Experimental Studies on SMT-based Debugging

Andre Silflow

Gorschwin Fey

Rolf Drechsler

Institute of Computer Science
University of Bremen
28359 Bremen, Germany
{suelflow,fey,drechsle} @informatik.uni-bremen.de

Abstract

SAT-based debugging is a method to automate the de-
bugging process that works quite well on the Boolean level.
But on circuits with large arithmetic structures the under-
lying SAT solver — a Boolean proof engine — often does not
finish within the required resource limits. Thus, new solving
techniques are required to overcome the gap. Solvers for
Satisfiability Modulo Theory (SMT) provide a higher level
of abstraction by combining SAT with theory solvers on the
word level. This allows compact handling of many hard-
ware components.

In this work we focus on debugging with SMT, i.e. SMT-
based debugging. An evaluation on combinational and se-
quential models on RTL is given. For more than 90%
of the instances our experimental studies show significant
run time improvements of SMT-based debugging over SAT-
based debugging.

Keywords: Debugging, Boolean Satisfiability (SAT),
Satisfiability Modulo Theory (SMT)

1 Introduction

The complexity of circuit designs increases rapidly and
requires efficient automation tools throughout the design
process. Verification is one of today’s major bottlenecks.
Efficient methods based on e.g. simulation or formal veri-
fication can show faulty behavior, but the detection of fault
candidates is often still a manual, time consuming process.

Semi-automatic debugging methods have been devel-
oped and rely e.g. on simulation or on structural similari-
ties in combination with manual post-processing. An initial
automatic approach based on Boolean Satisfiability (SAT)
was proposed in [25]. Given a failure trace, the approach
automatically returns a set of fault candidates, i.e. locations
where the actual fault may be corrected. Additionally, SAT-
based debugging provides assignments for the fault candi-

dates that resolve the conflict. This can be used for auto-
matic correction [8].

Today, SAT-based debugging approaches usually rely on
a gate level representation. That is, a Register Transfer
Level (RTL) description of a circuit is translated into a gate
level representation, extra logic is added for debugging and
the problem instance is given to a SAT solver to obtain a so-
lution. Especially for circuits with many arithmetic compo-
nents, like e.g. multipliers, the complexity for SAT solving
increases. To overcome this, the basic SAT-based debug-
ging approach has been improved by considering e.g. hier-
archical information [15, 16], abstraction [24], maximum
satisfiability [23] and proofs of unsatisfiability [26]. But in
all these cases the SAT solver as a Boolean reasoning en-
gine remains the bottleneck. Run time remains a crucial is-
sue. Thus, there is a need for improvements to handle large
circuits.

In recent years solvers for Satisfiability Modulo Theory
(SMT) were developed and very successfully applied for
formal verification of software. The application of SMT to
software verification problems leads to smaller run times in
particular for large models [1, 2]. SMT solvers internally
handle more abstract constraints, e.g. multiplication can di-
rectly be represented without transforming the integer prob-
lem to the Boolean level. Internally, SMT solvers provide a
mixture of theory solving in combination with SAT solving.
A SAT solver obtains a solution for an abstract formula, that
is checked with a theory solver. Different theories can be in-
stantiated and in particular the bit-vector theory is suitable
for modeling hardware. By this, additional high level infor-
mation of a model is available within the solving process.
Using these improvements for hardware at the RTL is very
promising.

General studies on the application of SMT to formal
hardware verification problems show the potential as future
solving technique [27]. In this work an evaluation of SMT
in the context of debugging on RTL is given, i.e. SMT-based
debugging.



In experimental studies combinational and sequential
RTL models are considered. For the benchmarks SMT-
based debugging outperforms SAT-based debugging in over
90% of the instances.

The paper is structured as follows: In Section 2 the solv-
ing techniques SAT and SMT are introduced. An overview
of SAT-based debugging is given in Section 3. Section 4
describes and discusses the model for SMT-based debug-
ging. The experimental studies are presented in Section 5.
Finally, Section 6 concludes the paper.

2 Proof Engines

The recent advantages in SAT solving led to new meth-
ods and tools for formal hardware verification. But,
Boolean SAT solving reaches its limit for verification of
circuits with large arithmetic structures. Arithmetic circuits
are known to be a hard problem for pure Boolean SAT and
the verification run time increases significantly. Therefore
there is a need for new solving techniques on higher lev-
els of abstraction. At the same time a fully automatic proof
without user interaction is required — which is typically not
true for theorem provers.

In the following we give an overview of today’s state-of-
the-art solving techniques SAT and SMT and compare both
techniques in the context of formal verification on RTL.

2.1 Boolean Satisfiability

In the last years several improvements in Boolean Satis-
fiability (SAT) have been developed and led to strong SAT
solvers [21, 13]. Thus, today SAT solvers are widely ap-
plied in formal hardware verification.

