
On Timing-Aware ATPG using Pseudo-Boolean
Optimization

Stephan Eggersglüß∗†, Rolf Drechsler∗
∗Institute of Computer Science, University of Bremen,

28359 Bremen, Germany
{segg, drechsle}@informatik.uni-bremen.de

†German Research Center for Artificial Intelligence (DFKI)

Abstract—The shrinking feature sizes of the manufacturing
process lead to high requirements on the post-production test.
The high distribution of Small Delay Defects (SDDs) becomes a
serious issue for the correct functionality of the manufactured de-
sign. Timing-aware ATPG targets the detection of faults through
the longest paths in order to detect defects caused by distributed
SDDs. However, this results in high CPU run times due to the
large search space. This paper serves as the theoretical basis for
the application of algorithms for Pseudo-Boolean Optimization
(PBO) in order to leverage the recent advances in efficient search
space pruning techniques in this field. We show how the problem
of detecting a transition fault through the longest path can be
formulated as a PBO problem. The proposed PBO formulation
encodes the timing of the path into the minimization function
using structural information. Additionally, the method is able to
take transition-dependent delays into account to model a more
realistic behavior.

I. INTRODUCTION

Each manufactured chip is objected to a post-production test
in order to filter out defective devices. A serious issue during
this test is the growing distribution of Small Delay Defects
(SDDs). A SDD is a defect with defect size not large enough
to cause a timing failure on its own. However, SDDs might
cause a timing violation when many of them are accumulated.
Due to the shrinking feature sizes and the increased speed
of today’s circuits, the likelihood of failures caused by SDDs
increases and their detection has become a critical issue [1].

An SDD might escape during test application when a
short path is sensitized since the accumulated delay of the
distributed delay defect is not large enough to cause a timing
violation. In contrast, the same SDD might be detected if a
long path is sensitized [1], [2]. Unfortunately, common ATPG
algorithms usually prefer short paths since the sensitization of
these paths are typically more easier.

Timing-aware ATPG was proposed in [3]. Here, pre-
calculated timing information is used during structural ATPG
to guarantee sensitization of the longest path. By this, the test
is more likely to detect SDDs. However, timing-aware ATPG is
a computationally intensive task, since the search space is very
large. As a result, the run time of timing-aware ATPG increases
significantly compared to regular ATPG as reported in [4]. This
problem is expected to become even more serious in future due
to the growing complexity of the designs. Furthermore, due to
the high complexity of this task, simplifications are assumed
to reduce the run time. As a result, the longest path might be
missed.

An alternative to structural ATPG as used in timing-aware
ATPG is ATPG based on Boolean Satisfiability (SAT) [5].
Here, the search process does not work on a structural netlist
but on a Boolean formula typically in Conjunctive Normal
Form (CNF). Recent advances in SAT solving techniques
led to highly efficient SAT solvers. SAT-based ATPG was
shown to be highly fault efficient and the application results
in significantly increased fault coverage for large industrial
circuits [6], [7]. A key aspect for the robustness of SAT-based
algorithms is the inherent conflict-driven learning [8] which
efficiently prunes large parts of the search space. Additionally,
information learned from one fault can be used to prune parts
of the search space for other faults as well to strengthen the
robustness of the overall ATPG process [9], [10]. Therefore,
it is desirable to employ these techniques to timing-aware
ATPG as well that these benefits can be leveraged. However,
SAT solvers can not directly be used since they do not have
the ability to process natural number which is mandatory for
incorporating timing information.

One possibility is to apply solvers for Pseudo-Boolean
(PB) SAT [11] or Pseudo-Boolean Optimization (PBO) [12],
respectively. Many of the PBO solvers, i.e. clasp [13], strongly
rely on the efficient SAT techniques but in addition are able
to process natural numbers in a specific manner. In fact, SAT
solvers often form the core engine of state-of-the-art PBO
solvers. The feasibility and the efficiency of the PBO solvers
in the field of testing has been recently shown in [14], where
PBO is used to generate high quality path delay tests.

However, the solving process is very different to the existing
timing-aware ATPG approach which is based on structural
ATPG. The efficiency of PBO solvers is based on the ho-
mogeneity of the problem formulation. This allows for the
application of efficient procedures. In order to benefit from the
efficient PBO techniques, the problem has to be formulated as
a PBO problem. In particular, the path identification and the
length calculation have to be part of the problem instance,
i.e. the PB formula. This is mandatory for the application of
PB-SAT or PBO solvers.

