
A Better-Than-Worst-Case Robustness Measure

Stefan Frehse Görschwin Fey Rolf Drechsler
Institute of Computer Science

University of Bremen

28359 Bremen, Germany

{sfrehse,fey,drechsle}@informatik.uni-bremen.de

Abstract—In presence of increasing soft error rates due to
shrinking feature sizes, design tools are required to analyze fault
tolerance and robustness of circuits.

Here, we propose a new measure that identifies hot-spots in
the design. On the one hand the measure is more accurate than
a “worst-case analysis” that ignores excitation probabilities. On
the other hand the computation of the new measure is more
efficient than a “probabilistic analysis” that considers excitation
probabilities at the cost of a higher computational complexity.
Both of these extremes can be embedded in the new measure.
Experimental results on circuits with protection against soft
errors show that the new measure can be calculated effectively.

I. INTRODUCTION

Continuously shrinking feature sizes of digital circuits allow

for the integration of more and more components in a single

chip. Shrinking feature sizes have several positive side effects,

e.g., low-power circuitry operating at high frequency. But

there are substantial drawbacks as well. Manufacturing failures

and transient faults may increasingly tamper the functionality,

consequently the Soft Error Rate (SER) increases. Precautions

against soft errors are taken at different levels, e.g., archi-

tectural level, algorithmic level, or layout level [1]. But the

implementation of these techniques has to be verified. During

implementation bugs may be introduced. Thus, checking the

fault tolerance of a given implementation early in the design

flow becomes an important step in the design process. Several

formal and non-formal verification methods have been applied

for this purpose.

Non-formal methods, like simulation or emulation [2] per-

form fault injection to check a limited number of simulation

traces whether those lead to faulty behavior. Due to the

simulation-based nature, this is a fast but not a complete

method with respect to all potential scenarios or all faults.

Formal methods can cover all inputs and any fault covered

by the given fault model. Various methods have been proposed

based on symbolic methods using Binary Decision Diagrams

(BDDs) [3]–[6] or Boolean Satisfiability (SAT) [7]–[9]. The

approaches of [6], [8], [9] are most tightly related to our

approach.

Based on the Stuck-At Fault Model (SAFM) the method in

[6] computes the probability for transient faults to be propa-

gated to primary outputs of combinational circuits. The given

theoretical extension to sequential circuits is too complex to be

applied in practice as the analysis relies on BDDs. Internally,

all test patterns are calculated for each fault to be considered.

By this, the probability of applying a testpattern for a certain

This work has been funded in part by DFG grants DR 287/19-1 and FE
797/5-1.

fault can be calculated. In the following we refer to [6] as

a probabilistic approach. In [10] the authors proposed an

alternative propabilistic approach to approximate the signal

probabilities for combinational circuits.

The work in [9] analyzes the self-checking fault secureness

[11] for combinational circuits and provides a robustness

measure with a lower and an upper bound for the SAFM. This

method analyzes a circuit model by using ATPG-algorithms.

For the analysis assumptions on the environment and the

checker functionality of the circuit are required.

In [8] a model similar to Bounded Model Checking (BMC)

has been proposed for the analysis of soft errors. As well

as [9] this method provides a lower and an upper bound for

the robustness. Both methods can be seen as a worst-case

analysis: a component is classified non-robust if there exists at

least a single testpattern, such that a fault of this component

may change the output behavior. We class this classification

worst-case analysis, i.e. the probability for excitation and

propagation is ignored by the robustness measure. In contrast

the work in [6] considers all test patterns. But this probabilistic

approach relies on BDDs for the analysis restricting the

application to very small circuits.

In this work we propose a robustness measure that con-

stitutes a trade-off between the worst-case analysis and the

consideration of all test patterns. Thus, a limited number of

test patterns that show the faulty computation is considered.

Therewith a more detailed view of the robustness is given,

which can be computed in a feasible run time. We use the

model of [8] which considers soft-errors in sequential circuits.

