
Improving ESOP-based Synthesis of
Reversible Logic Using Evolutionary Algorithms

Rolf Drechsler Alexander Finder Robert Wille

Institute of Computer Science, University of Bremen, Bremen, Germany
{drechsle,final,rwille}@informatik.uni-bremen.de,

http://www.informatik.uni-bremen.de/agra/ger/index.php

Abstract. Reversible circuits, i.e. circuits which map each possible in-
put vector to a unique output vector, build the basis for emerging appli-
cations e.g. in the domain of low-power design or quantum computation.
As a result, researchers developed various approaches for synthesis of
this kind of logic. In this paper, we consider the ESOP-based synthesis
method. Here, functions given as Exclusive Sum of Products (ESOPs)
are realized. In contrast to conventional circuit optimization, the qual-
ity of the resulting circuits depends thereby not only on the number of
product terms, but on further criteria as well. In this paper, we present
an approach based on an evolutionary algorithm which optimizes the
function description with respect to these criteria. Instead of ESOPs,
Pseudo Kronecker Expression (PSDKRO) are thereby utilized enabling
minimization within reasonable time bounds. Experimental results con-
firm that the proposed approach enables the realization of circuits with
significantly less cost.

Keywords: Evolutionary Algorithms, Reversible Logic, Synthesis, Ex-
clusive Sum of Products, Pseudo Kronecker Expressions, Optimization

1 Introduction

Reversible logic [11, 1, 21] realizes n-input n-output functions that map each pos-
sible input vector to a unique output vector (i.e. bijections). Although reversible
logic significantly differs from traditional (irreversible) logic (e.g. fan-out and
feedback are not allowed), it has become an intensely studied research area in
recent years. In particular, this is caused by the fact that reversible logic is the
basis for several emerging technologies, while traditional methods suffer from the
increasing miniaturization and the exponential growth of the number of transis-
tors in integrated circuits. Researchers expect that in 10-20 years duplication of
transistor density every 18 months (according to Moore’s Law) will come to a
halt (see e.g. [24]). Then, alternatives are needed. Reversible logic offers such an
alternative as the following applications show:

– Reversible Logic for Low-Power Design
Power dissipation and therewith heat generation is a serious problem for to-
day’s computer chips. Landauer and Bennett showed in [11, 1] that (1) using
traditional (irreversible) logic gates always leads to energy dissipation re-
gardless of the underlying technology and (2) that circuits with zero power
dissipation must be information-lossless. This holds for reversible logic, since
data is bijectively transformed without losing any of the original information.
Even if today energy dissipation is mainly caused by non-ideal behaviors of
transistors and materials, the theoretically possible zero power dissipation



2

makes reversible logic quite interesting for the future. Moreover, in 2002 first
reversible circuits have been physically implemented [5] that exploit these
observations in the sense that they are powered by their input signals only
and did not need additional power supplies.

– Reversible Logic as Basis for Quantum Computation
Quantum circuits [14] offer a new kind of computation. Here, qubits instead
of traditional bits are used that allow to represent not only 0 and 1 but also a
superposition of both. As a result, qubits can represent multiple states at the
same time enabling enormous speed-ups in computations. Even if research
in the domain of quantum circuits is still at the beginning, first quantum
circuits have already been built. Reversible logic is important in this area,
because every quantum operation is inherently reversible. Thus, progress in
the domain of reversible logic can directly be applied to quantum logic.

Further applications of reversible logic can be found in the domain of optical
computing [3], DNA computing [1], and nanotechnologies [12].

Motivated by these promising applications, various synthesis approaches for
reversible logic have been introduced in the past. They rely on different function
representations like truth-tables [13], permutations [16], BDDs [23], or positive-
polarity Reed-Muller expansion [9].

In the following, we focus on a method based on Exclusive Sum of Products
(ESOPs) representations [6]. Here, the fact is exploited that a single product
of an ESOP description directly corresponds to an appropriate reversible gate.
The cost of the respective gates strongly depends thereby on the properties of
the products. Accordingly, the quality of the resulting circuits relies not only on
the number of product terms of the ESOP, but on further criteria as well. This
is different to conventional logic optimization and, thus, requires an appropriate
treatment.