In this paper, we present the theoretical basis of how the
the problem of detecting a transition fault through the longest
path can be represented by PB constraints and a minimization
function. Here, PB constraints are used to model the circuit’s
logic behavior, fault detection and the path identification while
the minimization function is responsible for the longest path
calculation. Structural information can be used to reduce the



2ns

2ns

1ns

3ns
4ns

b

c
f

e

g

h

i

l
j

k

a

fault site

d
1ns

Fig. 1. Example circuit for timing-aware ATPG

size of the problem formulation which typically increases the
efficiency. We first consider the unit delay model and extend
this formulation to switching-dependent delays to model a
more realistic behavior. The paper is structured as follows.

Section II presents the timing-aware ATPG problem and in-
troduces basic information about PBO. Section III shows how
the PB constraints and the minimization function are derived
using the unit delay model. Section IV presents an improved
formulation by using structural information. Section V extends
the formulation for more realistic switching-dependent delays.
Section VI gives the summary of this paper as well as an
outlook.1

II. PRELIMINARIES

This section gives the preliminaries of this work. First, the
timing-aware ATPG problem is introduced in Section II-A and
a corresponding algorithm is briefly reviewed. Then, basic
information about the PBO problem and its application to
circuit-oriented problems are given in Section II-B.

A. Timing-Aware ATPG
Common ATPG algorithms tend to sensitize short paths

during test generation due to reasons of complexity. However,
this is disadvantageous for detecting SDDs. Delay defects
based on SDDs are more likely to occur on longer paths,
since more SDDs can be potentially accumulated and the
slack margin is smaller. This is demonstrated by the following
example.

Example 1: Consider the simple example circuit shown in
Figure 1. Each gate is associated with a specific delay. Assume
that the fault site is line g. There are six possible paths through
g on which the transition could be propagated:
• p1 = a–d–e–g–h–j (10ns)
• p2 = b–e–g–h–j (9ns)
• p3 = a–d–e–g–i–k (8ns)
• p4 = b–e–g–i–k (7ns)
• p5 = c–f–g–h–j (7ns)
• p6 = c–f–g–i–k (5ns)

Regular ATPG tools try to find a path on which the transition
is propagated as fast as possible. So, it is most likely that a
regular ATPG algorithm sensitizes the shortest path p6, since
this is the easiest path to sensitize. If the value is sampled
for example at 11ns, the slack margin is very high, i.e. the
accumulated defect size has to be at least 7ns for p6 to detect
a delay defect. However, if the ATPG algorithm chooses path
p1, the defect size has to be only 2ns for a detection.

1This paper is meant to present the theoretical basis of the application of
PBO on timing-aware ATPG. However, experimental results may be included
in future versions of this paper.

Timing-aware ATPG [3] was developed to enhance the
quality of the delay test. Here, a test is generated to detect
the transition fault through the longest path by using timing
information during the search. The algorithm proposed in [3]
is based on structural ATPG and consists of two tasks: fault
propagation and fault activation. Each task uses the path delay
timing information as a heuristic to propagate (activate) the
fault through the path with maximal static propagation delay
(maximal static arrival time). However, due to complexity
reasons, both tasks are carried out independently and the
longest path might be missed. Furthermore, simplifications
are assumed to further reduce the complexity. This motivates
the need for new techniques that can cope with the high
complexity.

B. Pseudo-Boolean Optimization
In this section, basic information about Pseudo Boolean Op-

timization (PBO) and the related Pseudo-Boolean (PB)-SAT
problem is given. A pseudo-Boolean formula is a conjunction
of pseudo-Boolean constraints. A pseudo-Boolean constraint
ψ over Boolean variables x0, . . . , xn−1 is an inequality of the
form:

n−1∑
i=0

ciẋi ≥ cn,

where c0, . . . , cn ∈ Z and ẋi ∈ {0, 1} (corresponding to the
assignment of xi). A pseudo-Boolean constraint ψ is satisfied
if and only if the sum of the coefficients ci with 0 ≤ i < n for
which the associated variable xi is activated, that is xi = 1,
is greater or equal than cn. A pseudo-Boolean formula ΨPB is
satisfied if and only if each constraint ψ ∈ ΨPB is satisfied.