Technically, a sequential ATPG-engine is used to consider

a bounded time window for the calculation. When calculating

only a single testpattern for each soft error, worst-case analysis

is performed. By calculating all test patterns the probabilistic

analysis is performed at high computational costs. Our ap-

proach finds up to a predefined number of test patterns. As

a result our approach identifies hot-spots in the circuit, that

are easily sensitized to propagate soft errors. This knowledge

guides the designer to increase the robustness of the circuit.

The previous measures, worst-case analysis and usage of all

input stimuli, can be embedded into the new measure.

The remainder of this paper is structured as follows: Sec-

tion II reviews the preliminaries. The underlying circuit model

as well as the approach of robustness computation based on [8]

are described. Section III introduces the new measure in detail.

An algorithm is presented in Section IV that computes the

test patterns. Experimental results are reported in Section V.

Finally, conclusions are stated in Section VI.

ag

g g̃
gt...

(a) Fault injection

X(0)

S(0)

=

Y(0)

Y′(0)

S(1)

S′(1)

C(′0)

C(0)

X(1)

=

Y(1)

Y′(1)

S(2)

S′(2)

C′(1)

C(1)

X(td)

6=

Y(td)

Y′(td)
C′(td)

C(td)

. . .

g̃

P

g∈C

ag = 1

(b) Sequential model

Fig. 1. Sequential model with fault injection logic

II. PRELIMINARIES

A. Boolean Satisfiability

The Boolean Satisfiability (SAT) problem is a well-known

NP-complete decision problem [12] that asks whether a

Boolean formula f : B
n → B is satisfiable or not (un-

satisfiable). If a formula f is satisfiable, a satisfying value

assignment of the variables can be found. Typically, the

problem is given in Conjunctive Normal Form (CNF), whereas

every Boolean formula can be converted into a CNF.

Nowadays, large formulas related to practical problems with

millions of clauses and variables can usually be solved in

feasible time by state-of-the-art SAT-solvers [13], [14].

In this work the satisfying value assignments are of interest.

These assignments can be computed by performing subsequent

calls to the SAT-solver and adding blocking clauses. A block-

ing clause forbids a (previously computed) solution.

B. Circuit Model

We consider sequential and combinational circuits C
with Primary Inputs PI(C), Primary Outputs PO(C) and

State Elements S(C). For combinational circuits S(C) =
∅ holds. Furthermore a circuit consists of various com-

ponents. For example, such components can be primi-

tive gates (AND, OR, etc.), modules (Adder, Multiplier,

etc.) or statements of a hardware description language

(if (...) then ...endif;, etc.). The number of com-

ponents of a circuit C is denoted by |C|. A circuit C can be

converted into CNF in time and space linear to |C| [15].

C. Classification of Components

As a basis for the robustness computation we use the

following classification of each component g ∈ C as presented

in [8]. A soft error in component g is either a bit-flip from

0 to 1 or from 1 to 0 on one or on multiple output signals

of g1. A component g ∈ C belongs to one of three disjoint

classes [8]:

1) non-robust – A soft error of component g leads to

an abnormal output behavior under at least one input

trace τ t for PI(C) at a certain time frame t, i.e., the

primary outputs differ from the fault-free computation.

Additionally, if the circuit is equipped with a fault

detection signal flt, this signal does not report a fault,

i.e., flt = 0. The input trace τ t is also called a testpattern

for the soft error.

2) non-classified – Similar to the non-robust classification,

with the exception that the states differ from the fault-

free states but the primary outputs are equal. This case

shows Silent Data Corruption (SDC).

3) robust – That means, a soft error on component g
is reported by the fault detection signal (flt = 1) or

is corrected by the internal logic. Consequently, the

primary outputs are correct with respect to the fault-free

computation under every possible input.

All components of the circuit are partitioned into the set T of

robust components, the set S of non-robust components and

the set U of non-classified components, i.e., C = S ∪ T ∪ U.

