for shifting is particularly interesting. Therefore the
assumptiona = (i2[t] ≡ 0) is used. In this case only cubes
wherei1[t] ≡ s1[t + 1] are collected. As a result the property
P = (i2[0] ≡ 0) → (i1[0] ≡ s1[1]) is generated.

Currently simple assumptions are allowed, e.g. the restriction
of a signal to a certain value or to the value of another signal.
Also a signal can be restricted to be considered only at a partic-
ular time step within the window of the property. More complex
constructs can easily be allowed by extending the input language
used for assumptions. On a given trace the check, if an assump-
tion holds, always breaks down to fast pattern matching.

C.3 Property Completion

In cases where a large number of signals or states is consid-
ered, the given simulation trace can not cover the complete be-
havior of the design. In this case the property that is extracted
from the trace is not valid within the design. But formal tech-
niques can be applied to complete this invalid property and re-
trieve a valid one.

For this purpose the engine that is used to prove properties on
the design must have the capability to find all counter-examples,
if the property is invalid. This is true for example in case of
BDDs or if a complete SAT solver is used. Each counter-
example is a pattern that was not found in the trace. The counter-
example is included into the property in order to become valid.
When the added counter-examples are shown to the designer,
this provides a feedback about behavior that was not covered by
the simulation trace. The aim of understanding the design bene-
fits from this feedback.



TABLE I
SEQUENTIAL BENCHMARKS, tcyc = 100, 000

Circ. Run 1 Run 2 Run 3
#rel time res. #pat #diff #rel time res. #pat #diff #rel time res. #pat #diff

daio 1 0.42 v 18 - 1 0.21 v 24 - 3 0.36 v 22 -
gcd 1 8.11 u 47 - 1 14.08 u 64 - 12 31.89 u 71 -
mm4a 2 1.93 i 91 a 9 1 1.32 v 56 - 2 0.53 v 50 -
mm9a 1 4.86 u 106 - 3 14.49 u 117 - 1 1.11 u 78 -
mm9b 2 11.26 u 105 - 18 1.95 u 56 - 6 1.31 u 56 -
mult16a 0 0.08 1 - 0 0.27 1 - 0 0.5 1 -
mult16b 81 5.96 v 96 - 0 2.25 1 - 0 2.03 1 -
phase_d. 2 5.81 u 10 - 109 8.05 u 6 - 115 8.97 u 6 -
s1196 1 62.07 u 70 - 5 50.42 u 57 - 1 1.79 v 49 -
s1238 3 2.53 u 54 - 2 1.96 u 66 - 1 4.05 i 94 a 18
s1423 4 27.36 u 79 - 1 10.93 u 106 - 10 19.42 u 34 -
s344 18 5.89 i 127 a 1 186 10.64 v 48 - 17 1.45 i 60 a 60
s349 0 0.12 1 - 1 4.22 i 108 a 20 27 5.38 i 65 a 15
s382 72 19.15 i 17 a 63 40 16.55 i 7 a 49 48 3.37 i 7 a 24
s400 17 0.9 i 6 a 54 18 1.45 i 18 a 48 18 1.53 i 5 a 32
s420.1 0 0.23 1 - 0 0.26 1 - 0 4.53 1 -
s444 26 11.24 i 16 a 112 10 1.43 i 4 a 40 234 35.6 i 5 a 25
s526 16 117.81 i 5 a 91 2 35.32 i 22 a 106 38 4.23 i 15 a 51
s526n 9 1.78 i 5 a 91 71 6.88 i 7 a 121 22 1.95 i 14 a 58
s641 653 49.5 u 32 - 0 1.78 1 - 2 24.65 u 87 -
s713 453 35.76 u 32 - 5 7.96 u 94 - 3 25.38 u 78 -
s838.1 551 41.34 i 32 a 96 96 7.58 i 16 a 112 308 38.97 i 64 a 64
s838 695 46.95 v 16 - 116 7.59 v 4 - 83 7.88 v 4 -
s953 74 15.82 v 33 - 5 2.34 v 14 - 7 4.16 v 36 -
traffic 3 0.96 v 7 - 17 2.73 v 40 - 2 0.66 i 29 a 7

D. Application of Property Deduction

The work flow to apply property deduction is shown in Figure
6. As a starting point the design and simulation traces are avail-
able. Then a tuple of signals is selected that have to be related to
each other. This is handed to the automatic property deduction
and a property is retrieved that is valid on the trace. The prop-
erty is passed to a proof engine that returns validity or invalidity
of the property. All information is provided to the designer who
decides, if the property is to be accepted or rejected. In case
of acceptance the property is added to the property suite and if
necessary corrections to the design are made. If the property
is rejected another deduced property with lower ranking can be
considered or a different tuple of signals can be chosen.