The question whether ΨPB is satisfiable is also known as
the PB-SAT problem. The application of PB-SAT is related
to the application of SAT. In order to transform a circuit-
oriented problem into a PB-SAT problem, the circuit’s logic
behavior has to be modeled in PB constraints. Each signal
sj in a circuit is assigned a Boolean variable xj . Similar to
the transformation into a SAT problem [5], the functionality
of each gate g can be represented by a set of constraints
ψg . In fact, each SAT constraint, i.e. a CNF clause, can
be easily converted into a PB constraint. Table I shows the
representation of an AND gate in PB constraints as well as in
CNF. Note that a negative literal xi is represented by the term
(1 − xi). The PB representation ΨC for circuit C with gates
g1, . . . , gk is given by the following formula:

ΨC =
k∏

j=0

ψgj

In practice, ΨC is then extended with problem-specific con-
straints ΨF which are for example needed for fault propagation
and activation. Then, the derived PB-SAT instance ΨPB which
can be given to a PB-SAT solver to compute a test is as
follows:

ΨPB = ΨC ·ΨF

However, there are two different types of PB-SAT solvers.
Solvers like Pueblo [15] directly supports PB constraints,
while solvers like MiniSat+ [11] translate the PB-SAT problem



TABLE I
PSEUDO-BOOLEAN AND CNF REPRESENTATION FOR AN AND GATE

a · b = c

PB CNF
((1− a) + (1− b) + c ≥ 1)· (a + b + c)·

(a + (1− c) ≥ 1)· (a + c)·
(b + (1− c) ≥ 1) (b + c)

into a SAT instance and apply regular SAT algorithms to find
a solution. Obviously, the latter type of solvers are particularly
suited for problems, which can be modeled with many CNF
clauses and a few pseudo-Boolean constraints [16].

The PBO problem consists of a pseudo-Boolean formula
ΨPB and an objective function F . The formula F is to
minimize a given objective function of the form:

F(x0, . . . , xn−1) =
n−1∑
i=0

miẋi,

where m0, . . . ,mn−1 ∈ Z. Therefore, the PBO problem is to
determine the solution which satisfies Ψ (solving the PB-SAT
problem) and, at the same time, minimizes the given objective
function F .

In order to find the solution which minimizes the given
objective function F , a PBO solver calculates an initial so-
lution at first (corresponding to a PB-SAT solution) which is
then improved in the following until no better solution can be
found. Generally, the search space of such a problem is huge
and typically many iterations are needed to find the minimum
solution. However, PBO solvers use efficient conflict-based
learning techniques and effective heuristics during the search.
As a result, the search space can typically be traversed
very quickly, since a large part can be pruned by learned
information. Therefore, PBO solvers have the potential to cope
with the high complexity of the timing-aware ATPG problem.

III. PSEUDO-BOOLEAN FORMULATION

This section describes how the timing-aware ATPG problem
is represented as a PBO problem, i.e. as a PB-SAT instance
ΨPB and a minimization function F . We first describe in
Section III-A how the PB-SAT instance is composed and how
the minimization function is derived. Afterwards, Section III-B
presents details about the implications and constraints which
have to added to the PB-SAT instance in order to guarantee a
consistent path representation.

A. PB-SAT and Minimization Function

The use of PB-SAT and PBO, respectively, has the ad-
vantage that the efficient solving and search space pruning
technique of state-of-the-art solvers can be applied to solve
the specific problem. However, the correct and complete for-
mulation as a PBO problem instance is crucial for the efficient
application. As stated above, the use of a PBO solver requires
the creation of a PB-SAT instance ΨPB and a minimization
function F . The proposed PB-SAT formulation is based on
the SAT formulation for ATPG proposed in TEGUS [17]. As
shown above, any SAT instance can be transformed into a PB-
SAT instance in a straightforward manner but not vice versa.
The test generation formulation consists of the following parts:

Fault Site

Transitive Fanin Cone

D variablesJ variables

Fig. 2. D and J Variables in PB-SAT transformation

• ΨC describes the logic of the necessary circuit parts.
Note that two consecutive time frames t1, t2 have to be
considered for transition test generation. A signal x is
therefore associated with two variables x1, x2 represent-
ing the value of the line in the corresponding time frame.

• ΨF describes the faulty part of the circuit. That is the
fault site as well as the logic of the faulty output cone.
An additional variable yf is assigned to each signal y in
the faulty output cone which represents the value of y in
the faulty part.