In this paper, an approach is introduced which optimizes a given Pseudo Kro-
necker Expression (PSDKRO) with respect to these criteria. PSDKROs repre-
sent a subclass of ESOPs enabling minimization within reasonable time bounds.
In order to optimize the PSDKROs, the evolutionary algorithm introduced in [7]
is utilized. We describe how this algorithm can be extended to address the new
cost models. Experimental results show that this leads to significant improve-
ments in the costs of the resulting circuits. In fact, in most of the cases, the
respective costs can be decreased by double-digit percentage points.

The remainder of this paper is structured as follows. The next section intro-
duces the necessary background on reversible circuits as well as on ESOPs and
PSDKROs. Afterwards, the ESOP-based synthesis method is briefly reviewed
in Section 3. Section 4 describes the proposed optimization approach. Finally,
experimental results are presented in Section 5 and conclusions are drawn in
Section 6, respectively.

2 Background

To keep the paper self-contained, this section briefly reviews the basic concepts
of reversible logic. Afterwards, ESOPs and PSDKROs are introduced.

2.1 Reversible Circuits

Reversible circuits are digital circuits with the same number of input signals and
output signals. Furthermore, reversible circuits realize bijections only, i.e. each



3

x1 x1

x2 x2

x3 x3 ⊕ x1x2

(a) Toffoli gate

1 0

0 1

1 0

(b) Toffoli circuit

Fig. 1: Toffoli gate and Toffoli circuit

input assignment maps to a unique output assignment. Accordingly, computa-
tions can be performed in both directions (from the inputs to the outputs and
vice versa).

Reversible circuits are composed as cascades of reversible gates. The Toffoli
gate [21] is widely used in the literature and also considered in this paper. A
Toffoli gate over the inputs X = {x1, . . . , xn} consists of a (possibly empty) set
of control lines C = {xi1 , . . . , xik} ⊂ X and a single target line xj ∈ X \ C.
The Toffoli gate inverts the value on the target line if all values on the control
lines are assigned to 1 or if C = ∅, respectively. All remaining values are passed
through unaltered.

Example 1. Fig. 1(a) shows a Toffoli gate drawn in standard notation, i.e. control
lines are denoted by , while the target line is denoted by ⊕. A circuit composed
of several Toffoli gates is depicted in Fig. 1(b). This circuit maps e.g. the input
101 to the output 010 and vice versa.

Since the number of gates in a cascade is a very poor measure of the cost of
a reversible circuit, different metrics are applied (sometimes depending on the
addressed technology). In this work, we consider quantum cost and transistor
cost. While the quantum cost model estimates the cost of the circuit in terms of
the number of elementary quantum gates [14], the transistor cost model estimates
the cost of the circuit in terms of the number of CMOS transistors [20]. Both
metrics define thereby the cost of a single Toffoli gate depending on the number
of control lines. More precisely:

– Quantum cost model: The quantum cost of a Toffoli gate is given in Table 1(a)
(using the calculations according to [17]), where c denotes the number of
control lines for the gate and n denotes the number of circuit lines. Note
that the quantum cost depend not only on the number c of control lines,
but also on the number (n − c + 1) of lines neither used as control line or
target lines. The more lines are not in the set of control lines, the cheaper
the respective gate can be realized.

– Transistor cost model: The transistor cost of Toffoli gate increases linearly
with 8 · s where s is the number of control lines in the gate (see Table 1(b)).

The cost of a circuit is the sum of the costs of the individual gates. For
example, the gate shown in Fig. 1(b) has quantum cost of 14 and transistor cost
of 56.

2.2 Exclusive Sum of Products and Pseudo Kronecker Expressions

Exclusive Sum of Products (ESOPs) are two-level descriptions of Boolean func-
tions. Each ESOP is composed of various conjunctions of literals (called prod-
ucts). A literal either is a propositional variable or its negation. To form the



4

Table 1: Cost of reversible circuits
(a) Quantum cost

c (n− c + 1) ≥ cost

0 1
1 1
2 5
3 13
4 2 26
4 0 29
5 3 38
5 1 52
5 0 61
6 4 50
6 1 80
6 0 125

c (n− c + 1) ≥ cost
7 5 62
7 1 100
7 0 253
8 6 74
8 1 128
8 0 509
9 7 86
9 1 152
9 0 1021

> 9 c− 2 12(c + 1)− 34
> 9 1 24(c + 1)− 88
> 9 0 2c+1 − 3

(b) Transistor cost

s cost
0 0
1 8
2 16
3 24
4 32
5 40
6 48
7 56
8 64
9 72
10 80

> 10 8 · s

ESOP, all products are combined by Exclusive ORs. That is, an ESOP is the
most general form of two-level AND-EXOR expressions.

