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Abstract. Correct input/output behavior of circuits in presence of in-
ternal malfunctions becomes more and more important. But reliable and
efficient methods to measure this robustness are not available yet.

In this paper a formal measure for the robustness of a circuit is intro-
duced. Then, an algorithm to determine the robustness is presented. This
is done by reducing the problem either to sequential equivalence check-
ing or to a sequence of property checking instances. The technique also
identifies those parts of the circuit that are not robust from a functional
point of view and therefore have to be hardened during layout.

1 Introduction

The number of safety critical applications that rely on integrated circuits is
growing, e.g. “stear-by-wire” in cars or important control functions in planes.
The functional correctness of these circuits is certified by massively applying
simulation-based as well as formal verification methods.

At the same time the number of components integrated in a single circuit
grows rapidly according to Moore’s Law. Meanwhile the physical area occupied
by a single component shrinks continuously. As a result a circuit that is func-
tionally correct becomes sensitive to faults that occur after production during
in-field application. Among such faults are transient malfunctions due to envi-
ronmental radiation that cause Single Fvent Upsets (SEU) or static faults caused
e.g. by electro-migration due to aging of the material.

Architectural measures are already applied during circuit design to ensure
that malfunctions of individual components do not impact the functional cor-
rectness. Instead the malfunction is signaled while the input/output behavior
is consistent with the original specification. A simple technique to achieve such
robustness is the redundancy of functional components. Fault tolerant codes are
more sophisticated.

A symbolic approach to analyze the reliability of circuits has recently been
introduced in [1]. Outcome of the analysis is a probability for faults in the output
response of the circuit. Hints to identify internal structures of the circuit that
are not robust are not provided.

Simulation-based validation techniques are commonly used to ensure that the
circuit fulfills the specification even in presence of malfunctions. These malfunc-
tions are injected into the internal structures of the circuit. Then, simulation
shows whether the malfunction propagates faults to the outputs. To improve



the coverage of the state space, emulation techniques can be applied [2]. But
these techniques are incomplete in the sense that not all states of the system can
be covered. States that cause faulty behavior when a malfunction occurs may
remain uncovered.

On the contrary, the application of formal methods proves that any malfunc-
tion in any state of the system under any input sequence (1) is detected and (2)
does not cause erroneous input/output behavior. First approaches for such tech-
niques were proposed in [3,4]. Both methods apply tools for formal verification
as a “black box”. To prove the robustness of a circuit with respect to a given
fault model, each individual fault has to be injected by applying a mutant to the
circuit description. The resulting faulty circuit is then formally verified against
the correct circuit. Therefore in both cases an explicit enumeration of all possi-
ble faults is necessary, which is not feasible to capture multiple faults occurring
at the same time. Moreover, the set of faults covered by the methods is limited
by the mutants that are applied. The method proposed in [3] only returns a
“yes” or “no” to the question whether the circuit is robust with respect to a
particular fault. Additionally, [4] determines the percentage of “robust states”
of the system. Unfortunately, none of the answers is very helpful when trying
to identify the parts of the circuit where the robustness has to be improved by
architectural changes or by hardening the physical circuit structures [5].

Here, a formal approach is presented to implicitly consider all faults with
respect to three formally defined fault models. The proposed algorithm deter-
mines those locations in the circuit where the fault tolerance has to be improved.
For each location that is not robust, a particular fault and a simulation trace
that excites the faulty output response can be calculated. Moreover, the robust-
ness of a circuit with respect to a given fault model is formally defined. When
100% robustness are achieved, no fault of the given fault model has an impact
on the input/output behavior of the circuit. The calculation of the robustness
measure is reduced to sequential equivalence checking. On the basis of formal
methods, the process to implicitly consider all faults is explained. A solver for
Boolean Satisfiability (SAT) is applied as the proof engine. The basic technique
has some similarities to SAT-based diagnosis as introduced by [6]. Finally, tech-
niques to improve the performance of the algorithm are presented and discussed.
The practical applicability is shown by empirical studies.

This paper is structured as follows: The preliminaries are briefly discussed in
the following section. Next, the notion of robustness is introduced together with
the appropriate fault models in Section 3. The approach to implicitly consider
all faults according to a given fault model is presented in Section 4. A reduction
to a sequence of model checking instances and other techniques to improve the
performance are proposed in Section 5. First experimental results are reported
in Section 6. Finally, the work is summarized in the last section.