• ΨD describes additional constraints necessary for fault
propagation and fault observation. In particular, these
constraints make sure that a D-chain exists, i.e. there ex-
ists a path from the fault site to an observation point along
which the fault is propagated. An additional variable yD

(also called D variable) is associated with each signal y
in the faulty output cone. This variable is 1 if the fault
is propagated to an observation point along this line.

This formulation is extended for the problem of finding the
longest path through the fault site. Here, a clear path represen-
tation is needed for identifying the longest path automatically
by the solver used. The last part of the formulation, i.e. ΨD

already includes a propagation path representation by the D
variables of the output cone. When the variable yD of signal y
is assigned to 1, the fault is propagated along line y. Therefore,
the propagation path is represented by the set of lines whose
D variable is 1. More formally, let Y be the set of lines in the
output cone of the fault site, then the propagation path P p is
represented as follows:

PP = {y ∈ Y : yD = 1}

However, this representation has to be extended, since it
covers the propagation path only. The activation path has to
be considered for identifying the longest path, too. Generally,
setting the desired transition value at the fault site is sufficient
for the solver used to create an activation path. However, ad-
ditional information is required for path identification. There-
fore, a J variable zJ is assigned to each line z in the support
of the fault site. This is illustrated in Figure 2. Note that the
signal line of the fault site is assigned a D variable as well as
a J variable. Both variables of the fault site are fixed to 1 in
the problem formulation to start the search.

The J variable zJ of line z is 1 if the line carries a
transition along the activation path. Therefore, similar to the
representation of the propagation path P p, the activation path



P a is represented by those lines whose J variable is assigned
to 1. More formally, let Z be the set of lines in the support
of the fault site, then the activation path P a is represented as
follows:

P a = {z ∈ Z : zJ = 1}

Note that the constraints which guarantee the correct assign-
ment of the D and J variable are given in Section III-B.
Eventually, the complete path P f for fault activation as well
as for fault propagation is derived by the union of P a and P p:

P f = P a ∪ P p

This path representation allows the solver to identify the
path by checking the assignment of the D and J variables.
This is then used to create the minimization function which
is responsible for identifying the longest path. Therefore, the
minimization function F consists of the D as well as of the
J variables of the given instance. In addition, to incorporate
the delay aspect, each variable x in the minimization function
is associated with a static delay value dx (obtained by static
timing analysis) which represents the delay of the line as well
as the delay of the predecessor gate:2

F(yD
1 , . . . , y

D
n , z

D
1 , . . . , z

D
m) =

n∑
i=1

−dyi · yD
i +

m∑
j=1

−dzj · zJ
j

The result of F is the accumulation of the delay values of the
activated variables, i.e. those variables which are assigned to 1
in the current assignment. Given to a PBO solver, the ultimate
solution is the assignment which minimizes F . This directly
corresponds to the longest path through which the transition
fault is detected.

B. Constraints for Consistent Path Representation

This section shows which constraints or implications have
to be added to the PB-SAT instance to guarantee a correct
and consistent path representation. This includes the following
properties:
• It has to be guaranteed that the transition is activated

and propagated along at least one path. These constraints
are needed for fault detection and are described in the
following by Ψpath.

• It has to be ensured that the D and J variables of
exactly one path are assigned to 1, although there exist
multiple paths along which the transition is propagated or
activated, respectively. This is especially important since
the minimization function F is defined over all D and J
variables. The solver tries to assign as many as possible
of these variables with 1. These constraints are described
in the following by Ψone.

• Different arrival times of transitions at gate inputs have
to be considered in order to make sure that the correct

2Note that the delay value is given in F as a negative value, since state-
of-the-art PBO solvers typically perform minimization but not maximization.

TABLE II
PB REPRESENTATION OF IMPLICATIONS

yD = 1→ yg 6= yf ((1− yD) + (1− yg) + (1− yf ) ≥ 1)
·((1− yD) + yg + yf ≥ 1)

yD = 1→ (zD
1 + . . . + zD

n ) ((1− yD) + zD
1 + . . . + zD

n ≥ 1)
xJ = 1→ x1 6= x2 ((1− xJ ) + (1− x1) + (1− x2) ≥ 1)

·((1− xJ ) + x1 + x2 ≥ 1)
xJ = 1→ (wJ

1 + . . . + wJ
n) ((1− xJ ) + wJ

1 + . . . + wJ
n ≥ 1)

path which causes the transition at the output is identified.
This is described by Ψtran.

