
Automatic Fault Localization for
SystemC TLM Designs∗

Hoang M. Le Daniel Große Rolf Drechsler
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

{hle,grosse,drechsle}@informatik.uni-bremen.de

Abstract—To meet today’s time-to-market demands catching
bugs as early as possible during the design of a system is
absolutely essential. In Electronic System Level (ESL) design
where SystemC has become the de-facto standard due to Trans-
action Level Modeling (TLM), many approaches for verification
have been developed. They determine an error trace which
demonstrates the difference between the required and the actual
behavior of the system. However, the subsequent debugging
process is very time-consuming, in particular due to TLM-
related faults caused by complex process synchronization and
concurrency.

In this paper, we present an automatic fault localization
approach for SystemC TLM designs. The approach determines
components that can be changed such that the intended behavior
of the design is obtained removing the contradiction given by
the error trace. Techniques based on Bounded Model Checking
(BMC) are used to find the components. We demonstrate the
quality of our approach by experimental results.

I. INTRODUCTION

The next level of abstraction beyond RTL is clearly Trans-
action Level Modeling (TLM) [1]. TLM allows to describe
the communication in a system in terms of abstract operations
(transactions) rather than assignments to low level signals
or wires. For TLM, SystemC [2], [3] has become the most
widely accepted language; meanwhile all big EDA companies
offer Electronic System Level (ESL) design solutions based on
SystemC. This is mainly due to the SystemC TLM standard
enabling the development of reusable and interoperable Intel-
lectual Property (IP). As a C++ class library, SystemC allows
to model hardware and software in one model. Furthermore,
SystemC TLM enables a simulation performance which is
orders of magnitudes faster in comparison to RTL.

In the last years a substantial body of academic and indus-
trial progress in methods for SystemC TLM has been made.
For instance, these include design methodologies [4], algo-
rithms for design space exploration [5], [6] and verification
approaches [7], [8], [9], [10], [11], [12], [13]. However, the
existing debugging solutions for SystemC TLM have serious
limitations (for a detailed discussion we refer to the related
work section). This is a problematic issue since the event-
based communication and process synchronization at TLM as
well as the concurrency makes SystemC debugging extremely
challenging.

In this paper, we propose a new approach for debugging of
SystemC TLM designs. In general, for debugging three steps
are necessary: (1) fault detection (an error trace, or a counter-
example demonstrating the difference between the actual and
expected behavior), (2) fault localization (finding the incorrect
component(s)) and (3) fault correction.

This work targets the problem of fault localization for
SystemC TLM designs extending the concepts of [14]. More

∗This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project SANITAS under contract
no. 01M3088.

precisely, we devise an automatic approach to determine com-
ponents that can be changed such that the intended behavior of
the design is obtained removing the contradiction given by the
error trace. In contrast to [14], components in our case are not
only “simple” program expressions, but TLM specific parts of
a SystemC model which are typically prone to design errors.
For instance, erroneously a blocking transaction is used instead
of a non-blocking transaction or the wrong event is notified
or waited for, etc.

The overall flow of our approach is as follows: We assume
that an error trace demonstrating the incorrect behavior with
respect to the specification is given. Then, the considered
SystemC TLM design is instrumented by adding abnormal
predicates [14] which control the change of a component.
That is, a new variable is introduced and tested in an if-
statement such that the component behavior is either unaltered
or changed based on the above mentioned typical TLM faults.
Then, a formal model in C is generated from the instrumented
design using [12]. This model is fixed to the input values
and the process schedule according to the error trace. Also,
the model execution is constrained to be compliant to the
specification. Now, CBMC (Bounded Model Checking for C
programs [15]) is employed on the final C model to search
for an execution trace. If such a trace exists, we extract a
diagnosis based on the abnormal predicates. This diagnosis
identifies faulty components and possible changes removing
the contradiction given by the error trace.

The remainder of this paper is structured as follows: In
Section II related work is discussed. Section III introduces the
preliminaries, i.e. the basics of SystemC including a running
example are described. Furthermore, the TLM property check-
ing approach [12] which is used for formal model generation
is reviewed. The proposed fault localization approach for
SystemC TLM designs is presented in Section IV. Section V
gives experimental results. Finally, the paper is concluded in
the last section.

