
Towards Proving TLM Properties with
Local Variables ∗

Hoang M. Le Daniel Große Rolf Drechsler
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

{hle, grosse, drechsle}@informatik.uni-bremen.de

Abstract—With the growing popularity and adoption of Elec-
tronic System Level (ESL) design, the verification of SystemC
models at Transaction Level (TLM) has become an important
research problem. In the context of formal verification, most
of the existing approaches for SystemC TLM only consider
basic properties such as deadlock-freedom or local assertions.
In previous work, a high-level BMC-based property checking
approach has been introduced. This approach enables to verify
important TLM behavior such as the effect of a transaction
and that the transaction is only started after a certain event.
This paper proposes an extended approach to handle properties
with local variables. The variables are used to store data values
which will be referenced later at certain TLM events. By this,
data integrity can be formally verified. A technique to improve
the efficiency by avoiding the need to consider overlapping
scenarios is included. Preliminary results obtained by applying
the proposed approach to a design from the OSCI SystemC
distribution are presented.

I. INTRODUCTION

Even if significant improvements in verification techniques
have been achieved in the recent years, verification contin-
ues to dominate the overall design costs. To manage the
steadily increasing complexity, raising the level of abstraction
in modeling has been exercised in the past years. As a result,
Electronic System Level (ESL) design has emerged [1]. In
this context, SystemC [2], [3] and its standardized Transaction
Level Modeling (TLM) abstraction have entered into industry.
ESL design using TLM enables early functional verification
without considering detailed hardware implementations.

However, for SystemC TLM only a few formal verification
approaches have been presented [4], [5], [6], [7], [8]. The
majority of them can only verify basic properties such as
deadlock-freedom or local assertions. In [7], a property check-
ing approach has been introduced enabling the verification of
important TLM behavior such as the effect of a transaction and
that the transaction is only started after a certain event. The
approach is based on Bounded Model Checking (BMC) [9]
and uses CBMC, an implementation for C programs [10].
The TLM properties are specified in the Property Specification

∗This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project SANITAS under contract
no. 01M3088 and by the German Research Foundation (DFG) within the
Reinhart Koselleck project DR 287/23-1.

Language (PSL) [11], [12]. However, a major class of behavior
cannot be verified with this approach since local variables are
not supported. Local variables are necessary if data needs to
be captured in a certain situation and this data needs to be
referenced later during the execution of the TLM model. For
instance, properties describing data integrity cannot be formu-
lated without local variables. A formal semantics extending
PSL with local variables can be found in [13]. At RTL several
solutions exist, see e.g. [14]. For SystemC however, only the
simulation-based approach [15] targets the problem of local
variables.

In this paper we extend the approach in [7] to support local
variables enabling the verification of data integrity properties.
We show how to adopt the monitoring logic that is generated
for a TLM property. We also present a technique to improve
the efficiency of the underlying BMC proof. Essentially, we
use non-determinism to avoid the explicit consideration of
different overlapping evaluations of a TLM property.

The remainder of this paper is structured as follows:
Section II provides the basics of SystemC and reviews the
TLM property checking approach. Then, in Section III the
enhancement for local variables is introduced. First results
are given in Section IV. Finally, the paper is concluded in
Section V.

II. PRELIMINARIES

A. SystemC Basics

In the following only the essential aspects of SystemC are
described. For more details we refer to [16], [17]. SystemC
has been implemented as a C++ class library, which includes
an event-driven simulation kernel. The structure of the system
is described with ports and modules, whereas the behavior
is described in processes which are triggered by events and
communicate through channels. A process gains the runnable
status when one or more events of its sensitivity list have been
notified. The simulation kernel selects one of the runnable
processes and gives this process the control. The execution of
a process is non-preemptive, i.e. the kernel receives the control
back if the process has finished its execution or suspends
itself by calling wait(). Basically SystemC offers the following
variants of wait() and notify() for event-based synchronization:

• wait(time) suspends the current process for the given time
duration.

• wait(event) suspends the current process until the notifi-
cation of the event.

• wait(time, event) suspends the current process for the
given time duration or until the notification of the event,
whichever comes first.

• notify(event) or event.notify() notifies the event immedi-
ately. Thus, a process waiting for event becomes runnable
in the current delta cycle. Such an event notification is
called immediate notification.