During the decision the techniques introduced previously aid
the designer. The simplification of properties leads to the more
general behavior of the design and by this the decision is easier.
Opposed to that the completion of a property exhibits behavior
that is not covered by the simulation traces and may reveal corner
cases.

Remark 2 In some cases it can be more instructive to review
the property before the result of the proof engine is known. This
allows to consider the property itself without being influenced
by the verification result. Opposed to looking at the simulation
trace, considering the property allows to focus on the functional
relation of the signals more easily.

Altogether this establishes an interactive process that offers
different views at the design. Such a new perspective is an op-
portunity to increase the insight and to understand the design.

IV. EXPERIMENTAL RESULTS

Two types of experiments are carried out in the following. At
first the efficiency of property generation is evaluated by using
the LGSynth93 benchmark set. Then, a case study shows the
benefits of property generation while implementing an arbiter.

A. Benchmarks

The focus of this work is to give some information about the
relation between deduced properties and the design. For this pur-
pose a number of sequential circuits from the LGSynth93 bench-
mark set was considered. For each of these circuits the results
of three runs are shown in TableI. In all cases traces of 100,000
clock cycles were considered. The tuple of seven signals was
chosen randomly andtmax was set to 4. A simple BDD based
proof engine was implemented and tightly integrated with the
property generation to decide the validity of a property.

For each run several data is reported. Column “#rel” gives
the number of time relations with a minimum number of pat-
terns, i.e. the number of properties with the highest ranking ac-
cording to Section III.C.1. The time in CPU seconds needed to
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collect the data and by this deduce properties is shown in col-
umn “time” (AMD Athlon XP 2200+, 512 MB). The following
three columns give information about the first property of those
with highest ranking. Column “res” states, if the property was
valid (v), invalid (i), trivial (1), or the proof engine exceeded the
time limit or memory limit and the property was left undecided
(u). In column “#pat” the number of patterns included in this
property is shown. Finally, Column “#diff” gives the number of
added patterns in order to turn an invalid property into a valid
one. This case is marked by the preceding letter “a”. A trivial
property was not further considered.

As can be seen from the table, the number of time relations
with a high ranking is rather small in most cases. This strongly
underlines the feasibility of the interactive application of the tool
by going through the highest ranked properties. The large num-
ber of properties that were left undecided is due to the proof
engine that was based on BDDs only. Instructive is the number
of patterns that were added to valid properties. This shows, that
in some cases the simulation only covered a small fraction of the
total behavior of the signals. When a large number of proper-
ties with high ranking occurs, the number of added patterns is an
additional hint for selecting useful properties.

Note, that the experiments in this section are a worst case sce-
nario for property deduction:

• The tuple of signals is choosen randomly.

• The window length is fixed.

• The simulation trace was generated by random stimuli.

In the usual application scenario a designer would choose a set of
appropriate signals and a window length. Often stimuli provided
by a testbench could be used for property deduction. A more
realistic scenario is shown in the following case study.

B. Case Study: Arbiter

The benchmark results above show the efficiency of property
generation. But these examples do not show the quality of the
generated properties or the feasibility of the approach. As a case
study a simple arbiter was coded and checked by means of prop-
erty generation.

1 module t h e A r b i t e r ( c lock , ack , done , req ) ;
2 parameter IDLE = 0 , BUSY=1;
3 i npu t c lock , r e s e t ;
4 output [ 1 : 0 ] ack ;
5 i npu t [ 1 : 0 ] req , done ;
6
7 reg [ 1 : 0 ] ack ;
8 reg s t a t e ;
9

