
Formal Analysis Techniques: A Basis for
High-Quality Designs

(Invited Talk)

Stephan Eggersglüß∗†, Rolf Drechsler∗
∗Institute of Computer Science, University of Bremen,

28359 Bremen, Germany
{segg, drechsle}@informatik.uni-bremen.de

†German Research Center for Artificial Intelligence (DFKI)

Abstract—Many problems of high complexity such as verifica-
tion and test generation arise during the design and manufac-
turing flow of industrial circuits and processors. Solving these
problems is often crucial to guarantee the absence of errors
and eventually a high quality product. However, due to the
increased complexity of today’s circuits, classical methods often
have problems to solve these problems. In this paper, we give
an introduction to formal analysis techniques and show how the
application of these techniques is able to increase the quality of
the design for the particular problem of test generation.

I. INTRODUCTION

Nowadays, the correctness of chip designs is of paramount
importance. Especially since electronic devices are more and
more part of safety-critical applications such as automotive
or aerospace. Designers and manufacturing companies have
to ensure that the design is free of errors or defects before
shipping their products. However, Moore’s law is still valid
and the complexity of today’s designs is steadily increasing.
This also puts severe demands on the methods which should
ensure the correctness. The efficiency of those methods has to
keep up with the increased complexity of the design.

During chip design and manufacturing, different problems
of high computational complexity arise at all stages of the
design flow. Figure 1 shows a simplified design flow and
introduces these problems. In order to verify that the design
meets the requirements of the specification, property checking
is performed – typically at a higher level of abstraction such
as system level and RTL. If a property fails, the design has to
be debugged and the error has to be fixed. This can be assisted
by an analysis which pinpoints to potential fault locations.

During synthesis, equivalence checking verifies that the
functionality of the design at a higher abstraction level corre-
sponds to the functionality of the synthesized design at a lower
abstraction level. Test generation for the post-production test
which filters out defective devices is generally performed at
gate level. If gate library information or layout information
is available, timing analysis is conducted to verify the timing
behavior of the chip. If the chip is found to be erroneous after
manufacturing, silicon debug searches for the reason for the
errors which have to be fixed.

All these problems have in common that the logic of the
circuit or processor have to be considered during the solving
process. Methods which address these problems have to be
able to cope with the increased complexity of the logic or
parts of the logic, e.g. a data path of a microprocessor.

System Level

Chip

Layout

Gate Level

RT Level

Design Debugging Equivalence Checking

..
.

fail

...

Property Checking

Test Generation

Timing Analysis

Silicon Debug

Fig. 1. Design flow

The fast and reliable solution of the arising tasks or prob-
lems is of high importance for the quality of the product.
Additionally, the later an error is found in the design flow,
the more expensive is resolving the error. One possibility is
to use simulation-based techniques to solve these problems.
However, due to the increased complexity, the overall search
space is too large for a complete simulation-based approach.
Therefore, these approaches are not able to provide sufficient
quality.

Application-specific solutions which tackle the problem di-
rectly at the circuit level, e.g. structural ATPG algorithms, have
problems with the increased complexity of today’s designs.
These approaches are not often not robust enough due to the
heterogeneous structure of the problem.

A promising approach is the application of formal analysis
techniques to resolve these problems. The next section gives
an introduction to these techniques and describes their advan-
tages.

II. FORMAL ANALYSIS TECHNIQUES

Formal analysis techniques differ from application-specific
techniques. These techniques do not work directly on the
original problem representation but on a formal model. On
this model, they are able to produce a formal (mathematical)



Reverse Transformation

Instance Solver

Transformation

Solution

Formal Model

Circuit Model

Circuit SolutionCircuit Problem

Fig. 2. Formal analysis - application flow

proof for the given problem. Common formal analysis tech-
niques are for example based on Binary Decision Diagrams
(BDDs), Boolean Satisfiability (SAT), Satisfiability Modulo
Theory (SMT) or Quantified Boolean Formulas (QBF).