The Boolean Satisfiability problem (SAT problem) is to
decide whether an assignment for a Boolean function f :
{0,1}™ — {0, 1} exists, so that f evaluates to 1. If there
exists such an assignment, the instance is called satisfiable,
otherwise unsatisfiable.

Most SAT solvers rely on the DPLL algorithm [9] ex-
tended by conflict analysis [21]: (1) assign values to free
variables, (2) determine and propagate implications and (3)
analyze conflicts and backtrack.

Normally, the input function f is given in Conjunc-
tive Normal Form (CNF). Therefore, each component of
a circuit, e.g. gates (AND, OR) or arithmetic components
(ADD, MUL), is translated to CNF. A CNF contains clauses
and each clause consists of literals where a literal is a vari-
able or its negation. A CNF is satisfied if there exists an
assignment for the variables that satisfies each clause. A
clause is satisfied if at least one literal is 1. The SAT solver
has to find a satisfying assignment or to provide a proof that
no such assignment exists.

2.2 Satisfiability Modulo Theory

Satisfiability Modulo Theory (SMT) can be seen as SAT
solving on a higher level of abstraction. The satisfiability
problem is defined on a set of variables and constraints are
given on word level instead of Boolean level.

Variables may be a Boolean predicate, a variable with a
fixed bit-width or an uninterpreted function. Among oth-
ers types, Boolean constraints (e.g. AND, OR), arithmetic
constraints (ADD, MUL), as well as relations (e.g. <, >)
are supported. Together with a set of assumptions and for-
mula(s) the problem is to find an assignment for the vari-
ables, that fulfills all constraints.

The general SMT algorithm is a combination of the en-
hanced SAT DPLL algorithm [21] with a theory solver re-
sulting in DPLL(T’) [19, 11]. In general, (1) a SAT solver
is called to get a (partial) non-conflicting assignment on the
Boolean abstraction, followed by (2) checking the consis-
tency of the theory constraints using a theory solver. If the
theory solver determines a conflict, the theory solver prop-
agates the conflict to the SAT engine. Otherwise the assign-
ment is legal and a satisfying assignment was found. Often
an SMT solver provides a proof for the unsatisfiability, if no
satisfying assignment exists.

The common SMT input format [22, 3] defines sev-
eral theories, e.g. for linear arithmetic (QF_LIA), bit-
vector (QF_BV) or arrays in combination with bit-vectors
(QF_AUFBYV). In this work we focus on the most suitable
theory for circuit elements: Quantifier free bit-vector the-
ory (QF_BV). QF_BYV provides support for logic operations
(e.g. AND, OR, XOR) as well as arithmetic (e.g. ADD,
MUL, DIV) and control statements (e.g. ITE). Therefore
each element of a combinational RTL circuit directly corre-
sponds to a primitive in QF_BV.

Today, the state-of-the-art SMT solvers for QF_BV [6,
10, 18, 5, 12] benefit from the given high level information
in the model. That is, a preprocessing step simplifies the
model by using term rewriting or abstraction. If this leads
to a conflict, the instance is proven unsatisfiable. Otherwise
“bit-blasting” is applied. The model is passed to a standard
SAT solver (e.g. [13]) to determine the simplified instance
satisfiable or unsatisfiable.

3 Debugging with SAT

In the following the basics of SAT-based debugging on
combinational and sequential circuits are presented. The
debugging approaches use a faulty circuit and one or more
counterexamples (failure traces) as input. Each counterex-
ample contains additional information on the expected be-
havior, e.g. the expected values on the primary outputs or a
failing property that has to be fulfilled. For more details on
the debugging algorithm we refer to [25] and for property
debugging to [17].



Figure 1. Correction logic
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Figure 2. Combinational Debugging

First, the circuit is divided into components. Compo-
nents are possible fault candidates and the choice controls
the granularity of debugging. Typical choices are gates or
expressions, but also hierarchical or structural information
are taken into account [15, 16]. For each component addi-
tional correction logic is inserted to change the output be-
havior of a component (see Section 3.1). Afterwards the
debug SAT-instance is created for a given a set of failure
traces (see Section 3.2) or a property and a counterexample
(see Section 3.3).

3.1 Correction Logic

To automatically debug the cause of faulty behavior, for
each component extra correction logic is inserted that al-
lows the component to behave non-deterministically. The
original function F, of a component C is replaced by F as
shown in Figure 1. The select line of the multiplexer con-
trols F!: if S, is zero, then F! = F,, otherwise F. = R..
S, is also called abnormal predicate. R, is a free variable
and can have any value, in particular, R. may be a Boolean
as well as a multi-bit signal.

3.2 Combinational Circuit Debugging

The approach requires a model of the circuit, a set of
failure traces and a set of correct output responses. This
information is provided e.g. by formal equivalence checking
or by a failing simulation trace from a test bench.