10 wire [ 1 : 0 ] r e s o l v e , a c q u i r e ;
11
12 a s s i g n r e s o l v e [ 0 ] = req [ 0 ] ;
13 a s s i g n r e s o l v e [ 1 ] = ! req [ 0 ] & req [ 1 ] ;
14 / / a s s i g n a c q u i r e = ( ack [ 0 ] & req [ 0 ] )

| ( ack [ 1 ] & req [ 1 ] ) ;
15 / / a s s i g n a c q u i r e = ( ack [ 0 ] & done [ 0 ] )

| ( ack [ 1 ] & done [ 1 ] ) ;
16 a s s i g n a c q u i r e [ 0 ] = ack [ 0 ] & ! done [ 0 ] ;
17 a s s i g n a c q u i r e [ 1 ] = ack [ 1 ] & ! done [ 1 ] ;
18
19 always @( posedge c l o c k )
20 case ( s t a t e )
21 IDLE : i f ( req !=0 )
22 begin
23 ack = r e s o l v e ;
24 s t a t e = BUSY;
25 end
26 BUSY : i f ( done !=0 )
27 begin
28 ack = a c q u i r e ;
29 s t a t e = IDLE ;
30 end
31 endcase
32 endmodule

Fig. 8. Code of the arbiter

The arbiter manages the access of two masters to a bus. Con-
flicts are resolved by a priority scheduling. There exists a request
input (req ) and a done input (done ) as well as an acknowledge
output (ack ) for each master. Figure7(a) shows a block dia-
gram of the arbiter with two masters. An example for a request
from master 0 is shown in Figure7(b). By settingreq a master
signals the need to access the bus. Then, the arbiter setsack ,
if the bus is not in use and no request of higher priority occurs
andack is kept. Finally, the master setsdone to release the bus
again.

The arbiter was coded using Verilog. VIS [10] has been used
to generate a blif-file from the Verilog description. Then auto-
matic property generation was used in the manner explained in
SectionD. Due to this process two errors were detected. The
Verilog code of the arbiter is shown in Figure8. Originally in-
stead of lines 16 and 17 only line 14 was in place. In a first at-
tempt to fix bugs this was replaced by line 15 and finally by lines
16 and 17. The detection of errors and reasons for the replace-
ment are described in the following. For all calls of property
deductiontmax was set to 2. The tuple of signalsI considered
is shown at the beginning of each paragraph.



I = (req[0], ack[0] ):
At first the relation betweenreq andack for the master
with highest priority was of interest. The set of signals
handed to property generation consisted only ofreq[0]
andack[0] . The first assumption was, that there is a de-
pendency between this pair of signals. But indeed any pat-
tern can occur. A trivial property was the result. Therefore
the state was included in the set of signals.

I = (req[0], state, ack[0] ):
The first version of the arbiter contained line 14 instead of
lines 16 and 17. This lead to an error:ack could be in-
fluenced by the behavior ofreq while the bus wasBUSY.
This error was resolved by replacing line 14 with line 15.

Now, additionally the influence ofdone on the other sig-
nals was of interest. Also a value ofack at another time
step was taken into account.

I = (req[0],done[0],state,ack[0],ack[0] ):
The resulting property showed that theack for the master
was reset, even if the master did not release the bus by set-
ting done . A possible solution is the replacement of line
15 by lines 16 and 17.

In the resulting property thestate was taken at time step
1 instead of 0 as originally wanted. Therefore this signal
was restricted to time step 0 and as a result the relation for
the arbiter with highest priority was returned.

The case study showed a scenario for the application of prop-
erty deduction and how errors can be revealed using this method.
In the first query only a small tuple of signals was considered.
This tuple was then successively enlarged to understand more
relations. Checking deduced properties on the design and re-
viewing these gave a feedback, that led to the detection of design
errors. During this process no direct interaction with the formal
verification engine was necessary.

V. CONCLUSIONS

A methodology to improve design understanding by auto-
matic property deduction has been introduced. The deduction of
properties uses fast pattern matching on simulation traces and is
therefore highly efficient. Resulting properties can be formally
verfied, while the designer is relieved from writing properties.
At the same time accepted properties serve as a starting point for
formal verification. Even more important is the different view at
the design provided by the generated properties. This can unveil
behavior which remains hidden otherwise. By this the under-
standing of the design is improved. In turn the efficiency of the
design process increases due to early detection of bugs or incon-
sistencies. In summary the advantages are twofold. Time for
manually writing properties is saved and, even more important,
a new perspective on the design is provided.

Future work will focus on the selection of properties and the
front-end to present deduced properties to the user.
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