The application flow is shown in Figure 2. At first, the
original circuit problem has to be transformed into a formal
problem representation. Then, this problem is solved by a
dedicated solver. The resulting (formal) solution is then trans-
formed back to the circuit level.

The transformation seems to be an overhead at the first sight.
However, the following advantages outweigh the costs of the
transformation in most cases:
• Efficient solver technology - The restriction to a special

formal model typically leads to a very homogeneous
problem formulation. This allows for the application of
efficient proof and learning techniques. Especially in
the last decade, significant advances in formal solving
technology have been made and effective solvers were
constructed which are able to cope with problems of high
complexity.

• Problem encapsulation - Solver technology is a very ac-
tive field of research. Therefore, the efficiency of solvers
is expected to increase in the next decade. The transfor-
mation of the original problem to a formal problem has to
be done only once. The underlying solver can simply be
substituted by an improved solver. By this, the application
can easily benefit from the advances made in the field of
solver technology.

The ongoing improvement of today’s solver technology and
the encapsulation of problem formulation and solving process
provide a good basis for the development of high quality
products. As a result, the methods which are responsible to
ensure high quality have the potential to keep up with the
increased complexity of modern designs. Examples for the
application of formal analysis techniques in the design flow are
given in [1], [2] (verification) [3], [4] (equivalence checking),
[5], [6] (debugging), [7] (timing analysis), [8] (silicon debug)
and [9], [10] (test generation).

In the following, we show by the example of test generation
how formal analysis techniques can be integrated into the
industrial test flow in order to increase the overall quality of
industrial circuits and processors.

III. APPLICATION IN TEST GENERATION

In order to guarantee the absence of defects in manufactured
chips, every chip is subjected to a post-production test to filter
out defective devices. In this test, stimuli are applied which
are generated by Automatic Test Pattern Generation (ATPG)

algorithms. The task of an ATPG algorithm is to generate for
each fault of a fault model, e.g. stuck-at or path delay, a test
pattern which makes the fault observable at an output. The
ATPG problem was proven to be NP-complete [11]. Classical
ATPG algorithms typically work on a structural gate-level
netlist. Due to the increased complexity of modern circuits,
these algorithms have problems to cope with hard faults. This
leads to the fact that an increasing number of faults remains
undetected by the generated test set. As a result, the high-
quality demands of the industry are compromised since faults
which are not covered by the test set will not be detected. We
will show how this quality gap can be compensated by the use
of formal analysis techniques, i.e. by formulating the problem
as a Boolean Satisfiability (SAT) problem.

SAT-based ATPG works differently to classical structural
ATPG. In order to make use of the efficient SAT solving
techniques, the ATPG problem has to be represented as a
Boolean formula in Conjunctive Normal Form (CNF). The
original problem which is based on a circuit model must be
transformed into a formal model, i.e. a SAT instance in CNF
(see Figure 2). Then, the SAT solver is applied to the SAT
instance to solve the formula. Finally, the SAT solution must
be re-transformed to the original circuit model, i.e. to obtain
the test pattern.

A CNF Φ in m Boolean variables is a conjunction of n
clauses. Each clause is a disjunction of literals. A literal is a
Boolean variable (x) or its complement (x). The CNF Φ is
satisfied if all clauses are satisfied. A clause is satisfied if at
least one literal of the clause is satisfied. The CNF Φ is said to
be unsatisfiable iff no solution can be found that satisfies Φ.
The task of a SAT solver for a given Φ is to find a satisfying
assignment or to prove that no such assignment exists. Due
to the homogeneity of the CNF, the SAT solver is able to use
very efficient implication procedures and learning schemes.