For combinational circuits the set U is empty, because without

state elements the second case above is not applicable.

D. Sequential Modeling

In [8] the sets T,S and U were computed by using a SAT-

solver. Basically, a Sequential Equivalence Check (SEC) of a

circuit C and a circuit C ′ with additional logic to model soft

errors is performed. The circuit is unrolled up to a given time

limit td. The schematic view of the model is shown in Figure 1.

A soft error is assumed to be corrected or detected (i.e.,

signalized by a fault signal flt) within a short period of time or

1For simplicity we consider both cases as the same fault, i.e. a soft error
at g. If a finer differentiation is required this can be easily integrated into the
algorithms.

the fault remains undetected. Consequently, the analysis can

be bounded by a certain time limit td. Combinational circuits

can be easily embedded in the sequential model.
For the approach in [8] it is sufficient to compute at least

one testpattern as mentioned in Section II-C for a component

g, to classify g as non-robust. Given the sets T,S and U at a

certain time frame t the robustness is defined as follows:

Rt

lb =
|Tt|

|C|
= 1 −

|St| + |Ut|

|C|

Rt

ub =
|Ut| + |Tt|

|C|
= 1 −

|St|

|C|

For combinational circuits the measure yields Rt

lb = Rt

ub,

since |U| = 0 and t = 0. For sequential circuits the lower

and upper bound may differ even if an unlimited number of

time frames would be considered. In particular, if SDC occurs

and the faulty system state is not corrected, the divergence

between faulty system and fault free system may persist.
As mentioned before for this robustness-measure it is suf-

ficient to find one testpattern to classify g as non-robust, or

to prove that no testpattern exists – the component is robust.

This robustness measure considers a Single Testpattern (ST).

In the following we denote this by Rt

ST as well as Rt

ST,lb and

Rt

ST,ub for lower bound and upper bound at time frame t,

respectively.

III. ANALYSIS USING MULTIPLE TESTPATTERNS

In the following we illustrate drawbacks of the measure

introduced in Section II using an example. Our new measure

using an analysis based on Multiple Testpatterns (MT) that

overcomes those limitations is introduced afterwards. Then,

the relation to previously defined measures is analyzed.

A. Motivating Example

The robustness measure discussed in Section II can be

considered as a “worst-case analysis”: a component is con-

sidered non-robust as soon as there is a single testpattern

that shows faulty behavior of this component at least at one

primary output. The probability to apply such a pattern, i.e.,

the excitation probability for the fault, is ignored. Consider

the following example.
Example 1: Consider a combinational circuit C with four

primary inputs, i.e., |PI(C)| = 4. Furthermore, let a, b ∈ C
be two non-robust and c, d, e ∈ C be robust components. The

worst-case analysis yields RST = 3/5 = 60%.
Further assume, that there are only two test patterns that

excite a fault in a, denoted by ψ(a) = 2. Given the total

number of 2|PI(C)| = 24 = 16 input traces, the probability to

excite the fault in a is only 2/16 = 12.5%.
Moreover, let any input trace be a testpattern for a fault at

b, i.e., ψ(b) = 16 and the excitation probability at b is 100%.
The worst-case analysis does not differentiate the two

components. Both are simply classified as non-robust, even

though b can be considered as a hot-spot while a is relatively

save.
The exact computation of excitation probabilities along the

lines of [6] would overcome this limitation. But in that case all

test patterns – potentially a number exponential in the number

of primary inputs – have to be found. In [6] a BDD-based

symbolic analysis was used for this purpose. But a BDD-based

analysis is typically limited to small circuits.

B. New Robustness Measure

Instead of considering only a single testpattern per compo-

nent, the new robustness measure takes Multiple Testpatterns

(MT) into account. By this, components that only have a

few test patterns can be differentiated from those components

having many test patterns. As a result a grading of the

non-robust components is achieved which can be utilized to

identify hot-spots in the circuit.