II. RELATED WORK

The simplest form of debugging SystemC TLM models
is to use transaction recording and then printing the logged
information. Since this procedure gives poor results only,
alternatives have been developed. In [16] a SystemC-aware
extension for the GDB debugger has been presented. This ap-
proach enhances the observability in comparison to a standard
software debugger but does not compute a reason for a failure.

In [17] an approach for SystemC debugging is presented
which improves the understanding of a failure. It is based
on delta debugging [18] which aims to isolate the failure
cause by narrowing down the difference between a passing and
failing test case. This technique is used in [17] for debugging
of process schedules. However, it does not identify possible
fault locations. Moreover, only a small fraction of the TLM

1 class receiver if : virtual public sc interface {
2 public:
3 virtual void receive(unsigned int) = 0;
4 };
5
6 class slave if : virtual public sc interface {
7 public:
8 virtual void add(unsigned int) = 0;
9 virtual void sub(unsigned int) = 0;

10 };
11
12 class sender : public sc module {
13 public:
14 sc port<receiver if> port;
15 unsigned int v;
16 SC HAS PROCESS(sender);
17 sender(sc module name name) :
18 sc module(name) {
19 v = rand();
20 SC THREAD(main); }
21
22 void main() {
23 while (true) {
24 port−>receive(v);
25 v++;
26 }
27 }
28 };

29 class receiver : public receiver if, public sc module {
30 public:
31 sc event done receiving;
32 sc event done processing;
33 sc port<slave if> port;
34 unsigned int data;
35 SC HAS PROCESS(receiver);
36 receiver(sc module name name) :
37 sc module(name) {
38 SC THREAD(main); }
39
40 void receive(unsigned int x) {
41 data = x;
42 done receiving.notify();
43 wait(done processing);
44 }
45
46 void main() {
47 while (true) {
48 wait(done receiving);
49 if (data != 0) port−>add(data);
50 done processing.notify();
51 }
52 }
53 };

sender

main()

receiver

main()

void receive(...)

slave

void add(...)
void sub(...)

= thread = port = interface

Fig. 1. SystemC TLM example consisting of the three modules: sender, receiver, and slave

specific faults as considered in this work can be handled by
the approach.

For debugging deadlocks specialized methods have been
developed. In [19] the SystemC simulation is monitored and
based on a synchronization dependency graph deadlocks are
reported. The work in [20] introduces a simulation-based
method which modifies the SystemC scheduler such that
wait/notify dependencies and possible cycles resulting in
deadlocks can be found. Improvements using partial order
reduction have been published in [21]. For race analysis a
combination of static analysis and model checking can be
found in [22]. Please note that all these approaches help in
debugging but do not report a diagnosis.

For sequential circuits, a diagnosis approach based on
Boolean Satisfiability (SAT) has been proposed in [23]. Multi-
plexers are inserted into the circuit enabling non-deterministic
replacements of gates. The approach determines fault candi-
dates which fix the counter-examples. In [24] fault localization
for property checking has been presented.

As already mentioned above, we extend the fault local-
ization approach for C programs proposed in [14]. In this
work, we aim fault localization of SystemC TLM designs.
Furthermore, we consider dedicated fault models for these
designs and target concurrency of the TLM models on top
of the SystemC scheduler.

III. PRELIMINARIES

A. SystemC
In the following only the essential aspects of SystemC are

described. SystemC has been implemented as a C++ class
library, which includes an event-driven simulation kernel. The
structure of the system is described with ports and modules,
whereas the behavior is described in processes which are
triggered by events and communicate through channels. A
process gains the runnable status when one or more events of
its sensitivity list have been notified. If more than one process
is runnable, the simulation kernel selects an arbitrary process
and gives this process the control. The execution of a process
is non-preemptive, i.e. the kernel receives the control back if
the process has finished its execution or suspends itself by
calling wait().