In the following, the circuit-to-CNF transformation is briefly
described. More information can be found in [12]. A Boolean
variable is assigned to each connection in circuit C. The CNF
Φg for each gate g ∈ C is derived from the characteristic
function which can be constructed using the truth table. The
CNF ΦC representing the circuit’s function is then constructed
by the conjunction of the CNFs of all gates g1, . . . , gn ∈ C:

ΦC =
n∏

i=1

Φgi

The CNF ΦF
C has to be extended by the fault-specific

constraints ΦF for generating a test for fault F . The fault-
specific constraints include the fault site and the faulty cir-
cuitry. Additionally, structural information is used to encode
the concept of D-chains into CNF [9].

More formally, a test for F is generated by evaluating the
formula:

ΦF
test = ΦF

C · ΦF

If ΦF
test is unsatisfiable, the fault is untestable. A test can

be easily derived from the satisfying assignment if ΦF
test is

satisfiable.



A. Multiple-Valued Logic

For practical purposes, considering only the Boolean values
0 and 1 during test generation is insufficient. In order to be
applicable in industrial practice, additional values are needed.
The value Z describes the state of high impedance occurring
in so-called tri-state elements, e.g. bus elements. The value
U describes an unknown state caused by e.g. non-controllable
inputs. This results in the following 4-valued logic [10]:

L4 = {0, 1, U, Z}

It is mandatory to consider these additional values during
test generation. However, the SAT problem is only defined
over Boolean logic and cannot directly applied to a problem
represented in multiple-valued logic.

Therefore, a Boolean encoding has to be used to trans-
form the multiple-valued problem into a Boolean problem.
The value of each signal is represented by one Boolean
variable in a purely Boolean circuit. In a multiple-valued
circuit representation, one Boolean variable is insufficient. Two
Boolean variables c, c∗ are used to encode all four values and
represent the signal’s value. Clearly, the CNF representation
is an overhead compared to the pure Boolean formulation.
Typically, using L4 results in significantly increased run time.
This gets worse when considering the more complex delay
fault models. In order to make SAT algorithms feasible for
industrial application, the following SAT instance generation
flow has to be used.

B. SAT Instance Generation Flow

Test generation in an industrial context requires a multiple-
valued logic L4. This logic has to be extended for delay
test generation since two time frames t1, t2 are necessary.
Therefore, the Cartesian product of all values in L4 is needed
to represent all possible value combinations on a connection.
This leads to the 16-valued logic L16. Additionally, delay tests
can be of different quality [13]: non-robust and robust. Robust
tests which are of higher quality require the modeling of static
values. Incorporating the static values S0, S1, SZ results in
the 19-valued logic L19s [14]:

L19s = {S0, 00, 01, 10, 11, S1, 0U, 1U,U0, U1, UU,

0Z, 1Z, Z0, Z1, UZ,ZU,ZZ, SZ}

In principle, L19s can be used to model the circuit for SAT-
based ATPG. However, logics with less values are generally
more compact in their CNF representation than logics with
more values. In fact, the exclusive use of L19s would result
in excessively large SAT instances and typically in run times
too large for practical application. For solving this problem,
the usage of several multiple-valued logics is proposed.

Typically, only a few connections in a circuit can assume
all values contained in L19s or L4. For example, there are
only very few gates that are able to assume the value Z.
Modeling all gates with L19s or L4 would be correct but would
also unnecessarily blow up the CNF representation since some
values are known to be never assumed in the majority of all
elements. These elements can be modeled in a multiple-valued
logic with a smaller number of values.

TABLE I
MULTIPLE-VALUED LOGICS FOR CIRCUIT REPRESENTATION

Logic Value set
L19s L16 ∪ {S0,S1,SZ}
L16 L9 ∪ {0Z,1Z,Z0,Z1,UZ,ZU,ZZ}
L11s L9 ∪ {S0,S1}
L9 L6 ∪ {U0,U1,UU}
L8s L6 ∪ {S0,S1}
L6 L4B ∪ {0U,1U}
L6s L4B ∪ {S0,S1}
L4B {00,01,10,11}
L4 {0,1,U,Z}
LB {0,1}

Circuit

Analysis

Logic
Classification

Structural

Fault Model Quality

Logic Mapping

Transformation

SAT instance

Circuit−to−CNF

Fig. 3. SAT instance generation flow

Therefore, a structural analysis [14] is applied as a pre-
processing step to determine for each gate which values can
be assumed. This step has to be done only once and the results
can be reused for each fault model and each quality level. The
aim of the structural analysis is to exclude as many values as
possible for each part of the circuit so that a multiple-valued
logic with fewer values can be used. This typically promises
a more efficient CNF representation of the circuit, i.e. SAT
solvers generally need less time for smaller SAT instances.