In the following the combinational case is considered first,

i.e. lower bound and upper bound for the robustness are

identical. Let ψ(g) denote the number of test patterns at

component g. Then, the quotient between the number of test

patterns ψ(g) and all input traces Ψ = 2|PI(C)| yields the

excitation probability for a soft error on g:

e(g) =
ψ(g)

Ψ

Or alternatively, as a measure for robustness, the probability

that a soft error is not observable, is given by:

f(g) = 1 − e(g) = 1 −
ψ(g)

Ψ

As explained, calculating ψ(g) is often too expensive. Instead

we limit the number of test patterns by a user defined

parameter 0 < λ ≤ 1. If the portion of input traces that

are test patterns exceeds λ, a component is considered non-

robust. For such hot-spots no further differentiation is required.

Only below this percentage a more fine grained resolution

is determined. Then, the robustness of a component g is

determined by

r(g, λ) = 1 −
min{ψ(g), ⌈λΨ⌉}

⌈λΨ⌉
. (1)

Consequently, the robustness of the circuit is measured by

RMT(λ) =
1

|C|

∑

g∈C

r(g, λ). (2)

Example 2: Consider again Example 1 and let λ = 0.5 such

that up to 50% of all input traces are considered. Again let

ψ(a) = 2, ψ(b) = 16 and ψ(c) = 0, ψ(d) = 0, ψ(e) = 0.

Then, r(a, 0.5) = 3/4, r(b, 0.5) = 0 and

RMT(0.5) =
1

5
(3/4 + 0 + 3) = 75%.

The overall value of the new measure increases compared to

the worst-case analysis. More important is the observation that

components a and b can be differentiated.

The presented measure can be extended to the sequential

case. In this case test patterns span multiple time frames

and up to t time frames are considered in the analysis. The

number of all input traces is given by Ψ = 2|PI(C)|·t. Also a

component may cause SDC and is considered non-classified

in this case. Such components are collected in a set U. Then

a lower bound and an upper bound for the robustness are

determined by assuming that all non-classified components

t = 0 t = 1

g

g′
C ′

C

PO′

PO

6=?

PI

Fig. 2. Sequential-ATPG model

may turn out to be non-robust or robust, respectively. For non-

classified components no testpattern can be found that shows

a soft error at one of the primary outputs, i.e. ψ(g) = 0 holds

for g ∈ U. We retrieve the following bounds:

Rt

MT,lb(λ) =
1

|C|

∑

g∈C

r(g, λ) − |U|

Rt

MT,ub(λ) =
1

|C|

∑

g∈C

r(g, λ)

C. Embedding Previous Measures

First, the new measure is compared to the worst-case

analysis previously proposed in [8] and described in Section II.

Assume that λ′ is close to zero. Then, ⌈λΨ⌉ as used above

becomes 1. In this case the robustness of a component g as

defined in Equation (1) becomes:

r(g, λ′) = 1 − min{ψ(g), 1}

If there exists at least one testpattern, the robustness of a

component becomes 0. If no testpattern exists, the component

is considered robust. Consequently, for λ close to zero the new

measure converges to the one of [8].

The probabilistic approach of [6] considers exact excitation

probabilities to determine the robustness of components2.

This is achieved using our measure by setting λ to 1, i.e.,

Equation (1) becomes

r(g, 1) = 1 −
min{ψ(g),Ψ}

Ψ
= 1 −

ψ(g)

Ψ
= f(g).

This is the probability of a soft error to remain undetected.

IV. COMPUTATION

In this section we present an algorithm using a SAT-

based sequential ATPG engine to calculate the new robustness

measure and discuss potential extensions.

2Indeed a different fault model has been used in [6], but the fault models
can be aligned.

