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Abstract

Property checking is the method of choice to guarantee functional correctness of
a design under any input assignment and in any state. But so far only few methods
to evaluate the coverage achieved by a set of properties have been presented. These
methods either suffer from complexity problems known from CTL model checking
or are incomplete themselves due to simulation-based engines.

In this work we present an approach to calculate coverage information in the
context ofBounded Model Checking(BMC). The components of a design that are
covered by a given set of properties are calculated. The result is presented at the
source code level. The approach is explained in detail and empirically evaluated.

1 Introduction

Checking the functional correctness of a hardware design is a crucial issue in the design flow.
Producing an erroneous design may cause a significant financial loss and damages the image of
a design company. Traditionally, simulation-based methods were used to check the functional
correctness of designs. But such methods can not cope with the huge state space of modern
systems. Therefore methods for formal verification are applied. Formal property checking
can ensure that a given property is valid under any input assignment and in any state of the
design. But this is only valid for the properties considered. Therefore it has to be checked, if
the given set of properties is sufficient to describe the design or which portions of the design
are not covered [11]. In a practical application this coverage is usually estimated by manually
reviewing all formal properties that have been applied.

Some work has been done to automate this process to improve the efficiency of the esti-
mation and the reliability of the result. A rather informal approach to estimate coverage with
respect to ’design intent’ has been proposed in [3]. This approach works by automatically com-
bining multiple RT-level properties into higher-level properties. More formal measures have
also been considered. A number of approaches consider CTL properties and calculate the states
of the design that are covered [5, 9, 10]. But the computational complexity is the same as or
even higher than that of CTL model checking. Moreover, these approaches have been proposed
for designs given in form of finite state machines, but the relation to the original description
of the design in aHardware Description Language(HDL) is not considered. Therefore the
practical application of such approaches is difficult.
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Figure 1: SAT instance for BMC

In [7] the coverage with respect to a high-level error model achieved by a given set of
properties was considered. Bit-level errors are injected at the source code level. Then, fault
simulation is applied for witnesses of the properties to calculate which properties fail under
particular faults. When all errors of the fault model are detected by the properties, the property
set is considered complete. Clearly, fault simulation for witnesses is less powerful than complete
symbolic methods.

In this paper we propose an approach to automatically calculate the portions of a design
that are covered by properties. Properties fromBounded Model Checking(BMC) [4] are con-
sidered. The coverage information is presented at the source code level. For this, the source
code is split into components. A component is considered covered when changing the compo-
nent allows to invalidate at least one property. A notion of coverage with a tighter definition is
also presented and discussed. The calculation of covered components is based on techniques
similar to model based diagnosis [15] or diagnosis approaches for the post-production test [17]
and debugging [2]. All possible input assignments and states are considered when calculating
coverage information. The computational complexity of the proposed approach is similar to
BMC usingBoolean Satisfiability(SAT). An example and benchmarks give empirical evidence
of the feasibility of the approach.

2 Preliminaries

During BMC a propertyP and a designD are given. The property is usually described in
some property specification language, e.g. Linear Time Logic [14] or Property Specification
Language [1]. The design is described in a HDL, e.g. VHDL, Verilog, or SystemC. Then, a
SAT instance is created that is satisfiable, iff the property fails. A satisfying assignment shows a
trace that exhibits the failure, i.e. a counterexample to the validity of the property on the design.

In detail the SAT instance is built as shown in Figure 1. The property argues over time.
Therefore the designD is mapped onto the gate-level representationDg and unrolled for a
bounded number ofk time frames. Next state values calculated in one time frame are connected
to the current state values of the next time frame. Thus, the observation of the sequential
circuit is turned into a combinational problem. Then, the property is also transformed into a
gate-level representationPg and is connected to the appropriate signals in the different time
frames of the unrolled circuit. The gate-level constructPg has one outputholds that is one
iff the property holds under the current input assignments and state assignments of the unrolled
circuit. This output is constrained to value0, i.e. the property does not hold. The whole problem
is transformed into a SAT instance and a SAT solver is used to check if there exists a satisfying
assignment. If no such assignment exists, the property holds under any assignment to inputs
and states for the given boundk.

One way to proof the validity of a property regardless of a boundk is the use of induction as
suggested in [16]. In the following such a technique is considered. But the coverage approach
also applies to other types of BMC.