The simulation semantics of SystemC can be summarized
as follows [3]: First, the system is elaborated, i.e. instantiation
of modules and binding of channels and ports is carried out.
Then, there are the following steps to process:

1) Initialization: Processes are made runnable.
2) Evaluation: A runnable process is executed or resumes

its execution. In case of immediate notification, a waiting
process becomes runnable immediately. This step is
repeated until no more processes are runnable.

3) Update: Updates of signals and channels are performed.
4) Delta notification phase: If there are delta notifications,

the waiting processes are made runnable, and then it is
continued with Step 2.

5) If there are timed notifications, the simulation time
is advanced to the earliest one, the waiting processes
are made runnable, and it is continued with Step 2.
Otherwise the simulation is stopped.

As a running example we use the SystemC design shown
in Fig. 1. It consists of three modules: one sender, one
receiver and one slave. The sender can initiate a transaction
that sends an unsigned integer to the receiver by calling its
receive method through a port (Line 24, see also the graphical
representation on the right-hand side of Fig. 1). The sender has
one SC THREAD which repeatedly initiates this transaction.
The transaction is synchronized in the receiver by two events
done receiving and done processing as follows. When the
integer is received, the event done receiving will be notified
(immediate notification at Line 42) and receive will be blocked
until the event done processing is notified (respective wait
see Line 43). This notification is issued by the SC THREAD
main of the receiver (immediate notification in Line 50) after
it is waken up by the notification of done receiving and the
processing is done, i.e. the transaction add of the slave module
has finished.

B. Bounded Model Checking for SystemC TLM
In this section we briefly review the approach presented

in [12] for proving properties of SystemC TLM models. The
Property Specification Language (PSL) [25] with extension
of TLM primitives (begin/end of transaction, notification of
event) [26] is used as the property language. In addition to

1 while (runnable count > 0) { // time loop
2 while (runnable count > 0) { // delta cycle loop
3 while (runnable count > 0) { // evaluation loop
4 choose one runnable process();
5 runnable count−−;
6 if (process 1 is chosen) {
7 process 1 status = RUNNING;
8 process 1();
9 }

10 ...
11 if (process n is chosen) {
12 process n status = RUNNING;
13 process n();
14 }
15 }
16 // delta notification
17 ...
18 }
19 // timed notification
20 ...
21 }

Fig. 2. Generated SystemC scheduler

simple safety properties, the effect of transactions and the
causal dependency between events and transactions can be
checked. Sampling at different temporal resolution is also
supported using PSL clock expressions, for instance at certain
events only or at the begin/end of certain transactions.

Summarized, the bounded model checking approach for
SystemC TLM designs works as follows: First, from the
SystemC TLM model, the transformed model M in C is
generated automatically. The transformation consists of three
main steps:

1) The static elaborated structure of the design (i.e. the
module hierarchy, the processes and the port bindings)
is identified. Then the object-oriented features of Sys-
temC/C++ are translated back into plain C.

2) The static scheduler implementing the non-preemptive
simulation semantics of SystemC is generated. The
scheduler skeleton is illustrated in Fig. 2. Note that
before the depicted scheduler loop is entered, each
process gets a global variable indicating its status (RUN-
NING, RUNNABLE, WAITING, or TERMINATED).
Non-deterministic choice, i.e. which runnable process
is to be executed next, is embedded into the evaluation
loop (Line 4 in Fig. 2). This allows a C model checker
to explore all interleavings implicitly.

3) Each event gets a Boolean flag indicating whether it is
notified and an integer variable for the notification delay.
For each process synchronized by an event, a Boolean
flag indicating that the process is waiting for the event
is added. After each potential context switch (a call of
wait()), a label (resume point) is inserted, to resume
the execution of the corresponding process later. The
handling of events is then mapped to the handling of
those variables.

After the model generation, the monitor for the TLM
property is generated as a Finite State Machine (FSM). This
FSM is embedded into M in combination with assertions to
form the transformed model with monitoring logic MP .