Algorithm 1: COMPUTETESTPATTERNS

Input: circuit C, component g, current time frame t, bounded time
frame t, solver object s, accuracy-parameter λ

Output: ψ(g)
begin1

createOrAppendSATInstance(s,C, g, t);2

ConePI = PIt(C) ∩ computeTransitiveInputCone(g, t);3

ψ(g) = 0;4

Ψ′ = ⌈λ · 2|ConePI|⌉;5

while s.solve() = SATISFIABLE ∧ ψ(g) < Ψ′ do6

ψ(g)++;7

s.addClause(
W

pi∈ConePI

¬s.model(pi));
8

end9

if s.solve() = UNSATISFIABLE ∧ ψ(g) < Ψ′ then10

return ψ(g) + computeInputTraces(C, g, t+ 1, t, s)11

end12

else13

return ψ(g)14

end15

end16

A. Algorithm

The model for sequential SAT-based ATPG is shown in

Figure 2. Given are a component g and a limit t for the number

of time frames to be considered. For time frame 0 the fan-out

cone of g is modeled. For all outputs in this fan-out cone,

the transitive fan-in of these outputs is also modeled until the

primary inputs or a state element are reached. In time frame

0 the state elements remain unconstrained during the analysis

or they are constrained as proposed in [8]. For time frame 1,

the same copy is created. But the traversal does not stop when

reaching state elements in time frame 1. Instead the model also

includes the driving circuitry of time frame 0 to adequately

model the sequential behavior. This process is repeated until

time frame t is reached.

In principle this is a standard procedure for sequential

ATPG. In our case faults are only injected in time frame 0,

because soft errors are modeled and all states are covered by

leaving the initial state unconstrained or allowing all reach-

abable states, respectively. Moreover, the problem instance for

analyzing t time frames is reused and extended to analyze

t + 1 time frames. This improves the efficiency as learned

information is reused by the SAT-solver [16].

Over time the number of primary inputs contained in the

model for a fixed time frame may change, as the transitive

fan-in cone increases. This has to be taken into account when

calculating the number of test patterns.

The pseudocode to determine the test patterns for a soft

error in a component g is given in Algorithm 1. A circuit C,

a considered component g, the current time t, the maximum

considered time frame t, the SAT-solver object s as well as the

parameter λ are given as input to the algorithm. The algorithm

creates a SAT-instance for the component g at time frame t. If

t > 0 the existing problem instance is extended as explained

above and as shown in Figure 2. Only the primary inputs that

are contained in the cone of g are considered. The maximum

number of test patterns to be considered is configured by λ
and then stored in Ψ′ in line 5. From line 6 to line 9, the test

patterns are computed. While a satisfying assignment exists

and the maximum number of test patterns Ψ′ is not exceeded,

TABLE I
RESULTS FOR COMBINATIONAL CIRCUITS

(a) Measures RST and RMT(λ)