(1) Coverage(D, P)
(2) C = ∅
(3) Create gate-level representationDg of D with annotated

source code information
(4) Associate covered predicatesc1, . . . cl to components inDg

(5) for each (propertyP ∈ P)
(6) Create a gate-level representationPg of P
(7) CombineDg with covered predicates andPg into a

SAT instanceS
(8) Add bounding constraint toS:

∑l
i=1 ci ≤ 1

(9) for each (satisfying assignmenta of S)
(10) if (a(ci) == 1) C = C ∪ i
(11) return C

Figure 2: Algorithm to calculate coverage
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Figure 3: Synthesis and identification of components

3 Calculation of Coverage

The overall algorithm to calculate coverage at the HDL level is shown in Figure 2. The algo-
rithm receives the designD and a set of propertiesP as input and returns the setC of compo-
nents covered by the given properties. The number of components in the design is denoted by
l. Initially, no component is considered as being covered (Line (2)). A gate-level representation
of the circuit is created (Line (3)). The annotation of source code information is necessary to
identify components in Line (4). This is explained in detail in Section 3.1. Then, the algorithm
calculates for each property which components invalidate the property when being changed
(Lines (5-10)). The necessary steps are considered in Section 3.2. In Section 3.3 a brief discus-
sion follows.

3.1 Identification of Components

In order to calculate coverage information at the source code level a link between the HDL
sources and the subsequently considered gate-level representation of the design has to be cre-
ated. This is also used to identify components at the gate-level. The underlying technique was
previously proposed in [6] and is briefly reviewed in the following.

The link between sources and gate-level is established during synthesis. This flow is shown
in Figure 3. The syntactical structure of the source is given by anAbstract Syntax Tree(AST).
During synthesis this AST is traversed and gates are created that implement particular expres-
sions of the source code. Thus, parts of the source code correspond to nodes in the AST. The
nodes, in turn, induce regions in the gate-level representation, where a region consists of a set
of gates, of other regions, or both. Overall, the AST defines a hierarchical set of regions on the
gate-level representation.
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Figure 5: SAT instance for coverage calculation

For the coverage calculation these structures are also used to identify components. For ex-
ample modules can be chosen as components, which leads to a coarse grain coverage informa-
tion. A more fine grain coverage information is retrieved when all expressions are considered as
components. Such syntactical constructs directly correspond to nodes of the AST and therefore
identify sets of gates that are associated to one component.

In order to allow for a unique identification of gate-level regions with source-level con-
structs no optimization is applied during synthesis. For example when sharing an adder between
then-branch and else-branch of an if-statement the unique identification would not be possible.
Therefore in this context the term “synthesis” only refers to a direct mapping of source level
constructs to the gate-level.

3.2 Coverage Information

A component is considered covered when changing the component invalidates at least one prop-
erty of the setP. A powerful fault-model is used to change a component: the function can be
replaced by an arbitrary Boolean function. This can efficiently be calculated using a SAT solver.

As in model based diagnosis [15] or diagnosis for circuits based on SAT [17, 2] the func-
tion of a component is overridden, when a corresponding attribute is set. This is illustrated in
Figure 4. The outputsoi of componenti are overridden by arbitrary pseudo inputspi if the
covered attributeci is set to1. Otherwise the values originally calculated by the component are
propagated.

This construction is applied to each component induced by the AST in the gate-level rep-
resentation of the designDg when creating the SAT instanceS (Figure 2, Line (6)). The other
details are similar to BMC as introduced in Section 2. The original SAT instance was unsatis-
fiable. But now the resulting SAT instance is satisfiable. Changing the output of a component
of D may cause the property to fail. By setting the corresponding attributeci to 1 and assigning
appropriate values topi the SAT instance can be satisfied. A single component has only a single
covered attribute that is used for all instances of the component and for all time frames in the
unrolled design. In contrast different pseudo inputs are used for each instance and each time
frame. Figure 5 shows the structure of the SAT instanceS. The gate-level designDg is unrolled
for k time frames. Inputs, outputs and states of the circuit are not named in the figure to keep
the presentation simple. The gate-level propertyPg is denoted as a block below the unrolled
design. Covered predicates are given as primary inputsc1, . . . , cl on the left hand side. The
pseudo inputs for instancej of componenti at time framet are denoted bypt,j

i .
Then, in Line (7) of Figure 2 a constraint is added toS to ensure that at most one component

is changed. This additional constraint is shown on the right hand side in the structure of the SAT
instance. For each satisfying assignment ofS the covered components are added to the setC
(Lines (8,9)).