Since the minimization of general ESOPs is computationally expensive, sev-
eral restricted subclasses have been considered in the past, e.g. Fixed Polarity
Reed-Muller Expressions (FPRMs) [15] and Kronecker Expressions (KROs) [4].
As an interesting alternative, Pseudo Kronecker Expressions (PSDKROs) have
been proposed, since the resulting forms are of moderate size, i.e. close to ESOPs,
and the minimization process can be handled within reasonable time bounds.
The following inclusion relationship can be stated for ESOPs and PSDKROs:
FPRM ⊆ KRO ⊆ PSDKRO ⊆ ESOP .

Let f0i (f1i ) denote the cofactor of the Boolean function f : Bn → B with
xi = 0 (xi = 1) and f2i := f0i ⊕ f1i , where ⊕ is the Exclusive OR operation.
Then, f then can be represented by:

f = xif
0
i ⊕ xif1i (Shannon, abbr. S) (1)

f = f0i ⊕ xif2i (positive Davio; abbr. pD) (2)

f = f1i ⊕ xif2i (negative Davio; abbr. nD) (3)

A PSDKRO is obtained by applying either S, pD, or nD to a function f and
all subfunctions until constant functions are reached. If the resulting expressions
are expanded, a two-level AND-EXOR form called PSDKRO results.

Example 2. Let f(x1, x2, x3) = x1x2 + x3. If f is decomposed using S, we get:

f0x1
= x3 and f1x1

= x2 + x3

Then, decomposing f0x1
using pD and f1x1

using nD, we get:

(f0x1
)0x3

= 0 and (f0x1
)2x3

= 1

(f1x1
)1x2

= 1 and (f1x1
)2x2

= 1⊕ x3

Finally, again pD is applied for (f1x1
)2x2

:

((f1x1
)2x2

)0x3
= 1 and ((f1x1

)2x2
)2x3

= 1



5

x1 x2 x3 f1 f2 f3
1 - 1 1 0 0
0 1 - 1 1 0
1 1 - 0 0 1
0 0 - 0 0 1
0 1 0 0 1 0

(a) ESOP

x1 –
x2 –
x3 –
0 f1
0 f2
0 f3

(b) Basic approach

x1 –
x2 –
x3 –
0 f1
0 f2
0 f3

(c) W/ reordering

Fig. 2: ESOP-based synthesis

Thus, by expanding the respective expressions, the following PSDKRO descrip-
tion for f results:

f = x1x3 ⊕ x1 ⊕ x1x2 ⊕ x1x2x3

3 ESOP-based Synthesis

In this work, evolutionary algorithms are applied in order to improve the ESOP-
based synthesis method originally introduced in [6]. For a given function
f : Bn → Bm, this approach generates a circuit with n + m lines, whereby the
first n lines also work as primary inputs. The last m circuit lines are respectively
initialized to a constant 0 and work as primary outputs. Having that, gates are
selected such that the desired function is realized. This selection exploits the fact
that a single product xi1 , . . . xik of an ESOP description directly corresponds to
a Toffoli gate with control lines C = {xi1 , . . . xik}. In case of negative literals,
NOT gates (i.e. Toffoli gates with C = ∅) are applied to generate the appropriate
values. Based on these ideas, a circuit realizing a function given as ESOP can
be derived as illustrated in following example.