For the verification task CBMC [15] is employed on the C
model. The notion of states and how the transition relation is
formed with respect to MP is also detailed in [12]. The basic
idea is to view the current values of the variables as a state
s and each iteration of the outermost loop of the scheduler
(also called the main loop) as the transition relation T . Each
execution of the model can be formalized as a path, which is a

Instrumentation and
model generation

SystemC
TLM design

N
component

changes

Forcing the
process scheduleError trace

Constraining
the execution

CBMC on
final C model

Specification

Trace
found?

Increment N

D = ∅?

Extract fault
location and

update D

yes

no
yes

no

Fig. 3. Overall flow for fault localization

sequence of states s[0..n] = s0s1...sn satisfying the condition
path(s[0..n]) =

∧
0≤i<n T (si, si+1).

The TLM property P holds in the original design, iff no as-
sertion fails during each iteration of the main loop, or in other
words during each transition T (si, si+1). Such a transition is
called safe and written as safe(si, si+1). The BMC problem
is formulated as proving that there exists an execution path of
length k, starting from an initial state, and containing unsafe
transitions: ∃s0...sk.

(
I(s0)∧path(s[0..k])∧¬allSafe(s[0..k])

)
with allSafe(s[0..n]) =

∧
0≤i<n safe(si, si+1) and I is the

characteristic predicate for all initial states.

IV. FAULT LOCALIZATION OF SYSTEMC TLM DESIGNS

We assume that an error trace showing the difference
between the specification and the SystemC TLM design is
given. Such a trace can be obtained by simulation or formal
verification.

The general flow of the proposed fault localization approach
for SystemC TLM designs is depicted in Fig. 3 and consists
of the following four main steps:

1) The SystemC TLM design is instrumented by adding
abnormal predicates which control the change of the
components. There is also a parameter N which limits
the number of components that can be changed. We start
with N = 1 to perform single fault diagnosis at first.

2) The inputs, the non-deterministic variable choices and
the scheduling sequence are fixed to the values given by
the error trace.

3) The execution of the instrumented design is constrained
to traces that are compliant with the specification. Traces
that can reach the end of the execution, do not violate the
specification. Those traces contain N changed compo-
nents which eliminate the faulty behavior demonstrated
by the error trace.

4) The C Bounded Model Checker CBMC [15] is employed
to search for such a trace. If it exists, we extract a
diagnosis based on the abnormal predicates. This diag-
nosis identifies faulty components and possible changes
removing the contradiction given by the error trace. We

iterate this process to compute the set D of all diagnoses.
If it is not possible to find such a trace (i.e. D = ∅), we
increase the value of N and go back to Step 1 to search
for multiple faults.

We use the running example introduced in Section III-A
to explain our approach in more detail. For this example,
the following scenario is considered: According to the
specification the TLM property

always (done receiving.notified −>
next ((data != 0)−>sub:entry))

has been formulated, stating that “after the event
done receiving has been notified, the transaction sub
should start if the value of data is not equal to 0”. Obviously,
the incorrect transaction add is called instead by the design.

With the example and the scenario at hand, we describe the
ingredients of our approach and the flow as follows:

a) Error traces: In our context, an error trace is defined
as an execution of the SystemC TLM model that leads to an
assertion violation. Thus, an error trace of a SystemC TLM
design consists not only of the inputs to the design, but also
the non-deterministic choices made by the SystemC scheduler
need to be taken into account. In particular, the error trace
defines which runnable process is started in each evaluation
loop iteration (see also Fig. 2, Line 4).

In the running example, the error trace leading to the prop-
erty violation contains the input value v = 0 and the schedul-
ing sequence receiver main, sender main, receiver main,
sender main, receiver main (receiver main/sender main de-
notes the SC THREAD main of the receiver/sender).

b) Components: Since a SystemC TLM designs heavily
relies on complex communication mechanisms, they often
cause errors. These mechanisms are based on transactions and
the synchronization is carried out using events. We propose to
use both as components for fault localization. In the following,
we describe our set of components and how to change them to
avoid the error. We also show the relation of the components
to the common faults found in SystemC TLM designs (similar
observations have been reported in [27]).

