
SyCE: An Integrated Environment for System Design in SystemC∗

Rolf Drechsler Görschwin Fey Christian Genz Daniel Große

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
{drechsle, fey, genz, grosse}@informatik.uni-bremen.de

Abstract

We present an integrated system design environment for
SystemC, called SyCE. The system consists of several com-
ponents for efficient analysis, verification and debugging of
SystemC designs. The core tools are 1) ParSyC, a parser for
SystemC designs that has also some synthesis options, 2)
CheckSyC, a verification tool for formal equivalence check-
ing, property checking and generating checkers for simula-
tion or synthesis, 3) DeSyC, a tool for automatic debugging
and error location in netlists, and 4) ViSyC, a visualization
tool for schematic and source code view supporting cross-
probing and annotation of simulation and debugging re-
sults. The tools fully support hierarchy and interact tightly.
Designs can be described at different levels of abstraction.

1. Introduction

The design complexity of today’s circuits and systems
requires modeling at a high level of abstraction. Until re-
cently, mainlyHardware Description Languages(HDLs),
like VHDL or Verilog, were used to describe the hardware
on theRegister-Transfer-Level(RTL). Considering ASICs
of more than 10 million gates and a HDL to gate ratio of
approximately 1:10 to 1:100, i.e. one line of HDL code on
the RTL corresponds to 10 to 100 gates in the netlist, the
HDL description consists of several hundred thousand lines
of code.

To cope with these designs the abstraction level is raised.
One very promising way to do so is based on descriptions
in C-like languages (see e.g. [9]). In this context SystemC
is a very powerful language that allows to describe cir-
cuits and systems at different levels of abstraction, i.e. from
transaction-level down to the gate-level [8, 10].

In the recent past many approaches have been presented
for individual tasks in the system design phase, e.g. tools for
synthesis [13] and verification [12, 2]. But for successful
circuit and system design there is a high demand to cover
all aspects of the flow. Especially design understanding by

∗Parts of this work have been supported by BMBF VALSE-XT.

visualization and debugging to locate errors should be aided
by tools. To address all of these issues different tools have
to be tightly integrated.

In this paper we present the integrated system design
environment SyCE that has been developed over the past
few years at the University of Bremen. SyCE is the first
integrated environment for SystemC design that allows to
design, verify and debug systems. The SystemC descrip-
tion itself, but also the debugging results, can be visual-
ized. The design environment consists of four main com-
ponents: a parser (including logic synthesis options), a ver-
ification tool, a debugging tool, and a visualization compo-
nent. The project started three years ago and in the mean-
time first results on the individual tools have been published
in [7, 5, 4, 3, 6]. Here, for the first time the complete design
environment is described and the latest features are high-
lighted.

Based on SyCE, it is now possible to design, verify and
debug within one framework. First experimental studies
show very promising results.

2. Overall Flow of SyCE

The overall flow is described in Figure 1. The input con-
sists of a SystemC description and (if the verification tool is
used) a set of properties can be specified.

In a first step the parserParSyCreads in the SystemC
description and transforms it to an internal representation.
The parser – as shown in the figure – is the core of SyCE
and generates the information required by the other tools.
ParSyCis an improved version of the tool presented in [4].
It produces an easy-to-process representation of a SystemC
design in form of anAbstract Syntax Tree(AST). The tool
PCCTS (Purdue Compiler Construction Tool Set) [11] was
used to build the parser. PCCTS enables the description
of the syntax of SystemC in the form of a grammar, pro-
vides facilities for AST construction and finally generates
a parser. In consecutive translation steps the AST of the
SystemC description is transformed into an internal repre-
sentation. The design can be described at different levels
of abstraction. Dependent on the consecutive steps various
operations can be performed.ParSyCcan also generate a
flat netlist and by this can be used for logic synthesis.



Figure 1. Overall flow of SyCE

Besides synthesis verification has become one of the
most important aspects in system design. So far, there is
not one single technique that covers all demands [1] and for
this, the verification toolCheckSyC[5, 6] provides differ-
ent verification approaches that include formal techniques
and simulation approaches based on checkers. Simulation
techniques are known to be “less powerful” regarding the
completeness, but due to the complexity of the systems it
happens that a formal proof fails. In this case simulation is a
good “fall back” position. Here, it is important to notice that
our simulation environment is based on the same property
specification as the formal property checker. By this, the de-
signer uses the same specification scenario for different ap-
proaches. This underlines the unified system view in SyCE.
For verification of the design the toolCheckSyCoffers dif-
ferent formal and simulation based approaches, i.e. equiv-
alence checking and property checking as well as checker
generation. In all cases, if a faulty behavior is observed,
one or more counter-examples (or traces in the sequential
case) are generated and given to the debugging tool.