• notify(event, delay) or event.notify(delay) notifies the
event after the given time delay. Such an event notification
is called timed notification and delta notification in the
special case of zero delay.

The simulation semantics of SystemC can be summarized
as follows [3]: First, the system is elaborated, i.e. instantiation
of modules and binding of channels and ports is carried out.
Then, there are the following steps to process:

1) Initialization: Processes are made runnable.
2) Evaluation: A runnable process is executed or resumes

its execution. In case of immediate notification, a waiting
process becomes runnable immediately. This step is
repeated until no more processes are runnable.

3) Update: Updates of signals and channels are performed.
4) Delta notification: If there are delta notifications, the

waiting processes are made runnable, and then it is
continued with Step 2).

5) Timed notification: If there are timed notifications, the
simulation time is advanced to the earliest one, the
waiting processes are made runnable, and it is continued
with Step 2). Otherwise the simulation is stopped.

B. High-Level Properties for SystemC

This section briefly describes the PSL-based language used
in [7] for property specification. In [12] additional primitives
have been introduced to PSL allowing to specify properties at
high level of abstraction. Besides the variables in the design,
the following primitives are used:

• func name:entry - start of a function/transaction

• func name:exit - end of a function/transaction

• event name:notified - notification of an event

• func name:number - return value in case number = 0
and parameters of a function/transaction otherwise

The default temporal resolution samples at all system events,
which is either the start or the end of any transaction or the
notification of any event. It is possible to change the temporal
resolution, e.g. to sample only at notification of a certain event.
As temporal operators, always and next are allowed. Different
useful types of properties are summarized in the following.

1) Simple safety properties: This type of properties concern
values of variables of the TLM model during the execution,
e.g. the values of some certain variables should always sat-
isfy a given constraint. Generally, this property type can be
expressed by a C++ logical expression.

2) Transaction properties: This type of properties can be
used to reason about a transaction effect, e.g. checking whether
a request or a response (both are parameters or return value
of some functions) is invalid or whether a transaction is
successful.

3) System-level properties: These properties focus on the
order of occurrences of system events, e.g. a given transaction
should only begin after a certain event has been notified.

In the remainder of this paper, we also refer to these prop-
erties as TLM properties. A TLM property can be converted to
an equivalent Finite State Machine (FSM), which can be used
to check if an execution trace satisfies the property. Checking
whether the property holds during the execution of the design
is done by embedding the FSM into the design together with
assertions creating a monitoring logic. Examples for properties
and FSMs are given in Section III.

C. TLM Property Checking

In this section we briefly review the approach presented
in [7] for proving high-level properties of SystemC TLM mod-
els. The approach works as follows: First, from the SystemC
TLM model, the transformed model M in C is generated
automatically. The transformation consists of three main steps:

1) The static elaborated structure of the design, i.e. the
module hierarchy, the processes and the port bindings, is
identified. Then the object-oriented features of System-
C/C++ are translated back into plain C. Each object is
statically allocated by making its member variables and
functions global. The constructors are also transformed
to global functions, which are called to initialize the
allocated variables. After this step, the SystemC TLM
model becomes a set of SystemC processes communi-
cating over global variables under the non-preemptive
simulation semantics.

2) The static SystemC scheduler is generated. The sched-
uler skeleton is illustrated in Fig. 1. As can be seen, it
contains all phases from 2 to 5 described in Section II-A.
Note that before the depicted scheduler loop is entered,
each process gets a global variable indicating its sta-
tus (RUNNING, RUNNABLE, WAITING, or TERMI-
NATED). Non-deterministic choice, i.e. which runnable
process is to be executed next, is embedded into the
evaluation loop (Line 2 in Fig. 1). This allows C model
checkers to explore all interleavings implicitly.