In summary, the PB-SAT instance ΨPB which incorporates
these properties is derived as follows:

ΨPB = ΨC ·ΨF ·Ψpath ·Ψone ·Ψtran

These constraints are given in detail in the following.
1) Ψpath: First, in order to guarantee the propagation of

the fault via at least one path from the fault site to an
observation point, the following implications (which were used
to accelerate the search in [17]) have to included as constraints
ΨD in ΨPB.

yD = 1 → yg 6= yf

yD = 1 → (zD
1 + . . .+ zD

n )

The first implication ensures that the value of the good circuit
(yg) is different from the value of the faulty circuit (yf ). The
second implication guarantees that if the D variable yd of
line y is 1, at least one D variable of the successors of y,
i.e. z1, . . . , zn, has to be 1 in order to ensure the detection
of the fault. Similar implications have to be added for the
activation path as constraints:

xJ = 1 → x1 6= x2

xJ = 1 → (wJ
1 + . . .+ wJ

n)

However, there is no good and faulty value for the fault
activation. The desired transition is identified by comparing
the value of the line in the initial time frame and the value in
the final time frame. Therefore, the first implication ensures
that the value of the first time frame (x1) is different from the
value of the second time frame (x2), i.e. a transition occurs.
The second implication guarantees a consistent activation path,
since if the J variable of a line is assigned to 1, at least one
predecessor of x, i.e. w1, . . . , wn have to assume a transition.

Table II shows the PB representation of the described im-
plications. The implications presented below can be similarly
transferred.

2) Ψone: In order to ensure that D and J variables of
exactly one path are assigned to 1, the following implications
are needed for a propagation path. Let Y be the set of lines in
the output cone. For each line y ∈ Y , the direct predecessors
which are itself in Y are given by p1, . . . , pm. Note that the
fault site is not part of Y . In addition, let Y fan be the set of
fanouts in the output cone and let b1, . . . , bn the branches of
each fanout y ∈ Y fan. Then, the following implications are
included in Ψone for each branch and each gate in Y :

bDi = 1 → b
D

1 ·, . . . , ·b
D

i−1 · b
D

i+1 · . . . · b
D

n |0 < i < (n+ 1)
yD = 1 → pD

1 + . . .+ pD
m



Propagation PathActivation Path

Gap

Fig. 3. Multiple paths

a

b

c

(5ns)

(2ns)

2ns

(4ns)

Fig. 4. Origin of transitions

The first implication ensures that for each fanout in the output
cone, there is only one branch with a D variable assigned to 1.
Note that the implications are unidirectional. Therefore, it is
still possible that the fault is propagated along multiple paths.
However, only the D variables of one path are activated. The
second implication makes sure that D variables can only be
assigned to 1 if the D variable of one predecessor is assigned
to 1. This ensures that the beginning of the D-chain is the
fault site. In summary, these constraints guarantee that the
propagation path begins at the fault site and the D variables
of exactly one consistent path are assigned to 1.

The constraints needed for the activation path are different,
since the direction is contrary. Let Z be the set of lines in
the support. For each line z ∈ Z, the direct predecessors are
given by p1, . . . , pm. In addition, the direct successors of z
which are itself in the support are given by s1, . . . , sn. Then,
the following implications are included in Ψone:

pJ
i = 1 → pJ

1 ·, . . . , ·pJ
i−1 · pJ

i+1 · . . . · pJ
m|0 < i < (m+ 1)

zJ = 1 → sJ
1 + . . .+ sJ

n

Similar to the implications of the propagation path, the first
implication ensures that only one input of each gate in the
support has a J variable assigned to 1. The second implication
ensures that the end of the activation path is the fault site.

The importance of especially the second implication is
illustrated in Figure 3. The first implication guarantees that
the path, i.e. a D and J path assignment, takes only one
branch at each fanout or at each gate, respectively. The second
implication excludes additional path assignments which do not
have their source in the fault site as shown as pointed lines in
the illustration.