2 Preliminaries

In the following circuits are considered. A circuit C consists of a set of compo-
nents. Among these are primary inputs, primary outputs, state elements and
internal combinational components g € C. A Boolean function is associated with
each internal component. A single gate, a module or a Register Transfer (RT)
level expression may correspond to a component. The structure of the circuit is
defined by a graph. In particular, this graph uniquely provides predecessors and
successors of a component.

The size of the circuit is given by the number of components, i.e. by |C|. A
part of a circuit is a subset S C C of the components, the size of which is given
by |S].

The input/output behavior of the circuit emerges from the composition of
components and their functionality. Starting from a defined initial state, that
is reached by a reset sequence, a particular input sequence leads to a unique
output sequence [7].

For the manipulation of Boolean functions there exist different techniques.
Among these are Binary Decision Diagrams (BDDs) [8] or SAT provers [9, 10].
In this work SAT provers are applied. The transformation of a circuit into a SAT
instance requires runtime and memory resources linear in the size of the circuit
[11,12]. The decision whether a SAT instance is satisfiable is NP-complete [13].
Nonetheless, modern SAT solvers solve very efficiently problem instances derived
e.g. during formal verification or test pattern generation [14,15,10].

3 Measuring Robustness

Fault models are introduced in this section and motivated by faults of practical
relevance. Then, a formal measure of robustness is defined with respect to the
fault models.

3.1 Fault Models

Several types of faults occur that change the functionality of circuits during in-
field application. These faults can be grouped in transient faults, e.g. so called
SEUs caused by radiation, and static faults, e.g. due to electro-migration pro-
cesses. To differentiate the robustness of a circuit with respect to these realistic
types of faults, appropriate fault models are introduced in the following.

Definition 1. A circuit C and a part S C C of this circuit are given.

1. Injecting a fault according to the non-deterministic fault model Fn, means
to replace the outputs of a component g € S by new primary inputs.

2. Injecting a fault according to the combinationally deterministic fault model
Fc, means to replace a component g € S by a new combinational subcircuit
that has the same successors as g.



3. Injecting a fault according to the locally deterministic fault model Fy,, means
to replace a component g € S by a new combinational circuit that has the
same predecessors and successors as g.

Remark 1. Note that the sequence of fault models Fn, Fc and Fr imposes an
increasing number of constraints onto the functional modification of the circuit.
For example, each faulty output response that can be achieved by injecting a
fault according to F¢, can also be created by injecting a fault according to Fn
— but not vice versa.

The fault models correspond to different realistic fault types. For example, SEUs
can be modeled as non-deterministic behavior defined by Fy.

In the following the set Ce s 7 n denotes the set of all circuits that can be
derived from circuit C by injecting N faults according to fault model F into the
part S C C.

3.2 Definition

A circuit is called robust if no fault changes the input/output behavior. Nonethe-
less, for example a SEU that occurs at a primary output of a circuit may in-
evitably modify the output response of the circuit. To avoid this, individual parts
of a circuit can be hardened during fabrication, e.g. by using larger structures
to realize the components. But this kind of robustness cannot be captured on a
Boolean model of the circuit without layout or mapping information. Therefore
a more sophisticated definition of robustness that can be applied to parts of the
circuit is necessary.

Moreover, in some cases robustness with respect to single faults may not be
sufficient, because even a local phenomenon may cause a malfunction of multi-
ple components. Therefore the notion of robustness is defined with respect to
multiple faults as well.

Both aspects — the consideration of parts of a circuit and multiple faults —
are covered by the following definitions.

Definition 2. A circuit C, a fault model F and an integer N > 1 are given.
A part S C C of C is called (F, N)-robust if no injection of N faults into S
according to F changes the input/output behavior of C.

On this basis a formal measure for the robustness of a circuit C for N-
fold faults with respect to a fault model F can be given. Using the largest
(F, N)-robust part S of the circuit is in general not sufficient in presence of
multiple faults because some other part 7' that is not (F, N)-robust may share
components with S. Therefore the largest part S of C is determined that does not
have a component which occurs in an N-fold fault that changes the input/output
behavior of C. This is formalized by the following definition.