3) To implement the non-preemptive, event-based simu-
lation semantics of SystemC, the handling of events
and context switches is mapped to the handling of a
set of simple variables. Each event gets a Boolean flag

1 while (runnable count > 0) { // evaluation loop
2 choose one runnable process();
3 runnable count−−;
4 if (process 1 is chosen) process 1();
5 ...
6 if (process n is chosen) process n();
7 if (runnable count == 0) {
8 // delta notification
9 if (event 1 has been delta notified)

10 make all waiting processes runnable();
11 ...
12 if (event m has been delta notified)
13 make all waiting processes runnable();
14 }
15 if (runnable count == 0) {
16 // timed notification
17 t = get smallest notification delay();
18 advance simulation time by(t);
19 reduce all delays by(t);
20 if (notification delay of event 1 == 0)
21 make all waiting processes runnable();
22 ...
23 if (notification delay of event m == 0)
24 make all waiting processes runnable();
25 }
26 }

Fig. 1. Generated SystemC scheduler

indicating whether it is notified and an integer variable
for the notification delay. For each process synchronized
by an event, a Boolean flag indicating that the process
is waiting for the event is added. After each potential
context switch (a call of wait()), a label is inserted, to
resume the execution of the corresponding process later.

After the model generation, the FSM for the TLM property
is embedded into the transformed C model M in combination
with assertions to form the transformed model with monitoring
logic MP . For the verification task, BMC is employed on the
C model. The notion of states and how the transition relation
is formed with respect to MP is also detailed in [7]. The basic
idea is to view the current values of the variables as a state
s and each iteration of the scheduler loop as the transition
relation T . Each execution of the model can be formalized
as a path, which is a sequence of states s[0..n] = s0s1...sn

satisfying the condition path(s[0..n]) =
∧

0≤i<n T (si, si+1).
The TLM property P holds in the original design, iff no

assertions (introduced by the monitoring logic) fail during
each iteration of the main loop, or in other words during
each transition T (si, si+1). Such a transition is called safe
and written as safe(si, si+1). The BMC problem is formulated
as proving that there exists an execution path of length k,
starting from an initial state, and containing unsafe tran-
sitions: ∃s0...sk.

(
I(s0) ∧ path(s[0..k]) ∧ ¬allSafe(s[0..k])

)
with allSafe(s[0..n]) =

∧
0≤i<n safe(si, si+1) and I is the

characteristic predicate for all initial states. The BMC-based
verification is done by unrolling the scheduler loop (i.e. the

1 class fifo : public sc channel, ... {
2 ...
3 void write(char c in) {
4 while (num elements == max) wait(read event);
5 data[(first + num elements) % max] = c in;
6 ++ num elements;
7 write event.notify();
8 }
9

10 void read(char &c out){
11 while (num elements == 0) wait(write event);
12 c out = data[first];
13 −− num elements;
14 first = (first + 1) % max;
15 read event.notify();
16 }
17 ...
18 };

Fig. 2. simple fifo example

transition relation) to a certain depth and applying CBMC [10]
to the unrolled C model. For efficiency and completeness, an
induction-based proof technique has also been developed. We
refer to [7] for more details.

III. PROVING TLM PROPERTIES WITH LOCAL VARIABLES

We first motivate the need for local variables in TLM
properties. Then, an informal semantics for TLM properties
with local variables (also referred to as TLMLV properties
in the remainder of this paper) is given. Afterwards, the
monitoring logic for such properties is described based on
this semantics. This monitoring logic is embedded in the
transformed C model enabling the formal verification of the
considered TLMLV property using [7]. Furthermore, we can
improve the verification efficiency by an optimization shown
in the last part.

A. Motivating Example

We consider the simple fifo example included in the official
OSCI SystemC distribution. The design consists of a consumer
module and a producer module communicating over a circular
FIFO channel. Both modules have their own SC THREAD.
The producer puts an infinite sequence of random characters
into the FIFO and will be blocked if the FIFO becomes full.
The consumer tries to read characters from the FIFO and
will also be blocked if the FIFO becomes empty. The imple-
mentation of the FIFO channel is depicted partially in Fig. 2
with the blocking mechanism shown on Line 4 and Line 11.
The notification of read event and write event indicates that
a character has been read or written, respectively (Line 7 and
Line 15).