• Transaction: one of the most common faults is to use a
non-blocking instead of a blocking transaction and vice
versa, or generally calling a similar but incorrect function,
which expect the same set of parameters. Such a fault
can be detected by replacing a function call with another
function within the scope and with the same function
signature.

• Transaction data: transporting incorrect transaction data
can also cause the design to malfunction. Function param-
eter can be changed to a non-deterministic value to detect
those errors in the same way as expression debugging of
C programs.

• Concurrent function: the wrong use of concurrent func-
tions, e.g. using untimed instead of timed constructs or
using the wrong parameter for wait/notify may result
in a deadlock. Therefore, we allow the change of time
parameter for wait/notify and the exchange of untimed
and timed wait/notify.

• Event: waiting for or notifying an incorrect event respec-
tively, can also cause faulty behavior. Such an error can
be modeled by replacing the event used in wait/notify by
another event within the scope.

1 int diag = nondet uint();
2 ...
3 class receiver : public receiver if, public sc module {
4 public:
5 ...
6 void receive(unsigned int x) {
7 data = x;
8 if (diag == 1) done processing.notify();
9 else if (diag = 2) done receiving.notify(nondet uint());

10 else done receiving.notify();
11 if (diag == 3) wait(done receiving);
12 else if (diag == 4) wait(done processing, nondet uint());
13 else wait(done processing);
14 }
15
16 void main() {
17 while (true) {
18 ...
19 if (data != 0) {
20 if (diag == 7) port−>sub(data);
21 else if (diag == 8) port−>add(nondet uint());
22 else port−>add(data);
23 }
24 ...
25 }
26 }
27 };

Fig. 4. Instrumented SystemC example

In addition, we can also add the expressions (right-hand
sides of assignments, the conditions of if, while, and case
statements, etc.) in the design to the set of components.

For our example, the components for fault localization are
the parameter x and data of the transaction receive and add
respectively, both events done receiving and done processing,
the calls of wait and notify and the transaction add, since the
slave also offers the function sub with the same signature.

c) Instrumentation: The general procedure for instru-
mentation of a SystemC TLM design is based on the re-
placement of a C++ statement by a new statement. This new
statement consists of several of if/else blocks which model
the possible changes of the component as described above. For
instance, the event notification statement “e1.notify()” is replaced
by

if (diag == i) e2.notify();
else if (diag = i + 1) e1.notify(nondet uint());

else e1.notify();

where diag is a new variable inserted at the beginning of the
model and i is a unique integer. Note that the value of diag
will be chosen non-deterministically by the model checker.
As can be seen the immediate notification e1.notify() can be
changed to an immediate notification of another event, here e2,
in the case when diag equals i, or a delta notification (timed
notification) of e1 using the argument 0 (greater than 0) in the
case diag equals i + 1.

Parts of the instrumented design of the running example
are depicted in Fig. 4. In Line 8 the instrumentation for
the notification of done receiving is shown. This follows
exactly the example described in the previous paragraph. Then,
Line 11 gives the replacement of the wait for the event
done processing. Finally, in Line 20 the replacement for the
initiated transaction add is listed. As can be seen, the sub
transaction may be called instead, a non-deterministic value
for the transaction argument may be used, or the behavior is
unaltered.

d) Forcing the process schedule: The inputs of the design
can be set according to the trace without any problem. How-
ever, forcing the process schedule requires modifications of
the generated scheduler. Those modifications are challenging
to implement efficiently with the scheduler shown in Fig. 2.

1 while (runnable count > 0) { // evaluation loop
2 choose one runnable process();
3 runnable count−−;
4 if (process 1 is chosen) {
5 process 1 status = RUNNING;
6 process 1();
7 }
8 ...
9 if (process n is chosen) {

10 process n status = RUNNING;
11 process n();
12 }
13 if (runnable count == 0) {
14 // delta notification
15 ...
16 }
17 if (runnable count == 0) {
18 // timed notification
19 ...
20 }
21 }

Fig. 5. New implementation of the scheduler

The main reason is that the scheduler consists of three nested
loops which have to be unwound adequately for CBMC to
check all possible executions.