Definition 3. A circuit C, a fault model F and an integer N > 1 are given. The
(F, N)-robustness of C is given by Ry n = %, where S is a mazimal subset of

C such that forall T CC if
SNT #band|T| <N

then
T is (F,|T|)-robust

Remark 2. The robustness of a circuit with respect to a given formal property
can be defined analogously. Accordingly, the algorithm that is introduced in
the next section can by applied to calculate the robustness with respect to a

property.

4 Calculating Robustness

4.1 Reduction to Sequential Equivalence

The calculation of the robustness of a circuit can directly be mapped to sequen-
tial equivalence checking.

Theorem 1. A circuit C and a set of faulty circuits Ce s, 7 N are given. A part
S is (F,N)-robust if and only if each circuit C' € C is sequentially equivalent to
C.

Despite the direct mapping of state elements between faulty circuit and orig-
inal circuit, a simple reduction to combinational equivalence is not possible in
general. A fault may change the state transition function without impact on
the input/output behavior. Moreover, the number of derived faulty circuits is
very large. Therefore an enumeration of all these circuits would be too time con-
suming. For this reason an algorithm to consider all faulty circuits in a single
instance of Boolean Satisfiability is presented in the following.

4.2 TImplicit Enumeration of All Faults

The proposed approach borrows ideas that were originally proposed for diag-
nosis based on Boolean satisfiability [16, 17]. During diagnosis a modification of
the circuit is needed that allows to correct faulty behavior. In the context of
robustness checking, a modification that causes incorrect behavior is required.

Initially, the approach is explained at hand of fault model Fn and then
extended to handle the other fault models. The creation of the SAT instance is
explained in terms of a circuit that is transformed into conjunctive normal form
afterward.

Figure 1 shows the overall flow in pseudo code. The algorithm determines
the robustness of a circuit C with respect to fault model F and N-fold faults
as described in Section 3.2. For this purpose at first all non-robust parts up to
size N are determined, collected and then S is calculated. First a copy C’ of C is



1 | function largestRobustPart (C, F, N, tmax)
2 create a copy C' of C;

3 foreach component g€ C do

4 replace g by g'lg, fo, 7l

5 done;

6 for t=1...tmax do

7 unroll €' and C for t cycles;

8 force at least one pair of POs to different values;
9 convert to SAT instance;

10 for k=1...N do

11 constrain Y fq =k;

12 while (satisfiable) do

13 G ={glf, == 1}

14 T:=TUG,;

15 add constraint V .,(fs ==0);
16 done;

17 done;

18 done;

19 S:=C\T;

20 return §S;

21 |end function;

Fig. 1. Algorithm to determine robustness

created (line 2). As shown in Figure 2 a fault predicate f, is associated with each
component g € C' (lines 3-4). If f, == 1, the function of g is modified; otherwise
g behaves as in the fault free case. In the next step, the sequential equivalence
check of C' and C is performed. For this purpose both circuits are “unrolled” for
t time steps (line 7). The fault predicate of each component remains the same
for all time steps. Moreover, a difference at least at one pair of primary outputs
of the two circuits is enforced (line 8). The result is illustrated in Figure 3. The
problem instance created by this algorithm is only satisfiable if the modification
of a component causes different output responses of the circuits. If in-equivalence
cannot be shown, the number of time steps considered is increased up to tmax
(line 6). To guarantee that all components are calculated the modification of
which causes faulty behavior, t,.x has to be at least equal to the maximal
sequential depth of a product automaton of C and € € Ce.s.7.n .

Now, by calculating all satisfying assignments (lines 10-17), all components
are determined that cause faulty behavior when modified according to Fn. Ad-
ditionally, the number of fault predicates set to 1 is restricted to at most k (line
11) and iteratively incremented to N (line 10) to calculate all non-robust sub-
circuits up to N-fold faults. These non-robust components are joined into the
set T (line 14). The complement set of T with respect to C yields the set S of
Definition 3 (line 20).

The algorithm presented so far is restricted to the fault model Fy. This
results from the modification of a component g as shown in Figure 2. In the
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Fig. 2. Modification of a component
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Fig. 3. SAT instance

faulty case f, == 1, the component g may behave non-deterministically like a
primary input. For fault models F- and F7, additional constraints are necessary
that force g to behave deterministically.

For fault model F¢ this means in more detail: If the assignment of state bits
and primary inputs in time step ¢ is equal to that in time step ¢’ then the output
value of g has to be identical in both time steps.

For fault model F;, deterministic behavior is only required with respect to
the direct predecessors of g.

The following theorem is the result.