For this design, the following TLM property can be spec-
ified and proven using the approach proposed in [7]: Af-
ter a notification of write event, among the next max (the

P1: default clock = read event.notified || write event.notified;
always (write event.notified −>next e[1:max] read event.notified)

P2: default clock = read event.notified || write event.notified;
always ((write event.notified && c in == ’A’)−>next e[1:max] (read event.notified && c out == ’A’))

P3: default clock = read event.notified || write event.notified;
always ((write event.notified, var x = c in)−>next e[1:max] (read event.notified && c out == x))

Fig. 3. TLM Properties for simple fifo

sI

r

sB

r
w

s1

r

w
s2

r

w
s3

r

w
s4

r

w
sX

r || w

w

r = read event:notified, w = write event:notified

Fig. 4. FSM for P1

FIFO size) notifications there is at least one notification of
read event. This is formulated in PSL syntax as the first
property P1 in Fig. 31. This property allows to check whether
the synchronization of read and write is correct, but it does
not ensure data integrity (i.e. the characters read from and
written to the FIFO are the same). For example, if Line 14 is
omitted, P1 still holds. The second property P2 in Fig. 3 is a
strengthened version of P1 to verify data integrity partially. P2
states that if a character A is written to the FIFO, then the same
character should be read from the FIFO during the next max
notifications. Clearly, checking the property for every possible
character value is impractical. A better solution is to save
the value of c in at the notification of write event in a local
variable and compare it to c out at an appropriate notification
of read event. This can be achieved by augmenting P1 with
a local variable x as shown in the third property P3 in Fig. 3.
We adopt a very simple syntax: a local variable x is introduced
in its first assignment var x = expression. The next sections
discuss the semantics of such properties and how to verify
them.

B. Informal Semantics

First, we emphasize that the focus of this paper is not on
general PSL properties with local variables. We restrict our
discussion to TLM properties as described in Section II-B,
augmented with local variables so that the values of some
variables of interest can be captured and referenced to during

1The default clock statement is used to define the temporal resolution. Here,
a system event occurs if the read or write event is notified.

the evaluation of the property. For this class of properties,
subtle formal semantics issues can be avoided. Instead, it is
sufficient to use the following informal semantics based on the
equivalent FSM of a TLM property.

Generally, such a FSM consists of an initial state, several
intermediate states, and one state indicating that the property
is violated. Transitions between states are conditioned by the
occurrence of system events and the values of the SystemC
TLM model variables at sampling points as specified by the
property. The FSM for the property P1 for the case max = 5
is shown in Fig. 4. The state sB marks the begin of the
evaluation after write event has been notified. Each state sk

corresponds to the status of the evaluation after k notifications.
A notification of read event enables the transition from each
sk to the initial state sI indicating a successful evaluation.
A notification of write event enables the transition from s4

to sX indicating a violation of P1, because read event must
have been notified.

Note that it is possible that a new evaluation for the property
must be started before previous evaluations have ended, for
example consider several consecutive notifications of the event
write event. These overlapping evaluations can be handled
using tokens: Assume that there are an infinite number of
tokens in the initial state. Each time an evaluation is triggered,
a token is moved from the initial state to the first intermediate
state. Every other enabled transition moves all tokens from
the source state to the destination. The property fails as soon
as a token is moved into the violating state. An evaluation
is successful if the corresponding token is returned to the

initial state.
For TLMLV properties, the transitions need to be aug-

mented to include assignments. Consider P3 for exam-
ple, the transition from sI to sB in Fig. 4 becomes
write event:notified, x = c in. The tokens also need to be
extended to store the captured values. Let x1, . . . , xn be the
local variables defined in the considered property. Each token
contains a vector of n values (v1, . . . , vn), which are first
undefined as the token is moved into the first intermediate
state. Then, when xi is assigned/referenced in an enabled
transition, the value of vi is updated/used accordingly.

C. Monitoring TLMLV Properties

Now, we describe how to generate the monitoring logic to
be embedded in the transformed C model. For simulation, we
can dynamically create a new token for each new evaluation
and free it after the evaluation is done. This is not possible in
the context of formal verification, instead we need to determine
an upper-bound for the number of overlapping evaluations (i.e.
the number of tokens needed). Then, the tokens are statically
allocated and each token will be reused after the corresponding
evaluation is finished. For TLM properties, an upper-bound
is the maximum number of sampling points needed for each
evaluation. This number can be determined from the syntax
of the considered property, for example it is equal to max for
the property P3 because of the operator next e[1:max]. For
each token, we need n C variables for the values of vi and
one additional variable memorizing the current position of the
token in the FSM.