DeSyCis used for debugging on the gate-level. A netlist
generated byParSyCand the counter-examples derived by
CheckSyCare the input. Verification tools usually only pro-
vide a set of traces that exhibit the malfunction, i.e. a set of
counter-examples. Then, debugging has to be carried out –
often manually – using a simulator.DeSyCaids this time-
consuming task by automatically localizing candidate error
sites. As a result only a small portion of the circuit has to be
inspected to correct the error. The most important features
of DeSyCare:

• Fast simulation based diagnosis using counter-
examples

• Diagnosis for time-dependent errors

• Handling of hierarchical circuits

The basic diagnosis technique inDeSyCis path-tracing and
uses the improvements proposed in [3]. The tool automati-
cally identifies circuit locations that might be the reason for
the faulty behavior. The resulting set of error candidates is
handed to the visualization tool.

For visualization the toolViSyChas been developed that
makes use of the visualization engines from Concept Engi-
neering1. ViSyCallows to easily navigate through complex
designs. But following the description above,ViSyCalso
provides the visualization of debugging results. This helps
the designer to easily identify reasons for bugs.

ViSyCis a tool for schematic and source code view sup-
porting cross-probing and annotation of simulation and de-
bugging results. The tool can be used “stand-alone” by di-
rectly using the information generated fromParSyCor in
combination withDeSyCas outlined above, i.e. the diag-
nosis results are simple to understand and presented in an
easy-to-read way.

In the following we mainly concentrate on the “stand-
alone” features, since the use in combination withDeSyC
essentially describes a special case, i.e. some parts of the
design are highlighted and the parts not relevant for debug-
ging are not shown.

The tool supports a rich set of features, like:

• detail hiding

• source code browsing

• interactive design exploration

1www.concept.de



Figure 2. Schematic view

• cross-probing between schematic view and SystemC
source code

• critical path fragment navigation

• object search

ViSyCimplements system exploration via an interactive
GUI, that connects several schematic views with the cor-
responding source code fragments. Each schematic view
represents a kind of abstraction level, where each level is a
superset of the less abstract one. Each abstraction level of
the specification is mapped to one of the schematic levels.
We adopted the method of data hiding from SystemC, that
encapsulates modules to get a higher level of abstraction
than allowed in RTL designs.

An example can be seen in Figure 2. The schematic view
of a SystemC RISC-CPU is shown. The CPU source code
is included in the official SystemC package and freely avail-
able. The right part of the window displays the high-level
view of module instances and their connections. Single
components can be highlighted through selection. Informa-
tion about the selected component is displayed in the in-
formation bar on top of the schematic. Module declarations
are displayed in the tree window, next to the schematic. The
tree window enables hierarchical access to all module decla-
rations and their submodules. Selecting submodules is pos-
sible through expanding subtrees. All selected components
can be displayed in another view by dragging them into an-
other window. Thus the RISC structure can be visualized
arbitrarily in the range from high-level to gate-level view.

3. Summary

In this paper we outlined common problems in the hard-
ware design flow, handled by HDL-based tools. We intro-
duced the integrated SystemC environment SyCE, that ad-
dresses high abstraction levels and covers important aspects
of a continuous design flow.

References

[1] R. Drechsler.Advanced Formal Verification. Kluwer Aca-
demic Publishers, 2004.

[2] F. Ferrandi, M. Rendine, and D. Scuito. Functional veri-
fication for SystemC descriptions using constraint solving.
In Design, Automation and Test in Europe, pages 744–751,
2002.

[3] G. Fey and R. Drechsler. Efficient hierarchical debugging
for property checking. Technical report, DDECS, Bremen,
2005.

[4] G. Fey, D. Große, T. Cassens, C. Genz, T. Warode, and
R. Drechlser. ParSyC: An efficient SystemC parser. InWork-
shop on Synthesis And System Integration of Mixed Informa-
tion technologies (SASIMI), pages 148–154, 2004.

[5] D. Große and R. Drechsler. Checkers for SystemC de-
signs. InSecond ACM & IEEE International Conference on
Formal Methods and Models for Codesign (MEMOCODE),
pages 171–178, 2004.

[6] D. Große and R. Drechsler.CheckSyC: An efficient property
checker for RTL SystemC designs. InIEEE International
Symposium on Circuits and Systems, 2005.

[7] D. Große, R. Drechsler, L. Linhard, and G. Angst. Efficient
automatic visualization of SystemC designs. InForum on
Specification and Design Languages, pages 646–657, 2003.

[8] T. Grötker, S. Liao, G. Martin, and S. Swan.System Design
with SystemC. Kluwer Academic Publishers, 2002.

[9] R. G. (moderator). IEEE design and test roundtable on C++-
based design.IEEE Design& Test of Comp., pages 115–
123, 2001. May-June.

[10] W. Müller, W. Rosenstiel, and J. Ruf, editors.SystemC
Methodologies and Applications. Kluwer Academic Pub-
lishers, 2003.

[11] T. Parr. Language Translation using PCCTS and C++: A
Reference Guide. Automata Publishing Co., 1997.

[12] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel.
Simulation-guided property checking based on multi-valued
ar-automata. InDesign, Automation and Test in Europe,
pages 742–748, 2001.

[13] Synopsys. Describing Synthesizable RTL in SystemCTM ,
Vers. 1.1. Synopsys Inc., 2002. Available at
http://www.synopsys.com.


