
FormED: A Formal Environment for Debugging

Andre Suelflow Robert Wille Christian Genz Goerschwin Fey Rolf Drechsler

{suelflow,rwille,genz,fey,drechsle}@informatik.uni-bremen.de
Institute of Computer Science - University of Bremen – Germany

http://www.informatik.uni-bremen.de/agra/eng/

Abstract

FormED – a FORMal Environment for Debugging is
proposed. FormED aids design debugging by computation
of fault candidates, generation of high quality
counterexamples and visualization of results.

1. Introduction

Whenever a complex design is created, it is likely that bugs
are contained. Verification based on simulation or formal
techniques is very effective in detecting the presence of
bugs. But debugging, i.e. finding the source of a bug,
mainly remains a time-consuming manual task. This
decreases the productivity throughout the design cycle.

In the past, tool support for design analysis (e.g. [1]) and
techniques that automatically determine candidate fault
sites (e.g. [2]) have been proposed. Furthermore, tools to
help understanding an error were introduced (e.g. [3]). But
using random counterexamples for debugging cannot
ensure that a fault candidate is sufficient to explain all
erroneous behaviors. Moreover, the importance of having
“useful” counterexamples has been observed [4].

We propose FormED - a FORMal Environment for
Debugging. FormED aids fault understanding by
visualization and supports automation in debugging.
The main features are:

• Computation of candidate fault sites
• Generation of high quality counterexamples
• Visualization of results

In the following the core ideas are briefly described.

2. Computation of Candidate Fault Sites

Given an erroneous design, a set of counterexamples, and
correct output responses, candidate fault sites are computed.

Cone extraction and path tracing provide basic debugging
capabilities based on structural analysis [5]. All signals in
the input cone of a faulty signal yield an initial set of fault
candidates. Path tracing aids the formal diagnosis algorithm
by considering structural properties of a circuit. Based on
simulation, only fault sites responsible for the observed
faulty behavior are returned.

SAT-based debugging [2,6] provides a formal method for
debugging. In comparison to non-formal methods, SAT-
based debugging ensures to determine fault candidates that

can fix all counterexamples. A non-deterministic behavior
of any computed fault candidate can fix the faulty design
with respect to the counterexamples.

FormED highlights the results, i.e. the candidate fault sites,
obtained by these approaches (see Figure 1). The cone view
focuses debugging on relevant parts of the design. Path
tracing (highlighted orange and green) computes an initial
set of 15 fault sites. SAT-based debugging (highlighted
green) reduces the fault candidates to three.

Figure 1: Computation of candidate fault sites

3. Generation of Counterexamples

A distinguishing feature of FormED is the generation of
high quality counterexamples. Beside basic functionalities
for equivalence and property checking, FormED integrates
the approach of [7].

Equivalence and property checking for combinational and
sequential models are supported. The equivalence of two
designs is verified by building a miter circuit. Properties are
specified in Property Specification Language (PSL) [8] and
verified by Bounded Model Checking [9].

SAT-based debugging and counterexample generation are
iterated to check the completeness of candidate fault sites,
i.e. whether a fault candidate is sufficient to fix for any
erroneous behavior [6]. If at least one of the candidate fault
sites is incomplete an additional counterexample is
determined, that activates still unfixable parts of the design.
Each newly created counterexample strengthens the
diagnosis and reduces the candidate fault sites.

In an alternative scenario, an initial set of counterexamples
is checked for completeness [7]. Here, the user provides

counterexamples, e.g. from simulation and a specification.
Candidate fault sites are computed and validated to cover
the full range of erroneous behaviors. Again, additional
counterexamples are generated for uncovered scenarios.

Figure 2: Property checking for a RISC-CPU

Figure 2 illustrates the model for property checking in a
schematic view. A property specifies expected behavior of a
RISC-CPU for two time frames. For each of the time
frames one copy of the RISC CPU is shown (big blocks on
the left and the lower right). The property is shown by a
separate block (upper right) that connects into the CPU.

4. Visualization of Results

The visualization engine of [10] is the front-end for
debugging (see Figure 3). Some of the basic features are:

• navigation in a hierarchical schematic view
• cone extraction
• source code browsing
• cross-probing between source code and schematic

view
The wide range of features provides a powerful
environment for debugging. A designer can e.g. navigate in
a schematic view and extract the input cone of erroneous
outputs.

FormED interfaces with the visualization engine and
extends the basic debugging capabilities by formal and non-
formal methods. In an interactive session candidate fault
sites and counterexamples are computed and annotated in
the design.

5. Summary

In this work a debugging environment powered by formal
methods has been proposed. The framework provides an
environment to visualize erroneous behavior, to apply
formal verification and gives hints for correction. Candidate
fault sites are automatically determined and the time-
consuming manual debugging process is partially
automated.

Figure 3: Cone extraction for a RISC-CPU

 6. References

[1] SpringSoft Inc., “Verdi Automated Debug”,
http://www.springsoft.com, 2009.
[2] A. Smith, A. Veneris, M. Fahim Ali, and A. Viglas,
“Fault diagnosis and logic debugging using Boolean
satisfiability”, IEEE Trans. on CAD, Vol. 24, No 10, pp.
1606 - 1621, 2005.
[3] A. Groce, D. Kroening, and F. Lerda, “Understanding
counterexamples with explain”, in Computer Aided
Verification (CAV), Ser. LNCS, Vol. 3114, pp. 453 – 456,
2004.
[4] K. Ravi and F. Somenzi, “Minimal assignments for
bounded model checking”, in Tools and Algorithms for the
Construction and Analysis of Systems, Ser. LNCS, Vol.
2988, pp. 31 – 45, 2004.
[5] M. Abramovici, P.R. Menon, and D.T. Miller. „Critical
path tracing - an alternative to fault simulation“, in Design
Automation Conf. (DAC), pages 214–220, 1983.
[6] G. Fey, S. Staber, R. Bloem, and R. Drechsler,
“Automatic fault localization for property checking”, in
IEEE Trans. on CAD, Vol. 27, No. 6, pp. 1138 – 1149,
2008.
[7] A. Suelflow, G. Fey, C. Braunstein, U. Kuehne, and R.
Drechsler, “Increasing the accuracy of SAT-based
debugging”, in Design, Automation and Test in Europe
(DATE), 2009.
[8] Accellera. “Property Specification Language version
1.1”, http://www.accellera.org, 2004.
[9] M.D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann,
D. Stoffel, and W. Kunz. “Unbounded protocol compliance
verification using interval property checking with
invariants”, in IEEE Trans. on CAD, Vol. 27, No. 11, pp.
2068 – 2082, 2008.
[10] Concept Engineering GmbH, “RTLvision PRO”,
http://www.concept.de, 2009.

Acknowledgement

We would like to thank Gerhard Angst and Lothar Linhard
from Concept Engineering GmbH, Freiburg, Germany for
their support.