The monitoring logic for P3 is shown in Fig. 5 and 6 for a
notification of write event and read event, respectively. These
are to be embedded in the transformed C model right after the
positions where a notification of write event or read event
is performed. The variable pos 1 indicates the position of
the first token, and val 1 is the associated value to capture
the value of c in. Line 14 of Fig. 5 and Line 12 of Fig. 6
verify that the token cannot reach the violating state. The
FSM transitions are implemented in the if-statements. A token
can be used for a new evaluation if its current position is
sI . The value of the variable tk found specifies if a token
has been used for the new evaluation already and therefore
other available tokens should not be taken. This behavior is
exemplarily implemented on Line 9 of Fig. 5. If the condition
is satisfied, the first token is moved to state sB , the associated
value val 1 is assigned to the current value of c in, and the
flag tk found is raised. This value val 1 will be compared to
c out whenever read event is notified as can be seen in Fig. 6.

After the monitoring logic has been embedded into the
transformed C model, we apply [7] to verify the property.
Note that we can optimize the number of tokens needed using
the flag tk found. Starting with one token, if a new evaluation
should start and all tokens are occupied (tk found == false
after examining all tokens), we increase the number of tokens

1 tk found = false;
2
3 // first token
4 if (pos 1 == s4) pos 1 = sX;
5 if (pos 1 == s3) pos 1 = s5;
6 if (pos 1 == s2) pos 1 = s4;
7 if (pos 1 == s1) pos 1 = s3;
8 if (pos 1 == sB) pos 1 = s1;
9 if (pos 1 == sI && !tk found) {

10 pos 1 = sB;
11 val 1 = c in;
12 tk found = true;
13 }
14 assert(pos 1 != sX);
15
16 // second token
17 if (pos 2 == s4) pos 2 = sX;
18 ...

Fig. 5. Monitoring logic for P3 – write event:notified

1 // first token
2 if (pos 1 == s4)
3 { if (val 1 == c out) pos 1 = sI; else pos 1 = sX; }
4 if (pos 1 == s3)
5 { if (val 1 == c out) pos 1 = sI; else pos 1 = s4; }
6 if (pos 1 == s2)
7 { if (val 1 == c out) pos 1 = sI; else pos 1 = s3; }
8 if (pos 1 == s1)
9 { if (val 1 == c out) pos 1 = sI; else pos 1 = s2; }

10 if (pos 1 == sB) {
11 { if (val 1 == c out) pos 1 = sI; else pos 1 = s1; }
12 assert(pos 1 != sX);
13
14 // second token
15 if (pos 2 == s4)
16 { if (val 2 == c out) pos 2 = sI; else pos 2 = sX; }
17 ...

Fig. 6. Monitoring logic for P3 – read event:notified

needed and start the verification again. This situation can be
detected by inserting assert(tk found) at appropriate positions
allowing CBMC to report a failure. By applying this incre-
mental procedure, the exact maximum number of overlapping
evaluations can be determined. However, a better optimization
can be achieved even if this maximum number is equal to the
upper-bound as for P3. We present this optimization in the
next section.

D. Avoiding Overlapping Evaluations

Using the method described in the last section, we need
in the worst case m tokens, each requires n + 1 additional
variables, where n is the number of local variables in the
property and m is the bound of the property (i.e. maximum
number of sampling points needed for each evaluation). It is
well-known that the more additional variables are introduced

TABLE I
RESULTS FOR PROVING DATA INTEGRITY ON FIFO DESIGN

FIFO Size IP OPT
max = 5 47.90s 22.25s
max = 10 877.43s 220.69s

the less efficient the verification becomes because of the larger
state space. Furthermore, the monitoring logic for each token
also makes the verification model larger.

We can reduce the number of tokens needed to just one
by introducing non-determinism. The basic idea is that if we
start one evaluation of the property from a non-deterministic
state of the transformed C model, this evaluation also covers
all possible evaluations implicitly and thus we do not need
to consider overlapping evaluations. The non-deterministic
first state of the C model can be modeled by assigning all
variables to a non-deterministic value (the construct nondet()
is supported directly by CBMC). This non-deterministic first
state has been also used to carry out the induction-based proof
in [7].