Given a combinational circuit C, a set of failure traces
Xi,...,X,, and a set of corresponding correct output re-
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Figure 3. Property Debugging

sponses O1, ..., O,,, the SAT instance is created as in Fig-
ure 2 [25]: For each failure trace the circuit is replicated, the
correction logic is added, the failure trace is applied on the
input signals and the correct output values are constrained.
The same abnormal predicate is used for a component over
all replicated instances. That is, if an abnormal predicate
of a component is activated, the component behaves non-
deterministic in all replicated instances simultaneously.

The total number of activated abnormal predicates is lim-
ited to k. Limiting k to zero, i.e. no correction is allowed
on any component, leads to an unsatisfiable instance due to
forcing correct output responses. While the SAT instance is
unsatisfiable, k is incremented by 1. If the activation of k
abnormal predicates leads to a satisfying assignment, then
all fault candidates are extracted. For each satisfying assign-
ment, i.e. each fault candidate, a blocking clause is added to
the SAT instance. The algorithm terminates if the instance
becomes unsatisfiable and each fault candidate with mini-
mal cardinality k£ is extracted.

The extension to the sequential problem is straightfor-
ward: the circuit is unrolled and the same abnormal pred-
icate is used for a component in all time steps and for all
replicated instances.

Several techniques to improve the efficiency of the basic
approach have been proposed (see Sectionl), but the under-
lying model essentially remains the same.

3.3 Property Debugging

If property checking [4] fails, not only a counterexample
is provided, but also the specification for the correct output
response is given: the property. Instead of constraining each
output directly to correct values, the property describes the
desired relation between a set of signals.

The problem instance for debugging properties is a mix
of the one for SAT-based bounded model checking [4] and
sequential SAT-based debugging. From a given faulty cir-
cuit C, a property P of length ¢ and a counterexample
the debug instance is created (see Figure 3) [17]. The
circuit is unrolled for ¢ time steps and the state variables
S1,..., St are connected to the corresponding state vari-



ables N°, ..., N*=!. For each component the correction
logic is added and the same abnormal predicate is used for
a component at all time steps. Afterwards the property is
connected to the unrolled instance.

A given counterexample contains primary inputs
I°, ..., It and the initial state S°. For the debugging pro-
cess, the values of the primary inputs and initial states are
constrained on the SAT instance. By forcing the output p to
fulfill the property and k to zero the SAT instance becomes
unsatisfiable.

As in combinational debugging the algorithm incremen-
tally increases k£ and computes the fault candidates with
minimal cardinality.

4 Debugging with SMT

This section focuses on the application of SMT solvers
to the debugging problem. A presentation of the debugging
instance for SMT is given and possible benefits of the higher
level of abstraction are highlighted.

In general, the model of Section 3 is adopted for SMT-
based debugging without modifications: A debug instance
is created by translating the circuit to SMT, adding extra
correction logic and limiting the number of abnormal pred-
icates to k. Afterwards an algorithm increments k until a
satisfiable solution is obtained and the fault candidates are
extracted. But, as shown in the following, debugging on
SMT level has additional advantages over SAT.

4.1 Debugging Instance

Without loss of information, all RTL constructs of a de-
bugging instance are translatable one-to-one to the SMT in-
put format [22, 3]. Obviously, the number of SMT con-
straints is far less than the number of clauses in SAT [27].
That is, a multiplier of width n is compactly represented by
one constraint (bvmul), two n-bit input variables and one
n-bit output.

The representation of the correction logic in SMT is
more compact, too. In Figure 4 the correction logic for
a component with an output of bit-width three is shown.
Instead of creating three single-bit multiplexers as in SAT,
only one constraint is required for a component with a three-
bit output. Similar to hierarchical debugging the outputs of
a component are combined to one output [15, 16]. The hier-
archical information is naturally given by the design and no
extra structural analysis has to be done. Like in SAT-based
debugging more complex modules, like e.g. an encoder or
decoder, in the system may also be used as components in
SMT debugging.

The efficient formulation of cardinality constraints in
SAT has been studied intensively, e.g. recently in [14]. Dif-
ferent ways to transform these constraints may lead to dras-
tically different sizes of the resulting CNF representation.
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Figure 4. Multiple bit correction logic for SAT
and SMT

Moreover, the transformation has a side-effect on the per-
formance of the implication engine. Some of these argu-
ments can directly be transferred to the SMT domain. In
our application, the limitation constraint structure is taken
from a Binary Decision Diagram (BDD) [7] that is mapped
to Boolean multiplexer constraints. That is, the overhead in
terms of constraints and clauses is similar in SAT and SMT.
Alternative approaches use e.g. adders [14]. But, for a large
number of abnormal predicates many adders with a large
bit-width are required. Due to this overhead, this represen-
tation is not considered here.