3) Ψtran: In some cases, the origin of the transition is not
clear from the value assignment. This problem is demonstrated
in Figure 4. Here, an AND gate is shown which assumes a
falling transition on the output c. However, the origin of the
transition cannot be determined by the value assignment since
both inputs switch in the same direction. Since the final value
is the controlling value, the transition is caused by the first
occurring transition. However, if the solver can freely choose

7ns

9ns

8ns

5ns

6ns

4ns

2ns

3ns

2ns

3ns

Fig. 5. Using FFRs

the path, it would choose the longer path along input a which
is wrong, since the transition is caused by input b.

Therefore, for each predecessor pi of line y in the output
cone, let q1, . . . , qn be those predecessors of y whose arrival
time is later than the arrival time of pi. Let further cv
(ncv) be the controlling value (non-controlling value) for the
predecessor gate of y. In order to exclude that the incorrect
transition path is chosen, the following implication is needed:

((pi)1 = ncv) · ((pi)2 = cv) · (yD = 1)→ q1
D · . . . · qnD

That is, if the transition on pi goes from the non-controlling
value to the controlling value and y is on a D-chain, than all
other inputs of the same gate cannot be on the D-chain. This
ensures that the solver has to choose the correct switching
input with the smallest arrival time. Note that this does
not influence the value assignment of the signal but only
the decision which path is the actual D-chain. The same
implication is used for the activation path with the J variables
instead of the D variables.

IV. USING STRUCTURAL INFORMATION

The inclusion of the different implications in form of con-
straints in ΨPB increases the complexity of the PBO instance
to solve. In addition, the large number of D and J variables
increases the search space given by the minimization function.
In order to reduce the search space, an improved formulation
is proposed which makes use of structural information.

The circuit can be divided in Fanout Free Regions (FFRs).
There is a unique path from every input of an FFR, i.e. a
branch or primary input, to a fanout or output. Therefore, the
basic idea behind the improved formulation is to restrict the
D and J variables used in the minimization function to inputs
of an FFR. The delay value which is associated with an input
i of an FFR represents the delay of the path from i to the
output of the FFR. This is illustrated in Figure 5.

This also leads to a reduction of the additional constraints.
The formulation of the constraints included in Ψone and Ψtran
– which are not needed for fault detection but for path
identification – can be directly applied on the FFR level instead
of the gate level. This is advantageous, since the reduction of
constraints typically corresponds to a run time reduction of
the solving process.

V. CONSIDERING TRANSITION-DEPENDENT DELAYS

So far, only the unit delay model has been considered. In
this model, a static delay value is assumed for a specific line
which is independent from the value assignment or possible
transition. However, the actual delay is transition dependent,



e.g. the duration of a transition is typically different for a
rising and a falling transition. In the following, we propose
an extension of the PBO formulation for timing-aware ATPG
in order to incorporate transition-dependent delays for a more
realistic behavior.

The delay calculation is part of the minimization function
F of the PBO formulation. Each D and J variable which
is part of F are associated with a specific delay value. The
delay values of the activated variables are then accumulated
and represent the overall delay of the path. We propose to
add another variable layer in order to incorporate transition-
dependent delays. Each D and J variable are assigned two new
variables DF , DR and JF , JR, respectively. These variables
represent the direction of the transition: DF , JF (falling),
DR, JR (rising). Then, the minimization function F is only
defined over these variables and not over the D and J variables
anymore.

Each of the variables DF , DR and JF , JR are then asso-
ciated with the delay of the specific transition d{F,R} which
is represented. Therefore, the new minimization function is
formulated as follows:

F =
n∑

i=1

−dyi

F · (y
D
i )F +−dyi

R · (y
D
i )R +

m∑
j=1

−dzj

F · (z
J
j )F +−dzj

R · (z
J
j )R

In order to guarantee that the new variables DF , DR and
JF , JR always assume the correct value, the following impli-
cations are added to the PB-SAT instance:

(yD = 1) · (yg = 0) → yD
F

yD = 0 → yD
F

(yD = 1) · (yg = 1) → yD
R

yD = 0 → yD
R

(zD = 1) · (zg = 0) → zD
F

zD = 0 → zD
F

(zD = 1) · (zg = 1) → zD
R

zD = 0 → zD
R

These implications ensure that a rising transition and an
activated D(J) variable always lead to an activated DR(JR)
variable and that a falling transition and an activated D(J)
variable always lead to an activated DF (JF ) variable. Further-
more, if the D(J) variable is assigned to 0, the corresponding
transition-dependent variable is assigned to 0, too.

The proposed modification of F leads to a more realistic
delay behavior. Extending the formulation for a more fine-
grained delay model is easily possible by introducing more
variables and adding the corresponding implications.