3.3 Discussion

The complexity of the proposed approach is similar to that of SAT-based BMC. This is due
to the construction. In the worst case two new variables are introduced per gate: the covered
attribute and a new input value. For efficiency no multiplexer is included in the SAT instanceS
as indicated in Figure 4, but only the implicationci → o′

i = oi. The effect is the same, but the
number of clauses and temporary variables is smaller.

All solutions SAT solvers have been proposed in [8, 12] that improve the enumeration of
all solutions for a SAT instance. Instead of calculating completely specified solutions cubes
that correspond to satisfying subspaces are enumerated. For this, satisfying assignments can be
“reduced”. But in the proposed approach blocking clauses consisting only of a single covered
predicate are added to the SAT instance to remove solutions. With this knowledge no time
consuming reduction of assignments is necessary.

As explained in Section 3.2 the proposed approach can be explained with respect to a fault
model. Here, a fault is the replacement of a component’s function by an arbitrary other function.
A component is covered when a single fault with respect to this fault model invalidates at least
one property. A large number of error models (e.g. gate-change errors, wire-change errors)
can be embedded into the present error model. While the simulation-based approach in [7] is
defined with respect to an arbitrary error model practical results are presented with respect to
the bit coverage error model which can also be embedded into the more general fault model
considered in this paper. Additionally, in [7] only a particular set of traces is considered to
calculate coverage information while the proposed approach considers any possible trace for a
given lengthk. Therefore the set of componentsC returned by the new approach proposed in
this paper is a superset of the covered components calculated by [7].

Based on this observation the current approach can also be seen as calculating an “upper
bound” for the set of covered components: a componentc is covered by propertyP , if changing
c in some way invalidatesP . Thus, it is calculated if under all possible changes ofc there is at
least one change that causes an error. A similar problem formulation can be used to get a “lower
bound” of the set of covered elements: a componentc is not covered byP , if there exists some
way to changec without invalidatingP . Thus, it is calculated if under all possible changes
there is at least one change that does not cause an error. As a result the set of components
that are not covered by any property is returned. But the transformation of this formulation
requires additional overhead to ensure that a component is really changed for a given satisfying
assignment.

These observations show questions for future research. Next, experimental results are pre-
sented to evaluate the approach.

4 Experimental Results

In this section results for a counter are presented in detail as an example. Then, experimental
data regarding run times and coverage information is reported. All experiments were run on an
AMD Athlon 64 3500+ machine (2.2GHz, 1GB, Linux).

The proposed methodology has been implemented in C/C++. For synthesis and identifica-
tion of components the Verilog frontend vl2mv that comes with VIS [18] has been modified.
The SAT-based tool for property checking and calculating coverage information is based on
induction similar to [16]. Zchaff [13] was used as the underlying SAT solver (Version of Nov.
2004).



(1) modulecounter (clock, reset_i,
start_i, modval_i, out_ro);

. . .
(2) always@ (posedge clock )
(3) begin
(4) if (reset_i==1RC) begin
(5) state_r = IDLERI ;
(6) out_ro = 0RL;
(7) high_r = 0R;
(8) end
(9) else begin
(10) state_r = state_rIC ;
(11) case(state_r)
(12) IDLE: begin
(13) out_ro = 0LI ;
(14) if (start_i==1I) begin
(15) high_r = modval_i;
(16) state_r = COUNT;
(17) end
(18) end
(19) COUNT:begin
(20) if (out_ro==high_rLC)
(21) state_r = IDLE;
(22) elseout_ro= out_r+1LC ;
(23) end
(24) endcase
(25) end
(26) end
(27) endmodule

Figure 6: Source code for the counter

pReset:
always(reset_i=1→ next(out_ro=0 &&
state_r=IDLE && high_r=0) )

pLower:
always( out_ro<=high_r→
next(out_ro≤high_r))

pCount:
always((state_r=COUNT &&
out_ro<high_r && reset_i=0)→
(next(out_ro)=out_r+1 &&
next(out_ro)≤high_r))

pIdle:
always((state_r=IDLE && out_ro<high_r)
→ (next(state_r=IDLE) || (start_i=1 &&
next(out_ro=0 && state_r=COUNT)))

pIdle’:
always((state_r=IDLE &&
out_ro<high_r)→
((reset_i==1 || start_i==0) &&
next(state_r=IDLE)) || (start_i=1 &&
next(out_ro=0 && state_r=COUNT)))

Figure 7: Properties for the counter

4.1 Counter

A simple counter is considered as an example. First, the counter is explained. Then, the cover-
age information resulting for some properties is discussed.