Due to page limitation, we cannot discuss this problem in
detail. We propose instead an equivalent scheduler with only
one loop. The new scheduler shown in Fig. 5 has been derived
by exploiting the fact that the nested scheduler loops in Fig. 2
share the same loop condition runnable count > 0. The single loop
of the new scheduler corresponds to the evaluation loop. The
preservation of the simulation semantics can be explained as
follows using Fig. 5: If Line 14 is reached, it means there
is no more runnable process, thus the current evaluation loop
iteration is finished and the delta notification phase is entered.
If we have at least one runnable process (runnable count > 0)
after this phase, the timed notification phase (Line 18) is
skipped and the execution continues with a new evaluation
loop iteration. Otherwise (runnable count == 0), the current delta
cycle is over and therefore the timed notification phase can
start (Line 18). If this phase makes at least one process
runnable, a new evaluation loop iteration starts. Otherwise,
the loop condition on Line 1 fails and the simulation stops.

With the new scheduler the process schedule can be forced
easily according to the error trace: we unwind the evaluation
loop and keep only the corresponding scheduled process in
each unwound iteration. For the running example, the evalua-
tion loop needs to be unwound five times, because the process
schedule has five elements. In the first iteration, we execute
receiver main, in the second iteration, sender main and so on.
The first two unwound iterations are shown in Fig. 6.

e) Constrained execution and CBMC: We constrain the
execution of the C model of the instrumented design to traces
that are compliant with the specification. If the specification
is given as a TLM property we simply convert all assertions
(which are part of the monitoring logic of the corresponding
FSM) to assumptions. After that, the assertion assert(false)
is added to the execution point where the finite error trace
ends. Then, we can run CBMC on the final C model thereby
following [12]. From a compliant trace, we extract the value
of diag providing us the to be changed component as well
as the change. We add this to the set D of all diagnoses.
Furthermore, we constrain the design such that in the next
iteration diag cannot get the same value again. We repeat the
process until no more traces can be found. If no trace has been
found (i.e. D = ∅), we need to increase N to look for multiple

1 //
2 // first unwound iteration
3 runnable count−−;
4 receiver main status = RUNNING;
5 receiver main(); // first scheduled process
6 if (runnable count == 0) {
7 // delta notification
8 ...
9 }

10 if (runnable count == 0) {
11 // timed notification
12 ...
13 }
14 //
15 // second unwound iteration
16 runnable count−−;
17 sender main status = RUNNING;
18 sender main(); // second scheduled process
19 if (runnable count == 0) {
20 // delta notification
21 ...
22 }
23 if (runnable count == 0) {
24 // timed notification
25 ...
26 }
27 ...

Fig. 6. Forcing the process schedule of the running example

faults. For the instrumentation phase this basically means that
we extend diag to a N -dimensional vector and modify the
if-conditions respectively.

For the running example, our approach provides only one
diagnosis, where the variable diag is assigned to 7. The
diagnosis means that if the transaction sub is initiated instead
of add, the property violation is eliminated. This is indeed a
correct bug-fix for the design.

V. EXPERIMENTS

In this section the experimental results are presented and
discussed. All experiments have been carried out on a 3 GHz
Intel Xeon system with 4 GB RAM running Linux. Further-
more, CBMC v3.6 [15] has been used.

A. Sender receiver TLM design

In comparison to the running example, the functionality
of the sender receiver TLM design is much more complex.
The sender has a memory addressed from 0 to 1023 which is
modeled as an array of 1024 integers. The sender can initiate a
transaction send(x,y) which sends the content of the memory
from address x to address y (exclusive) to the receiver. The
data is transported to the receiver through a FIFO of size 32.
The FIFO implementation has been taken from the official
SystemC distribution. Both transactions read and write of
the FIFO are blocking transactions. We have extended the
implementation to include non-blocking read and write. At
the start of the transaction send, the sender initiates another
transaction send num that delivers the number M of integers to
be sent directly to the receiver (M = y - x) . The receiver will
then try to read M integers from the FIFO. The transaction
send is blocked by waiting for an event until the receiver
finishes reading from the FIFO and notifies the event.