Table I shows the set of logics identified to be necessary
to model the correct circuit behavior for ATPG. Additionally,
the corresponding value sets are denoted. Using the results
of the structural analysis, it is decided for each gate during
circuit-to-CNF transformation – according to the fault model
used and desired quality – which logic has to be used for CNF
generation.

The complete flow is illustrated in Figure 3. At first, the
circuit is analyzed and the structural analysis is done for each
element. Then, according to the fault model and the desired
quality, this information is used to select the specific logic
which has to be used for the circuit-to-CNF transformation.
This procedure results in SAT instances with significant de-
creased size well suited for high-quality test generation for
industrial circuits.

Additionally to the improved SAT instance generation flow,
it has been shown that it is advantageous to include struc-



tural information into the search process itself to boost the
search. However, this has to be done in a manner which does
not modify the efficient SAT solving techniques, since the
methodologies and data structures are highly optimized and
very susceptible to changes. Therefore, an approach has been
developed which uses the regular SAT solving techniques but
work on dynamically growing SAT instance [15]. Addition-
ally, the efficient learning schemes of a SAT solver can be
leveraged by transferring learned information from one fault
to subsequent faults [16]. Both modifications do not violate the
principle of problem encapsulation that the actual SAT solver
itself can be easily substituted.

C. Experiments

The described techniques were implemented and integrated
into the industrial test environment of NXP Semiconductors
as part of a 3-years research project with the ultimate goal to
show the applicability in industrial practice. The approach was
extensively evaluated on industrial circuits of practical size for
several fault models, i.e. stuck-at, transition, path delay (non-
robust, robust).

Table II shows the impact of the application of formal
analysis techniques. The proposed approach SAT is compared
to a highly optimized industrial structural ATPG approach
(FAN). Column %FC gives the fault coverage which could be
achieved and column %FE presents the fault efficiency. The
fault efficiency is defined as the percentage of testable faults in
faults not identified as untestable. Fault efficiency is commonly
taken as a measurement to compare the effectiveness of
ATPG algorithms. Column %FC Inc. gives the fault coverage
increase of SAT compared to FAN. The run time improvement
compared to FAN is given in column Imp.F. The run time of
both approaches are in most cases comparable. However, if the
run time of a pure SAT-based approach is too high, e.g. for
p456k, there is the possibility that structural and SAT-based
ATPG are combined [10] and SAT-based ATPG is only started
for the hard faults.

The results show that the SAT approach has a very high fault
efficiency being either 100% or between 99% and 100%. This
signifies a considerable increase compared to FAN and shows
the robustness of the proposed approach. Nearly all faults for
which structural ATPG algorithms could not find tests due to
the high complexity of the problem can be solved with formal
analysis techniques. As a result, the fault coverage increases
of up to 1.87% which is very important for the high quality
demands of the industry.

Overall, the experiments clearly show the applicability and
benefits of formal analysis techniques in industrial practice.