CIRCUIT “WORST-CASE” NEW MEASURE (100 TESTS)
NAME |PI(C)| |C| RST |S| TIME λ RMT > λΨ TIME

par 5xp1 7 391 88.44% 49 0.65s 78.12% 94.51% 7 2.71s
par 9sym 9 655 98.69% 9 0.26s 19.53% 98.69% 9 2.17s
par alu4 14 5931 95.40% 275 73.58s 0.61% 96.06% 197 547.52s
par apex7 49 720 77.48% 204 6.21s < 0.01% 77.48% 204 72.64s
par cm42a 4 81 85.71% 15 0.10s 100.00% 92.02% 0 0.09s
par cm82a 5 62 73.17% 22 0.07s 100.00% 86.97% 0 0.11s
par cmb 16 136 63.16% 70 0.29s 0.15% 80.84% 14 1.77s
par comp 32 385 41.36% 285 2.69s < 0.01% 41.36% 285 35.51s
par con1 7 65 81.11% 17 0.06s 78.12% 93.61% 0 0.17s
par cordic 23 2866 97.65% 69 10.93s < 0.01% 97.65% 69 95.84s
par cu 14 166 76.92% 51 0.29s 0.61% 78.15% 47 2.45s
par duke2 22 976 76.23% 255 7.98s < 0.01% 76.27% 254 77.39s
par e64 65 1409 88.45% 193 20.27s < 0.01% 89.20% 177 116.45s
par f51m 8 318 91.76% 29 0.36s 39.06% 92.35% 17 2.37s
par frg1 28 393 92.74% 35 0.55s < 0.01% 92.74% 35 4.73s
par rd84 8 1157 82.81% 204 6.23s 39.06% 91.22% 16 43.07s
par rot 135 1932 76.17% 583 72.30s < 0.01% 76.17% 583 893.19s
par sao2 10 502 82.16% 96 1.24s 9.77% 91.38% 31 6.09s
par sqrt8ml 8 447 60.80% 187 2.29s 39.06% 81.70% 30 11.42s
par squar5 5 273 80.87% 57 0.44s 100.00% 91.04% 0 0.94s
par t481 16 1752 99.11% 16 1.29s 0.15% 99.11% 16 11.92s
par table5 17 1455 70.58% 448 20.66s 0.08% 72.63% 406 187.73s

(b) Histogram

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

O
cc

u
rr

en
ce

s

Number of testpatterns

par_cmb

a new testpattern is extracted from the SAT-model and the

number of test patterns is incremented. To compute another

testpattern, the currently computed satisfying assignment is

excluded by adding a blocking clause that contains values

of primary inputs and state elements in time frame t = 0.

Afterwards the computation continues.
The computation is finished, if 1) the number of considered

time frames is exceeded, 2) the SAT-instance becomes unsat-

isfiable, i.e, there are no more test patterns, or 3) the number

of test patterns exceeds Ψ′. Finally, the number of computed

test patterns is returned.

B. Discussion

In [8] an algorithm to perform the worst-case analysis was

proposed. That algorithm was based on SEC. All potential

faults are modeled in a single problem instance and learned

information can potentially be reused for all other faults.

Preliminary experiments have shown that this is typically more

efficient than using a large number of ATPG calls. But, here we

also calculate multiple test patterns for each fault. Therefore

we chose an ATPG engine to keep the size of the problem

instances smaller.
Compared to [6] we could use an All Solution SAT solver

to compute all test patterns without BDDs. By this an exact

solution would be achieved, but still the computational cost

would be extremely high. Instead lightweight methods to

explore a larger number of test patterns are of interest. Instead

of only extracting a single satisfying solution a simulation

based relaxation can extract a sufficient set of assignments

(e.g. [17]). Using this relaxation multiple test patterns are

extracted after each call to the SAT-solver and results that

are even closer to a probabilistic analysis can be extracted.

V. EXPERIMENTAL RESULTS

This section presents the evaluation of the new robust-

ness measure. Combinational circuits were taken from the

LGsynth93 benchmark suite and sequential circuits from the

ITC’99 benchmark suite, respectively. For every circuit a

parity checker was implemented and optimized using SIS [18].

The parity is checked at the primary outputs and on the state

elements. A wrong parity is signalized by setting the fault

signal flt to 1. The robustness of the parity circuits is less

than 100%: fault masking may occur, i.e., a single soft error

flips an even number of outputs and state elements.

All experiments were carried out on an AMD Dual-Core

Opteron Processor with 32GB main memory under Linux.

The algorithm is implemented in C++. As underlying SAT-

solver MiniSat v2.0 [13] with a feature to allow incremental

satisfiability is used. To have the run times comparable we

adjusted the parameter λ for each benchmark such that up to

100 test patterns were calculated.

A. Combinational Circuits

Table I(a) shows the results for the combinational circuits.

The worst-case analysis RST as well as the newly introduced

measure RMT have been evaluated.

The first three columns describe properties of the circuit:

the name, the number of primary inputs and the number of

gates in the circuit. The results of the worst-case analysis

are shown in column “WORST-CASE”. Since, combinational

circuits are considered the upper and lower bound are equal.