We show the quality of our approach on three slightly mod-
ified designs denoted as SR1, SR2, SR3 in the following. Each
of those designs contains one bug. A summary is provided in
Table I. The first column gives the length L of the error trace
measured in terms of states as report by CBMC. The second
column shows the number of diagnoses and the last column
provided the total run-time to compute all diagnoses.

TABLE I
RESULTS OF THE SENDER RECEIVER TLM DESIGN

Design L |D| Time
SR1 1880 1 84.65s
SR2 2264 3 92.31s
SR3 1332 3 81.46s

TABLE II
RESULTS OF JPEG ENCODER DESIGN

Design L |D| Time
JPEG1 1091 1 13.17s
JPEG2 1778 1 77.28s

Due to page limitation, we only discuss two of the ex-
periments in more detail. In the design SR1, the incorrect
value of M = y - x + 1 is delivered to the receiver by the
transaction send num because the address range from x to y is
erroneously assumed to consist of all address values including
the address y. This bug can be classified into the category
incorrect transaction data. It causes the design to deadlock,
because the receiver is blocked while trying to read from
the empty FIFO. Our approach is able to localize the fault
accurately. CBMC gives us only one diagnosis, where the
value of diag corresponds to the faulty component send num.
Furthermore, the value of M has also been lower than y - x + 1
in the diagnosis, indicating that this value M needs to be
reduced.

The bug in SR2 is to use the non-blocking transaction write
of the FIFO in the sender. Because of the circular behavior
of the FIFO, if more than 32 (the FIFO size) integers are
sent to the receiver, only the last 32 ones are kept. This
incorrect behavior is detected by checking the property P
“The first integer read from the FIFO should be equal to the
value of the memory cell with address x at the start of the
transaction send(x, y)”. Our approach determines a total of
three diagnoses. The first diagnosis identifies send num as the
faulty component and suggests to repair the bug by assigning
a negative argument to send num which is useless. The other
two diagnoses identify the faulty component, the non-blocking
write, accurately. Under the assumption that the first of the 32
integers kept in the FIFO was put by the k-th write transaction,
one diagnosis tries to repair the error by changing the argument
of this transaction to match the asserted value. This diagnosis
can also be ignored. The other gives the correct repair that
changes the non-blocking write to its blocking variant.

B. JPEG Encoder

The second design considered is the TLM implementation
of a part of a JPEG encoder taken from [12]. The design
consists of eight modules communicating through a bus. We
consider two variants of the design denoted as JPEG1 and
JPEG2. The first (second) design contains a write (read)
transaction with an incorrect bus address computation. In both
cases, our approach was able to identify the faulty component
accurately. The results are provided in Table II with the same
table layout as Table I.

C. Summary

For all designs, the run-time to determine the fault locations
was very short. In all cases, the approach was able to find the
correct diagnosis and repair. For SR2 and SR3, a few spurious

diagnoses have also been found, but with nearly no effort, they
have been ruled out.

VI. CONCLUSIONS

We have presented an automatic fault localization approach
for SystemC TLM designs. The approach targets in particular
typical TLM faults like e.g. the call of a blocking transaction
instead of a non-blocking one (and vice versa) or the initiation
of the wrong transaction as well as erroneous process synchro-
nization. These faults are modeled in the SystemC TLM design
by integrating abnormal predicates such that the corresponding
components can be changed. Then, formal methods based
on BMC are employed to determine possible fault locations.
Among the source code position to be changed they also
include a change or possible values such that the intended
behavior of the design is obtained removing the contradiction
given by the error trace.

For different SystemC TLM examples we have shown that
our approach finds the fault locations very fast. If more
than one fault locations result, the spurious cases can be
identified quickly by the user. Thus, the debugging process
is significantly accelerated by our approach.

REFERENCES

[1] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in CODES+ISSS,
2003, pp. 19–24.