Theorem 2. A circuit C, a fault model F and a positive integer N are given.
Furthermore let S :=largestRobustPart(C, F, N, tmax). The circuit C has a

robustness of Ry n = % if tmax 18 larger or equal to the sequential depth of the
product automaton of C and C'.

5 Discussion

Sequential equivalence checking needs a large amount of resources regarding time
and memory. Therefore several methods are presented in this section to improve
the efficiency of the calculation.



5.1 Reduction to Property Checking

The functionality of a circuit can be exploited to significantly reduce the com-
plexity of the calculation of robustness. Often a fault tolerant circuit includes
logic to signal the occurrence of an internal malfunction. After discovering the
first malfunction, either external actions can be taken to return the circuit into
a fault free state (e.g. by restarting the system in case of transient faults) or
the circuit is replaced (in case of static faults). This functionality can be in-
strumented to prevent the need for sequential equivalence checking. Instead, an
inductive proof is applied that consists of multiple formal properties. Each in-
dividual property only argues over a few cycles. The base of this proof is an
invariant that describes the fault free state of the system. The robustness of the
circuit is then calculated with almost the same algorithm as introduced above.
Instead of the fault free circuit, the property is used as the reference to model
correct behavior. The only disadvantage of this approach is that it is not fully
automatic. The properties and, especially, the invariant (to avoid reachability
analysis) have to be determined manually for each circuit.
The inductive proof is structured as follows:
1. Precondition:
Starting from the initial state, the system state is captured by an invariant
Inv in the fault free case.
2. Step:
The assumption is that no fault occurred so far, i.e. the invariant Invis valid.
Then, a case split is done for the fault free and the faulty case.
(a) There occurs no fault.
A property proves that the circuit transitions from a fault free state into
another fault free state and that the logic for fault detection does not
signal a malfunction, i.e. the invariant Inv is verified.
(b) A fault occurs.
A property proves that a transition into a state that is unreachable if no
fault occurs is recognized by the fault detection logic, i.e. if the invariant
Inv becomes invalid, the occurrence of a fault is signaled.

The precondition and case (a) of the induction step are proven by a traditional
property checker. Only step 2.(b) requires the modeling technique presented in
Section 4.

The inductive proof prevents reachability analysis for faulty circuits. Only
the proof has to be carried out that any transition into an in the fault free
case unreachable state is detected. The number of time steps that have to
be considered depends on the functionality of the fault detection logic. In the
simplest case, each occurrence of an unreachable state is detected immediately.
Then the consideration of a single time step is sufficient.

5.2 TImproving the Efficiency

The algorithm presented so far is complete but the complexity of the sequential
equivalence check or the property check under fault assumptions is quite high.
Therefore methods are proposed in the following to improve the efficiency.



Analogously to automatic test pattern generation or formal verification other
engines besides a SAT prover can be assembled to solve the problem. The simu-
lation of random stimuli and fault simulation can be applied to determine those
components that may cause a deviation from the specification. Such components
do not have to be handled afterward, i.e. no fault predicates f, have to be as-
signed to these components since they are already classified as being non-robust.
This reduces the search space. Moreover, this way an upper bound for the ro-
bustness of the circuit is determined because some of the components that are
non-robust are identified but not all of them.

Additionally, a combinational equivalence check can be applied to rule out
those components that definitely cannot cause a deviation from the specifica-
tion. For this purpose a combinational equivalence check is applied instead of
the sequential one. Components that can be modified without changing the state
transition function or the output response in this case, do not have to be consid-
ered in the sequential equivalence check any more. As a result a  often coarse

lower bound for the robustness is calculated.

Another improvement in efficiency can be achieved by exploiting the struc-
ture of the circuit. Initially, faults are only injected into state bits. Only if a
modification of a state bit may cause an incorrect output response the preced-
ing combinational logic has to be considered at all. Moreover, in this case the
combinational logic only has to be modified in a way to reach the faulty state
that was determined previously the propagation of the fault does not have to
be considered any more. In a similar way as proposed in [18] the hierarchical
structure of the circuit can be exploited to analyze modification of coarse mod-
ules at first and only consider the fine grain structure of those modules that are
not robust.

Finally, instead of calculating the exact robustness, the determination of an
upper bound for Rx n is possible. For this purpose tpnax is set to a smaller value
than the sequential depth of C and € € Ce s 7 n. In practice this works for most
cases.