The robustness measure RST is given in column 4. The

resulting number of non-robust components is denoted by |S|.
The results for computing the measure RMT proposed in this

work are given in the columns titled NEW MEASURE. The

parameter λ, the computed robustness RMT, the number of

components that exceeded the maximum number of 100 test

patterns to be considered (column > λΨ), and the run times

are given.

As expected the value of RMT is larger or equal to RST .

For RMT non-robust components are not considered “100%

TABLE II
RST– AND RMT(λ)–ROBUSTNESS FOR SEQUENTIAL CIRCUITS

CIRCUIT “WORST-CASE” NEW MEASURE (100 TESTS)
NAME |PI| |C| RST |S| TIME λ RMT > λΨ TIME

par b01 2 145 88.57% 20 0.26s 100.00% 88.57% 7 0.61s
par b02 1 76 87.76% 12 0.10s 100.00% 88.14% 4 0.10s
par b03 4 408 85.14% 81 8.23s < 0.01% 85.14% 74 21.99s
par b04 11 2130 78.95% 513 131.5s < 0.01% 78.95% 513 290.88s
par b05 1 2145 68.56% 730 114.6s 100.00% 68.58% 0 130.07s
par b06 2 152 80.60% 39 0.43s 100.00% 81.84% 0 0.76s
par b07 1 1143 76.33% 320 80.89s 78.12% 84.25% 14 88.45s
par b08 9 457 74.91% 144 20.33s < 0.01% 74.91% 144 32.73s
par b09 1 454 80.59% 111 6.32s 19.53% 80.59% 3 11.99s
par b10 11 571 81.32% 127 12.61s < 0.01% 81.32% 127 23.06s
par b11 7 1633 78.72% 380 1023.44s < 0.01% 78.72% 380 1136.27s

non-robust”, but may have a certain robustness. Here column

“> λΨ” gives further insight. If this is zero, there was no non-

robust component with more than 100 test patterns. In these

cases the analysis is identical to a probabilistic analysis. This

typically occurs for circuits with a small number of primary

inputs (e.g. for par cm42a, par squar5).

The opposite happens when more than 100 test patterns are

found for all components that were classified as non-robust by

the worst-case analysis. In this case RST and RMT produce

the same outcome.

The run times are expected to increase for the new measure

as more than one solution must be determined. This is also true

for our experiments, but the increase in run time is moderate

in all cases. Once the SAT-solver found a testpattern, finding

the next is often easier because previously learned information

is reused.

B. Sequential Circuits

Furthermore, sequential circuits have been considered. The

results obtained are shown in Table II. Up to 10 time frames

are considered. All circuits are fully classified using the

worst-case analysis, i.e, upper and lower bound meet each

other. Therefore, only one value is given for the robustness.

Similarly, also the bounds for the new measure are identical.

Here, also up to 100 test patterns extending over 10 time

frames have been considered. Again for circuits with a small

number of inputs, this number is sufficient to take all test

patterns into account (e.g., par b05). For circuits with a larger

number of inputs, also some differentiation may be achieved

(e.g., par b03). But typically, the number of test patterns

exceeds 100. As a consequence, a more effective algorithm is

required being able to explore a larger number of test patterns.

C. Detailed Example

A more detailed evaluation for the combinational circuit

par_cmb is shown by the histogram in Figure I(b). The

x-axis depicts the number of test patterns. The y-axis gives

the number of components that had a certain number of

test patterns. In total there are 216 = 65536 input traces.

The number of considered test patterns was limited to 1000.

Figure I(b) shows, that most of the 136 non-robust components

have less than 1000 non-robust test patterns.

As a result non-robust components can be differentiated by

the new measure and hot-spots can be identified. The run times

are moderate and simple improvements will provide an even

better performance as well as differentiation.