4.2 Discussion

SAT was shown to be very powerful for circuits given
on pure Boolean level. But the verification of arithmetic
operations is a known hard problem. Therefore, if the RTL
description contains arithmetic elements, they are translated
first to gate level and then to CNF. But, the transformation
destroys higher level information on the functionality and
the circuit structure. This often makes the formal verifica-
tion with a SAT solver difficult.

SMT solvers use the state-of-the-art SAT techniques and
combine them with high level optimization. Instead of pass-
ing the whole circuit to a SAT solver the instance is first
simplified, so that the remaining instance is in most cases
smaller and easier to solve. As shown in the last SMT com-



petition, especially the simplification process is one of the
key techniques to solve verification problems on word level
— the four highest ranked solvers in QF_BV (bit vector arith-
metic) use simplification techniques before running a SAT
solver [2].

As shown in Section 4.1 the representation of the de-
bugging problem is more compact for SMT. The compact
representation in combination with efficient preprocessing
algorithms may lead e.g. to a lower memory consumption
and smaller run times for an SMT solver. Considering these
facts, the simplification techniques applied in SMT solvers
induce some overhead at first. Therefore simple instances
and those where simplification is not possible should di-
rectly be transformed into a SAT problem to save run time.
But whenever the problem instance is hard (e.g. only a few
solutions in a large search space) and high level simplifi-
cation techniques are applicable, the SMT solver should be
faster. Unfortunately, it is not predictable which instances
are simple and which ones are hard. For the benchmarks
considered in the experiments, the number of constraints is
a good indicator — where small instances are simple. Of
course, in general also a small instance may be very hard to
solve.

At this stage the problem has been directly transformed
into an SMT problem. But SMT provides more powerful
constraints than SAT. In particular uninterpreted functions
[3] may be a powerful instrument for debugging. The sim-
ple SAT based formulation allows components to behave
non-deterministically (because primary inputs are used).
But in a circuit such non-deterministic behavior is not possi-
ble (or not wanted). As a result SAT-based debugging may
return fault candidates where a correction is not possible
[17] and elaborate techniques are required when consider-
ing correction [8]. Exploiting such additional features of
SMT to improve the debugging effectivity is future work.

5 Experimental results

In an experimental study the SMT-based debugging ap-
proach is applied and evaluated on combinational and se-
quential models given on RTL.

The combinational models are obtained from bench-
marks used at the last SMT competition [2]. Because the
SMT instances do not explicitly model primary inputs and
outputs, we modified the instance as follows: (1) Each
named variable is considered as a primary input and (2) all
assumptions and the formula are not restricted to be true,
but are modeled as primary outputs. Therefore, the number
of free variables is increased and the search space becomes
larger. All together 80 combinational instances with 200 to
40000 Boolean and bit-vector operations are considered.

For property debugging a sequential system from the
railway domain is considered [20]. The properties argue
over up to three time frames.

For all instances a fault is injected by changing an op-
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Figure 5. Combinational Debugging

eration, randomly. That is, e.g. an EQUAL constraint is re-
placed by LESS or an AND with an OR. Afterwards property
checking or equivalence checking was applied to generate
one counterexample for the debugging process. Each oper-
ation is taken as a separate component in SAT as well as in
SMT. In particular, the same components are used for SAT-
and SMT-based debugging.

SAT-based debugging is evaluated on the base of Min-
iSat [13]. For SMT-based debugging we considered STP
[18] as core engine'. The debugging process computed all
possible candidate fault sites with minimal cardinality. The
experiments were carried out on a Dual-Core AMD Opteron
2220 SE with 32 GB of main memory.

The run times given in CPU seconds for debugging of
combinational models are presented in Figure 5. A loga-
rithmic scale is used on both axes. The five instances in the
lower left consist of 200 to 250 operations only. Here, SAT
is faster than SMT, but the overall run time is small. The
reason may be the more complex parser and pre-processing
process for the SMT instances.

In over 90% of the instances SMT outperforms SAT-
based debugging significantly. These are all instances in the
upper right corner with more than 10000 operations. Espe-
cially if a large number of arithmetic operations are taken
into account, the performance of SAT degrades. In total a
run time improvement of 10 is observed for SMT in com-
parison to SAT.

Similar observations are made in case of property debug-
ging. Table 1 shows the number of fault candidates (#sol),
the run times for SAT and SMT and the improvement of
SMT in comparison to SAT (improv.). The model consists
of 557 components. SMT outperforms SAT in all cases.

I'We have also evaluated Boolector [6] as winner of the last SMT com-
petition, but for our benchmarks the run time was 5 to 10 times slower than
STP, which may be due to the heuristics involved in the search process.
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| Property [ #sol || SAT | SMT | improv. |

state_equal 37 || 76.09 | 21.35 3.56

state_0 17 || 23.73 7.52 3.16
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state_3 15 || 42.87 6.70 6.40
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