[2] OSCI, “SystemC,” 2010, available at http://www.systemc.org.
[3] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666, 2005.
[4] F. Ghenassia, Transaction-Level Modeling with SystemC: TLM Concepts and

Applications for Embedded Systems. Springer, 2006.
[5] S. Boukhechem and E. Bourennane, “TLM platform based on SystemC for starsoc

design space exploration,” Adaptive Hardware and Systems, NASA/ESA Conference
on, pp. 354–361, 2008.

[6] N. Bombieri, F. Fummi, and D. Quaglia, “System/network design-space explo-
ration based on TLM for networked embedded systems,” ACM Trans. Embed.
Comput. Syst., vol. 9, no. 4, pp. 1–32, 2010.

[7] W. Ecker, V. Esen, T. Steininger, M. Velten, and M. Hull, “Interactive presentation:
Implementation of a transaction level assertion framework in SystemC,” in DATE,
2007, pp. 894–899.

[8] N. Bombieri, F. Fummi, and G. Pravadelli, “Incremental ABV for functional
validation of TL-to-RTL design refinement,” in DATE, 2007, pp. 882–887.

[9] M. Y. Vardi, “Formal techniques for SystemC verification,” in DAC, 2007, pp.
188–192.

[10] L. Ferro and L. Pierre, “Formal semantics for PSL modeling layer and application
to the verification of transactional models,” in DATE, 2010, pp. 1207–1212.

[11] D. Große and R. Drechsler, Quality-Driven SystemC Design. Springer, 2010.
[12] D. Große, H. M. Le, and R. Drechsler, “Proving transaction and system-level

properties of untimed SystemC TLM designs,” in MEMOCODE, 2010, pp. 113–
122.

[13] H. M. Le, D. Große, and R. Drechsler, “Towards analyzing functional coverage
in SystemC TLM property checking,” in HLDVT, 2010, pp. 67–74.

[14] A. Griesmayer, S. Staber, and R. Bloem, “Automated fault localization for C
programs,” Electr. Notes Theor. Comput. Sci., vol. 174, no. 4, pp. 95–111, 2007.

[15] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C programs,”
in TACAS, 2004, pp. 168–176.

[16] F. Rogin, C. Genz, R. Drechsler, and S. Rülke, “An integrated SystemC debugging
environment,” in FDL, 2007, pp. 140–145.

[17] F. Rogin, R. Drechsler, and S. Rülke, “Automatic debugging of system-on-a-chip
designs,” in IEEE International SOC Conference, 2009, pp. 333–336.

[18] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,”
IEEE Trans. Software Eng., vol. 28, no. 2, pp. 183–200, 2002.

[19] E. Cheung, P. Satapathy, V. Pham, H. Hsieh, and X. Chen, “Runtime deadlock
analysis of SystemC designs,” in HLDVT, 2006, pp. 187 –194.

[20] A. Sen, V. Ogale, and M. S. Abadir, “Predictive runtime verification of multi-
processor SoCs in SystemC,” in DAC, 2008, pp. 948–953.

[21] S. Kundu, M. Ganai, and R. Gupta, “Partial order reduction for scalable testing
of SystemC TLM designs,” in DAC, 2008, pp. 936–941.

[22] N. Blanc and D. Kroening, “Race analysis for SystemC using model checking,”
in Int’l Conf. on CAD, 2008, pp. 356–363.

[23] A. Smith, A. G. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using boolean satisfiability,” IEEE Trans. on CAD, vol. 24, no. 10, pp.
1606–1621, 2005.

[24] G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault localization for
property checking,” IEEE Trans. on CAD, vol. 27, no. 6, pp. 1138–1149, 2008.

[25] Accellera Property Specification Language Reference Manual, version 1.1,
http://www.pslsugar.org, 2005.

[26] D. Tabakov, M. Vardi, G. Kamhi, and E. Singerman, “A temporal language for
SystemC,” in FMCAD, 2008, pp. 1–9.

[27] N. Bombieri, F. Fummi, and G. Pravadelli, “A mutation model for the SystemC
TLM 2.0 communication interfaces,” in DATE, 2008, pp. 396–401.