Example 3. Consider the function f to be synthesized as depicted in Fig. 2(a)1.
The first product x1x3 affects f1. Accordingly, a Toffoli gate with control
lines C = {x1x3} and a target line representing the primary output f1 is added
(see Fig. 2(b)). The next product x1x2 includes a negative literal. Thus, a NOT
gate is needed at line x1 to generate the appropriate value for the next mappings.
Since x1x2 affects both, f1 and f2, two Toffoli gates with control lines C = {x1x2}
are added next. Afterwards, a further NOT gate is applied to restore the value
of x1 (needed again by the third product). This procedure is continued until all
products have been considered. The resulting circuit is shown in Fig. 2(b).

Note that thereby the order in which the respective products are traversed
may have a slight impact on the resulting circuit cost. For example, the line x1
in the circuit from Example 3 is unnecessarily often be inverted. This can be
avoided by treating the respective products in a different order as shown in
Fig. 2(c). Here, the two product terms with positive literals only were considered
first. Afterwards, the products including x1, x1x3, and, finally, x1x2 have been
handled. This leads to a reduction in the number of NOT gates by 3. In the

1 The column on the left-hand side gives the respective products, where a “1” on the
ith position denotes a positive literal (i.e. xi) and a “0” denotes a negative literal
(i.e. xi), respectively. A “-” denotes that the respective variable is not included in
the product. The right-hand side gives the respective primary output patterns.



6

following, a reordering scheme as introduced in [6] is applied to generate the
circuits.

Overall, having an ESOP description of the function f to be synthesized, a
reversible circuit realizing f can easily be created using the reviewed approach.
However, the quality of the resulting circuits strongly depends on the following
properties of the given ESOP:

– The number of products (since for each product, a Toffoli gate is added to
the circuit),

– the number of primary outputs affected by a product (since for each affected
primary output, a Toffoli gate is added to the circuit), and

– the number of literals within a product (since for each literal, a control line
needs to be added which causes additional cost as shown in Table 1).

These criteria contradict with the optimization goals applied in common
Boolean optimization approaches (e.g. EXORCISM [19]), where usually only
the number of product terms is reduced. In contrast, considering ESOP-based
synthesis, a function description including more products might be better if in-
stead the number of literals within these products is smaller. Then, although
even more gates have to be added, these gates are of less cost. Determining a
“good” ESOP representation trading-off these contradictory criteria is thereby a
non-trivial task. The next section introduces an evolutionary algorithm address-
ing this problem.

4 EA-based Optimization

In order to optimize a given ESOP description with respect to the criteria out-
lined in the previous section, the approach introduced in [7] is utilized. This
approach optimizes PSDKRO descriptions – as mentioned above, a subclass of
ESOPs enabling efficient optimization. In this section, we briefly review the es-
sential parts of the algorithm and describe the extensions to address the new
cost models.

4.1 General Flow

In [7], PSDKROs are optimized using Reduced Ordered Binary Decision Dia-
grams (ROBDDs) [2]. Having a BDD representing the function to be optimized,
a depth-first traversal over all nodes is performed. Then, a PSDKRO is derived
exploiting the fact that for each decomposition (i.e. for each S, pD, and nD)
two out of three possible successors f0i , f1i , and f2i are needed. That is, in order
to generate the PSDKRO, for each node the costs of these three sub-functions
are determined. Since ROBDDs are applied, f0i and f1i already are available. In
case of f2i , the respective function representation is explicitly created. Having
the respective costs, the two cheapest sub-functions are applied leading to the
respective decomposition type for the PSDKRO.

Using this algorithm, a PSDKRO results which is optimal with respect to a
given ordering of the ROBDD. However, modifying the variable ordering likely
has an effect on the cost of the PSDKRO. Thus, determining a variable ordering
leading to the best as possible PSDKRO representation remains as optimization
task. Therefore, an evolutionary algorithm described as follows is applied.



7

4.2 Individual Representation

The ordering of the input variables in the expansion influences the cost of the
PSDKRO. To obtain the minimum cost for all orderings, n! different combi-
nations have to be considered, where n denotes the number of input variables.
That is, a permutation problem is considered. This can easily be encoded in
EAs by means of vectors over n integers. Each vector represents a permutation,
i.e. a valid ordering for the ROBDD, and works as individual in the EA. The
population is a set of these elements.

4.3 Operators

In the proposed EA-approach, several procedures for recombination, mutation,
and selection are applied. Due to page limitations, they are introduced in a
brief manner. For a more detailed treatment, references to further readings are
provided.

