VisSAT: Visualization of SAT Solver Internals

Robert Wille

André Siilflow Christian Genz

Institute of Computer Science
University of Bremen
28359 Bremen, Germany

Rolf Drechsler

{rwille,suelflow,genz,drechsle} @informatik.uni-bremen.de

Verification gains an increasing amount of design costs
in modern VLSI-CAD. With increasing complexity and
continuous demands for correctness, the application of for-
mal methods in verification becomes indispensable. SAT
solvers [1] are essential tools building the basis of many
formal verification approaches.

Typically, the following flow is thereby applied: The
problem is encoded into an instance of Boolean satisfiability
which is passed to the SAT solver. The SAT solver returns
either a satisfying assignment or proves that no such assign-
ment exists. From this result, a solution of the verification
problem is deduced. In this sense, the SAT solver is utilized
as a black-box.

However, hard to solve problem instances cause long
run times or even time-outs, which effect the duration of
subsequent re-spins. When facing such challenging designs,
verification engineers can modify the problem instance,
the decision heuristics, or parameters of the solve engine.
Internal data structures of a SAT solver thereby give valuable
information concerning the traversion as well as the structure
of the search space. This may be used to speed up the solve
process. Unfortunately, such information is hard to extract.

In this work, we present the graphical interface VisSAT to
visualize statistics of a SAT solver. An evaluator collects sta-
tistical data of the solve process, e.g. the number of decisions
or conflicts a circuit signal is involved with. Afterwards,
this data is mapped to an RT or gate level schematic of the
underlying verification problem. Therefore, the visualization
engine from [2] is utilized.

MULT
1 XOR_79
o £
XoRI

1 OR_80

Using VisSAT, the user is pinpointed to critical parts of
the problem instance, e.g. hotspots with a large emergence
of conflicts. To support modifications of the problem for-
mulation, the visualization engine allows cross-probing of
the statistical data to the source code of a design. Thus,
a designer gets feedback about critical statements in the
design which helps to reconfigure the solver or alter the
problem formulation accordingly. The explicit choice and the
application of an optimization technique stays in the hands
of the engineer.

As an example, Fig. 1 shows the distribution of conflicts
occurred while solving a property checking instance. More
precisely, the correct behavior of multiplication in an ALU
circuit is verified. The coloring intuitively differentiates parts
with a large number of conflicts (highlighted in red) from
parts with a smaller number of conflicts (highlighted in
yellow) and from parts without conflicts (highlighted in
green), respectively. As indicated by the red signal, the
multiplier module frequently causes conflicts. With these
information observed, the designer can apply changes to
the SAT solver parameters (e.g. preferring signals of the
multiplier) or modify the design (e.g. replacing the multiplier
by shifters), respectively.

REFERENCES

[1] N. Eén and N. Sorensson, “An extensible SAT solver,” in SAT 2003,
ser. LNCS, vol. 2919, 2004, pp. 502-518.

[2] Concept Engineering GmbH, RTLvision PRO, http://www.concept.de,
20009.

=E ~DD_86
da001
SUB 85

i0 z
i

y /

1
SUBT
ZeroExtend B7

R .

ZeroBxtend1
ZeroExtend B8

N

ZeroExtend1
ZeroExtend 89
] z
ZeroExtend1

WUX_105

||
e

ZeroExtend_72
] z

INDEX,_99
id z

SHL_87

i0 z
il

SHL1

Fig. 1.

oR1
NOTT AND_81

e |
ZeroExtend1

10 it
11 INDEX1

ZeroExtend_74
ZeroExtend1

ZeroExtend_75
[a—

L]

TRUNC_76
TRUNC1T

NOT1 ..
NG

YR 88

oz

ZeroExtend1
ZeroExtend_73

I D)

L1 1]
R

it
KOR1

Visualization of conflict statistics

L
ZeroExtend1