The optimized verification method for TLMLV properties
works as follows. After non-determinism has been injected
in the first state of the transformed C model, we embed the
monitoring logic for the considered TLMLV property using
only one token. Then, the scheduler loop (i.e. transition
relation) is unrolled and CBMC is applied as in [7]. We
need to ensure that the unrolling depth is sufficient to cover
one full evaluation because otherwise the property will be
satisfied vacuously. This unrolling depth can be determined
by integrating an additional counter sp cnt for the number of
passed sampling points. At the end of the unrolled C model,
sp cnt is asserted to be equal to or greater than the bound
m of the considered TLMLV property. The verification is only
considered successful if this assertion holds in all possible
executions of the unrolled C model. If the assertion has failed,
the unrolling depth needs to be increased.

IV. EXPERIMENTAL EVALUATION

In this section, we present the first results for proving
TLMLV properties on the introduced SystemC TLM FIFO
design. The experiments have been carried out on a 3.4 GHz
AMD Phenom II system with 8 GB RAM running Linux.
Furthermore, CBMC v4.0 [10] has been used. The results
for proving P3 for the FIFO size of 5 and 10 are depicted
in Table I (please note that our automated generation of
monitoring logic does not support local variables yet, therefore
the monitoring logic for P3 must be manually created and
hence only small FIFO sizes have been considered). Column
IP show the run-times for proving P3 using the monitoring
logic described in Section III-C and the induction-based proof
method [7]. These results show that data integrity properties
for SystemC TLM models can be formally proven. The
run-times for proving P3 using the proposed optimization

in Section III-D is presented in column OPT. As can be
seen, the verification efficiency for TLMLV properties can be
considerably improved by using the proposed optimization.

V. CONCLUSIONS

We have presented an extended approach for formal TLM
property checking supporting local variables. In particular
for properties describing data integrity this feature is very
important. The approach extends a high-level BMC-based
method. In addition, we have introduced an optimization using
non-determinism to improve the efficiency of the underlying
BMC proof. First experiments have demonstrated that data
integrity properties for SystemC TLM models can be formally
proven.

REFERENCES

[1] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification:
A Prescription for Electronic System Level Methodology. Morgan
Kaufmann/Elsevier, 2007.

[2] OSCI, “SystemC,” 2011, available at http://www.systemc.org.
[3] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666,

2005.
[4] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “LusSy: an open tool

for the analysis of systems-on-a-chip at the transaction level,” Design
Automation for Embedded Systems, pp. 73–104, 2006.

[5] C. Traulsen, J. Cornet, M. Moy, and F. Maraninchi, “A SystemC/TLM
semantics in promela and its possible applications,” in SPIN, 2007, pp.
204–222.

[6] P. Herber, J. Fellmuth, and S. Glesner, “Model checking SystemC
designs using timed automata,” in IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis, 2008,
pp. 131–136.

[7] D. Große, H. M. Le, and R. Drechsler, “Proving transaction and system-
level properties of untimed SystemC TLM designs,” in ACM & IEEE
International Conference on Formal Methods and Models for Codesign,
2010, pp. 113–122.

[8] A. Cimatti, A. Micheli, I. Narasamdya, and M. Roveri, “Verifying
SystemC : a software model checking approach,” in Int’l Conf. on
Formal Methods in CAD, 2010, pp. 51–60.

[9] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Tools and Algorithms for the Construction
and Analysis of Systems, 1999, pp. 193–207.

[10] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems, 2004, pp. 168–176.

[11] Accellera Property Specification Language Reference Manual, version
1.1, http://www.pslsugar.org, 2005.

[12] D. Tabakov, M. Vardi, G. Kamhi, and E. Singerman, “A temporal
language for SystemC,” in Int’l Conf. on Formal Methods in CAD, 2008,
pp. 1–9.

[13] C. Eisner and D. Fisman, “Augmenting a regular expression-based
temporal logic with local variables,” in Int’l Conf. on Formal Methods
in CAD, 2008, pp. 1–8.

[14] J. Long and A. Seawright, “Synthesizing SVA local variables for formal
verification,” in Design Automation Conf., 2007, pp. 75–80.

[15] L. Pierre and L. Ferro, “Enhancing the assertion-based verification
of TLM designs with reentrancy,” in ACM & IEEE International
Conference on Formal Methods and Models for Codesign, 2010, pp.
103–112.

[16] D. C. Black and J. Donovan, SystemC: From the Ground Up. Springer-
Verlag New York, Inc., 2005.

[17] D. Große and R. Drechsler, Quality-Driven SystemC Design. Springer,
2010.