VI. CONCLUSION

In this paper we proposed a new robustness measure. This

measure constitutes a trade-off between worst-case analysis

and a probabilistic approach. The worst-case analysis as well

as the probabilistic approach can be embedded in the proposed

measure. With the new measure a more detailed view of the

robustness can be achieved in a feasible run time. Furthermore,

the measure identifies hot-spots in the design, i.e., easily sen-

sitizable components. A sequential-ATPG engine considering

a bounded time window was used to compute the test patterns

efficiently.

VII. ACKNOWLEDGMENT

We would like to thank Andre Sülflow for helpful discus-

sion.

REFERENCES

[1] C. Zhao and S. Dey, “Improving transient error tolerance of digital VLSI
circuits using RObustness COmpiler (ROCO),” in Int’l Symp. on Quality
Electronic Design, 2006, pp. 133–140.

[2] A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar, V. Bertacco,
and T. Austin, “CrashTest: A fast high-fidelity FPGA-based resiliency
analysis framework,” in Int’l Conf. on Comp. Design, 2008.

[3] U. Krautz, M. Pflanz, C. Jacobi, H. W. Tast, K. Weber, and H. T.
Vierhaus, “Evaluating coverage of error detection logic for soft errors
using formal methods,” in Design, Automation and Test in Europe, 2006,
pp. 176–181.

[4] M. Miskov-Zivanov and D. Marculescu, “Circuit reliability analysis
using symbolic techniques,” IEEE Trans. on CAD, vol. 25, no. 12, pp.
2638–2649, 2006.

[5] M. Bozzano, A. Cimatti, and F. Tapparo, “Symbolic fault tree analysis
for reactive systems,” in Automated Technology for Verification and
Analysis, ser. LNCS, vol. 4762, 2007, pp. 162–176.

[6] J. Hayes, I. Polian, and B. Becker, “An analysis framework for transient-
error tolerance,” in VLSI Test Symp., 2007, pp. 249–255.

[7] G. Fey and R. Drechsler, “A basis for formal robustness checking,” in
Int’l Symp. on Quality Electronic Design, 2008, pp. 784–789.

[8] G. Fey, A. Sülflow, and R. Drechsler, “Computing bounds for fault
tolerance using formal techniques,” in Design Automation Conf., 2009,
pp. 190–195.

[9] M. Hunger, S. Hellebrand, A. Czutro, I. Polian, and B. Becker, “ATPG-
Based grading of strong fault-secureness,” in IEEE International On-
Line Testing Symposium, 2009.

[10] I. Polian, S. M. Reddy, and B. Becker, “Scalable calculation of logical
masking effects for selective hardening against soft errors,” in IEEE
Annual Symposium on VLSI, 2008, pp. 257–262.

[11] J. Smith and G. Metze, “Strongly fault secure logic networks,” IEEE
Trans. on CAD, vol. 27, no. 6, pp. 491–499, 1978.

[12] S. Cook, “The complexity of theorem proving procedures,” in 3. ACM
Symposium on Theory of Computing, 1971, pp. 151–158.

[13] N. Eén and N. Sörensson, “An extensible SAT solver,” in SAT 2003, ser.
LNCS, vol. 2919, 2004, pp. 502–518.

[14] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Design Automation Conf., 2001,
pp. 530–535.

[15] G. Tseitin, “On the complexity of derivation in propositional calculus,”
in Studies in Constructive Mathematics and Mathematical Logic, Part
2, 1968, pp. 115–125, (Reprinted in: J. Siekmann, G. Wrightson (Ed.),
Automation of Reasoning, Vol. 2, Springer, Berlin, 1983, pp. 466-483.).

[16] J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A new incremental
satisfiability engine,” in Design Automation Conf., 2001, pp. 542–545.

[17] S. Eggersglüß and R. Drechsler, “Improving test pattern compactness in
SAT-based ATPG,” in Asian Test Symp., 2007, pp. 445–452.

[18] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS:
A system for sequential circuit synthesis,” University of Berkeley, Tech.
Rep., 1992.