The Verilog source code of the counter is given in Figure 6. The coverage information an-
notated by underlining expressions is explained later. Input signals are marked by_i, registered
signals by_r and the registered output by_ro. The counter has a synchronous reset signal.
Upon receiving a start signalstart_i the counter starts counting up tomodval_i. While counting
the module is in stateCOUNT, otherwise it is in stateIDLE.

Four properties for this counter are shown in the PSL language [1] in Figure 7. For these
properties the coverage information was calculated for expressions and assignments only. The
results are marked in the source code. An expression covered by the propertypReset, pLower,
pIdleor pCountis underlined and the letterR, L, I or C, respectively, is annotated.

Consider the propertypLower. The property proves that the output value is always smaller
than the value given byhigh_r. One could assume, that this property also covers the transition
into the stateIDLE in Line (21). But this is not the case.

Moreover, while the properties cover the operations that are carried out in the two states, the
transitions are not covered. This is obvious for the transition in Line (21), because this is not
reflected by any property. It is more difficult to understand that the transition toCOUNTin Line
(16) is not covered. On first sight, the assignment seems to be covered by propertypIdle. But
changing Line (16) tostate_r= IDLEwould not invalidate the property – the property would be
fulfilled due to the first part of the proof obligationnext(state_r=IDLE). In contrast the property



PC cov. modules cov. expressions all
D loc P k time time # #m. % time # #m. % time # #m. %
counter 47 pReset 2 <1 <1 1 1 100 <1 12 4 33 <1 20 5 25

pIdle 2 <1 <1 1 1 100 <1 12 3 25 <1 20 3 15
pCount 2 <1 <1 1 1 100 <1 12 4 33 <1 20 10 50
pLower 3 <1 <1 1 1 100 <1 12 4 33 <1 20 5 25

heap 150 pLT4 3 <1 <1 1 1 100 <1 64 6 9 <1 104 10 10
pFull7 7 1 9 1 1 100 11 64 13 20 12 104 15 14
pFull8 8 <1 14 1 1 100 13 64 13 20 17 104 15 14
pFull9 9 2 23 1 1 100 18 64 13 20 20 104 15 14
pEmpty 7 <1 8 1 1 100 9 64 7 11 10 104 8 8
pNoError 50 1801 1576 1 1 100 3748 64 48 75 8117 104 79 76

Table 1: Experimental results for individual properties

pIdle’ covers the assignment due to the more accurate description of theIDLE state. This allows
the counter only to remain in stateIDLE upon a reset or when not receiving a start-signal.

In summary the proposed technique automatically identifies parts of the source code that are
not covered in the example.

4.2 Experimental Data

More experimental data is reported in Table 1. The columnsD, loc, P , andk report the name
of the design, the number of lines in the Verilog code, the property, and the number of time
frames the circuit was unrolled, respectively. Then, the run time for property checking is re-
ported. Next, coverage information for the module level (cov. modules), for expressions and
assignments (cov. expressions), and finally for all components (all) is reported. In all cases
the run time, the number of identified components (#), and the number of marked components
(#m.) are given. All run times are measured in CPU seconds.

The run times are always negligible when the counter is considered. But it can be seen,
that the number of covered components increases when a finer granularity is chosen. The same
is true for the heap. The run time usually increases for finer granularities due to the growing
search space when more covered attributes are introduced.

A similar behavior can be expected in general. The finer the granularity the more compo-
nents are covered, but at the same time the percentage of covered components decreases.

5 Conclusions

In this work we presented an efficient method to calculate coverage information in the context of
BMC. The method is complete in the sense that all input assignments and states are considered
to calculate coverage information for a given property. The level of granularity for the coverage
information can be chosen by the user. An example and experimental data show the practical
relevance of the approach. The current formulation returns an upper bound of the set of covered
components. A problem formulation to calculate a lower bound has also been presented.

In future work the relation between the formulations for calculating upper bound and lower
bound will be analyzed in detail. Especially, the two approaches will be compared to approaches
based on more restrictive error models as the one presented in [7]. Another issue is the adoption
of problem specific heuristics to improve the calculation speed when larger benchmarks are
considered.
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