6 Experimental Results

In the following several robust and non-robust circuits are considered. All ex-
periments are carried out with respect to the fault model Fp. All run times are
measured on an AMD Athlon 64 3500+ with 1GB running Linux.

Results for the reduction to sequential equivalence checking are presented in
Table 1. The (Fn, 1)-robustness of the circuits is determined. For this purpose
tmax was not determined analytically. Instead the fixed values 5, 10 and 15 were
considered. The influence of ¢,,ax on the run time is shown for one example. Be-
sides the value of .y the table shows the number of components (#comp), the
number of state bits (#FF) and gates (#gt) in the complete problem instance.
Furthermore the number of components in the faulty circuit C' (|C'|) as well as
run times in CPU seconds for a “standard” sequential equivalence check (sec)



Table 1. Run times for sequential equivalence checking for N =1

total faulty
C tmax|Ftcomp|#FF| #gt ||C']| sec | rsec |Rzy .1
s1269 ) 624 74 11043(308|27,0s| 88,4s 5%

r_s1269 5 | 1948 | 244 |6514|970|14,8s|19185,3s| 98%
rCounter| 5 146 | 122 {1505 70 | 0,2s | 2,8s 97%
rCounter| 10 | 146 | 122 |1505| 70 |2,2s | 21,7s | 97%
rCounter| 15 | 146 | 122 [1505| 70 |13,3s| 195,7s | 97%

Table 2. Run times for the inductive approach

step
C |C||#FF |#gt| prec. |case (a)|case (b)|Rzry 1
rCounter|79| 25 [370|<0,1s| <0,1s 0,2s | 100%

and the calculation of robustness using sequential equivalence checking (rsec)
are given. The robustness (Rz, n) of the circuit is shown in the last column.

As can be expected the ISCAS89 benchmark circuit s1269 is not very robust
yielding a robustness value of 5%. The second variant r_s1269 of the circuit using
Triple Modular Redundancy (TMR) is significantly more robust. The output
values are determined by taking the majority of three instances of the circuit.
Only faults in non-redundant parts of the circuit (e.g. the reset logic) may cause
incorrect behavior. As a result a robustness of 98% is achieved.

The circuit rCounter is a counter with TMR, again three counters are in-
stantiated and the majority determines the output value. Instead of gates, ex-
pressions on the RT-level were considered as components for this circuit. If the
internal value of one instance deviates, a fault is signaled. Therefore a deviation
from the specification is detected immediately for single faults. As a result the
circuit is (Fn, 1)-robust. Again, some parts of the circuit are not redundant.
Therefore the robustness is below 100%.

In comparison to the standard sequential equivalence check, the calculation
of robustness is significantly more time consuming. This is due to the larger
number of primary inputs that yields a large search space. Especially, the exam-
ple rCounter shows that increasing the value of #,,,x causes a drastic increase in
run time. In particular the maximal sequential depth of the product automaton
of fault free circuit and faulty circuit cannot be met to determine the exact ro-
bustness. For this purpose an improvement of the efficiency of the technique is
necessary.

In case of rCounter this can be done by reducing the problem to property
checking and exploiting the fault detection logic. The experimental results are
shown in Table 2. The size of the circuit is slightly increased (79 instead of 70
components) because now the logic for fault detection is also considered. Besides
the data given above already, the run times for the three parts of the inductive
proof are shown. Only a single time step had to be considered, as any deviation
of the internal states of the three counters is detected. As a result a drastic



reduction of the run time is achieved. Even the sum of the run times for all three
steps is clearly below one second. A robustness of 100% is achieved because a
fault in the reset state is not modeled. Due to single faults either the output
value is correct or the logic for fault detection functions correctly.

Overall measuring robustness by implicitly enumerating all faults is possible.
A significant improvement of the efficiency is achieved by reducing the problem
to a sequence of property checking instances.

7 Summary

An approach to automatically calculate the robustness of circuits was proposed.
A fully automatic method can be established when reducing the problem to
sequential equivalence checking. The run time to calculate the robustness is
significant in this case. Therefore methods to improve the efficiency have been
proposed. In particular, the problem can be reduced to property checking. The
method is only semi-automatic in this case, because the corresponding properties
have to be created manually. But as an advantage a drastic reduction of the run
times is achieved.

Future work involves further improvements in efficiency on the algorithmic
level and a thorough investigation of the other fault models.
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