VI. SUMMARY AND OUTLOOK

Timing-aware ATPG is an effective approach to increase
the quality of the test set. This paper has given the theoretical
basis for applying algorithms for Pseudo-Boolean Optimiza-
tion (PBO) to this problem to make use of the effective
solving techniques of this domain. A PBO solver requires as

input a Pseudo-Boolean (PB)-SAT instance as well a mini-
mization function. We have shown how the identification of
consistent paths can be incorporated into a PB-SAT instance.
Furthermore, it is shown how the minimization function has
to be formulated in order to identify the longest paths through
which a transition fault is detected. In addition, this method is
extended to take transition-dependent delays into account to
model a more realistic delay behavior.

Future work is the experimental evaluation of this approach
on practical circuits. Due to the underlying solving techniques,
it is expected that the evaluation shows an improvement espe-
cially for hard-to-detect faults compared to structural timing-
aware ATPG. Furthermore, it is planned to transfer ATPG-
specific solving techniques, e.g. [7], [10] from the Boolean
Satisfiability (SAT) domain to the PBO domain to accelerate
the search by structural information.

REFERENCES

[1] B. Kruseman, A. K. Majhi, G. Gronthoud, and S. Eichenberger, “On
hazard-free patterns for fine-delay fault testing,” in International Test
Conference, 2004, pp. 213–222.

[2] P. Gupta and M. S. Hsiao, “ALAPTF: A new transition fault model
and the ATPG algorithm,” in International Test Conference, 2004, pp.
1053–1060.

[3] X. Lin, K.-H. Tsai, C. Wang, M. Kassab, J. Rajski, T. Kobayashi,
R. Klingenberg, Y. Sato, S. Hamada, and T. Aikyo, “Timing-aware
ATPG for high quality at-speed testing of small delay defects,” in IEEE
Asian Test Symposium, 2006, pp. 139–146.

[4] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test-pattern grading
and pattern selection for small-delay defects,” in VLSI Test Symposium,
2008.

[5] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 11, no. 1, pp. 4–15, 1992.

[6] R. Drechsler, S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel,
and D. Tille, “On acceleration of SAT-based ATPG for industrial
designs,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 7, pp. 1329–1333, 2008.

[7] S. Eggersglüß and R. Drechsler, “Robust algorithms for high-quality
test pattern generation using Boolean satisfiability,” in International Test
Conference, 2010, pp. 1–10.

[8] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A search algorithm for
propositional satisfiability,” IEEE Transactions on Computers, vol. 48,
no. 5, pp. 506–521, 1999.

[9] ——, “Robust search algorithms for test pattern generation,” in Inter-
national Symposium on Fault-Tolerant Computing, 1997, pp. 152–157.

[10] S. Eggersglüß and R. Drechsler, “Increasing robustness of SAT-based
delay test generation using efficient dynamic learning techniques,” in
IEEE European Test Symposium, 2009, pp. 81–86.

[11] N. Eén and N. Sörensson, “Translating pseudo-boolean constraints into
SAT,” Journal of Satisfiability, Boolean Modeling and Computation,
vol. 2, no. 1–4, pp. 1–26, 2006.

[12] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,” Discrete
Applied Mathematics, vol. 123, no. 1–3, pp. 155–225, 2002.

[13] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “Conflict-driven
answer set solving,” in International Joint Conference on Artificial
Intelligence, 2007, pp. 386–392.

[14] S. Eggersglüß and R. Drechsler, “As-Robust-As-Possible test generation
in the presence of small delay defects using pseudo-Boolean optimiza-
tion,” in Design, Automation and Test in Europe, 2011, pp. 1291–1297.

[15] H. M. Sheini and K. A. Sakallah, “Pueblo: A hybrid pseudo-boolean
SAT solver,” Journal of Satisfiability, Boolean Modeling and Computa-
tion, vol. 2, no. 1–4, pp. 165–189, 2006.

[16] M. Anjos, “Pseudo-boolean forms,” in Handbook of Satisfiability, ser.
Frontiers in Artificial Intelligence and Applications, A. Biere, M. Heule,
H. v. Maaren, and T. Walsh, Eds. IOS Press, 2009, pp. 49–51.

[17] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Com-
binational test generation using satisfiability,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
no. 9, pp. 1167–1176, 1996.