IV. CONCLUSIONS

In order to ensure the correctness of today’s designs, many
problems of high computational complexity has to be solved
during the design and manufacturing flow. This paper has
shown that formal analysis techniques provide a good basis
to manage the increasing complexity of the designs and that
these techniques have the potential to substitute or assist
classical methods in industrial practice. As an example, it has
been shown which efforts have to be undertaken to make the
use of formal analysis techniques applicable in the field of

TABLE II
IMPACT ON FAULT COVERAGE / FAULT EFFICIENCY – TRANSITION

FAN SAT
Circ. %FC %FE Imp.F %FC %FE %FC Inc.
p44k 55.15 99.40 0.96x 55.36 99.98 +0.21
p57k 96.36 98.71 0.97x 97.22 99.97 +0.86
p77k 34.46 67.62 1.59x 34.46 100.00 +0.00
p80k 94.86 98.58 1.25x 96.06 100.00 +1.20
p88k 92.33 97.56 2.04x 94.00 100.00 +1.67
p99k 89.91 95.95 1.86x 90.90 99.98 +0.99

p177k 76.13 96.56 0.36x 77.57 99.96 +1.44
p456k 84.17 94.43 0.08x 86.04 99.17 +1.87
p462k 57.68 97.48 1.01x 57.95 100.00 +0.27
p565k 94.81 99.44 1.38x 95.02 99.99 +0.21

p1330k 90.44 99.54 0.96x 90.57 100.00 +0.13

industrial test generation. Experiments have shown that these
techniques are able to increase the quality of the generated
test set significantly due to the increased fault coverage.

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Tools and Algorithms for the Construction and
Analysis of Systems, ser. Lecture Notes in Computer Science, vol. 1579,
1999, pp. 193–207.

[2] M. R. Prasad, A. Biere, and A. Gupta, “A survey of recent advances in
SAT-based formal verification,” Software Tools for Technology Transfer,
vol. 7, no. 2, pp. 156–173, 2005.

[3] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using SAT for com-
binational equivalence checking,” in Proceedings of Design, Automation
and Test in Europe, 2001, pp. 114–121.

[4] S. Disch and C. Scholl, “Combinational equivalence checking using
incremental SAT solving, output ordering, and resets,” in Proceedings
of the ASP Design Automation Conference, 2007, pp. 938–943.

[5] G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault
localization for property checking,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 27, no. 6, pp.
1138–1149, 2008.

[6] H. Mangassarian, A. G. Veneris, and M. Benedetti, “Robust qbf encod-
ings for sequential circuits with applications to verification, debug and
test,” vol. 7, no. 59, pp. 981–994, 2010.

[7] M. Palla, J. Bargfrede, S. Eggersglüß, W. Anheier, and R. Drechsler,
“Timing arc based logic analysis for false noise reduction,” in Proceed-
ings of the International Conference on Computer-Aided Design, 2009,
pp. 225–230.

[8] Y.-S. Yang, B. Keng, N. Nicolici, A. G. Veneris, and S. Safarpour,
“Automated silicon debug data analysis techniques for a hardware data
acquisition environment,” in Proceedings of the International Symposium
on Quality Electronic Design, 2010, pp. 675–682.

[9] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Com-
binational test generation using satisfiability,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
no. 9, pp. 1167–1176, 1996.

[10] R. Drechsler, S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel,
and D. Tille, “On acceleration of SAT-based ATPG for industrial
designs,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 7, pp. 1329–1333, 2008.

[11] H. Fujiwara and S. Toida, “The complexity of fault detection problems
for combinational logic circuits,” IEEE Transactions on Computers,
vol. 31, no. 6, pp. 555–560, 1982.

[12] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 11, no. 1, pp. 4–15, 1992.

[13] A. Krstić and K.-T. Cheng, Delay Fault Testing for VLSI Circuits.
Kluwer Academic Publishers, Boston, MA, 1998.

[14] S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel, and
R. Drechsler, “MONSOON: SAT-based ATPG for path delay faults
using multiple-valued logics,” Journal of Electronic Testing: Theory and
Applications, vol. 26, no. 3, pp. 307–322, 2010.

[15] S. Eggersglüß and R. Drechsler, “Efficient data structures and method-
ologies for SAT-based ATPG providing high fault coverage in industrial
application,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 2011, accepted.

[16] ——, “Increasing robustness of SAT-based delay test generation using
efficient dynamic learning techniques,” in Proceedings of the IEEE
European Test Symposium, 2009, pp. 81–86.