Crossover and Mutation To create an offspring of a current population two
crossover operators and three mutation operators are used alternately.

For recombination Partially Matched Crossover (PMX) [8] and Edge Re-
combination Crossover (ERX) [22] are applied equally. In our application, both
operators create two children from two parents.

PMX: Choose two cut positions randomly. Exchange the parts between the
cut positions in the parent individuals to create two children. Validate the
new individuals in preserving the position and order of as many variables as
possible.

ERX: Create an adjacency matrix which lists the neighbors of each variable in
both parents. Beginning with an arbitrary variable, next the variable with
the smallest neighbor set is chosen iteratively. Already chosen variables are
removed from all neighbor sets.

For mutation three operators are used as follows:

SWAP: Randomly choose two positions of a parent and exchange the values of
these positions.

NEIGHBOR: Select one position i < n randomly and apply SWAP with posi-
tions i and i+ 1.

INVERSION: Randomly select two positions i and j and invert all variables
within i and j.

Selection During the experimental evaluation, several selection procedures have
been applied and the following turned out to be usually advantageous. As parent
selection a deterministic tournament between q uniformly chosen individuals is
carried out. The best individual is chosen as a parent used for recombination or
mutation, respectively.

To determine the population for the next generation, PLUS-selection (µ+λ)
is applied. Here, the best individuals of both, the current population µ and the
offspring λ, are chosen equally. By this, the best individual never gets lost and
a fast convergency is obtained.



8

4.4 Termination Criterions

The optimization process is aborted if no improvement is obtained for 20∗ ln(n)
generations or a maximum number of 500 generations, respectively. The default
termination criterions are chosen based on experiments in a way that the EA
provides a compromise between acceptable runtime and high quality results.

4.5 Parameter Settings

In general, all parameters and operators described above are parameterizable by
the user. However, by default the size of the population is chosen two times larger
than the number of primary inputs of the considered circuit. For the creation of
the offspring, recombination is applied with a probability of 35% while mutation
is used with a probability of 65%. By this, mutation also can be carried out on
newly elements created by recombination.

4.6 Overall Algorithm and Fitness Function

At the beginning of an EA run, an initial population is generated randomly. Each
of the individuals corresponds to a valid variable ordering of the ROBDD. In
each generation an offspring of the same size of the parent population is created
according to the operators described above. With respect to the fitness, the best
individuals of both populations are chosen to be in the next generation. If a
termination criterion is met, the best individual is returned.

As discussed above, the applied fitness function is thereby different. Instead
of minimizing the number of products, further criteria need to be considered.
To incorporate this into the EA, the respective cost functions from Table 1 is
encoded and integrated in the selection procedure. More precisely, for each indi-
vidual, the resulting PSDKRO (or ESOP, respectivley) description is traversed
and the cost are added according to the quantum cost model or the transistor
cost model, respectively. The resulting value is used as fitness for the considered
individual.

Example 4. Consider the function 5xp1 from the the LGSynth benchmark li-
brary. This PSDKRO description originally has pinitial = 48 products which is
also the optimal result using the original approach from [7]. However, the quan-
tum cost are qcinitial = 1081. In contrast, if the proposed configuration is applied,
a PSDKRO with an increase in the number of products to pqcmin = 50 results.
But, a circuit with quantum cost of only qcqcmin = 865 can be derived. This
shows that a decreasing number of products not coincidently means decreasing
quantum cost or transistor cost, respectively.

5 Experimental Evaluation

The proposed approach has been implemented in C++ utilizing the EO li-
brary [10], the BDD package CUDD [18], and the RevKit toolkit [17]. As bench-
marks, we used functions provided in the LGSynth package. All experiments
have been carried out on an AMD 64-Bit Opteron 2,8 GHz with 32GB memory
running linux.

The obtained results are summarized in Table 2. The first columns give the
name of the respective benchmarks as well as the number of their primary in-
puts (denoted by PIs) and primary outputs (denoted by POs). Afterwards,



9

Table 2: Experimental evaluation
Benchmark Quantum Cost Transistor Cost
Name PIs POs Init. Cost Opt. Cost Impr % Time s Init. Cost Opt. Cost Impr % Time s

5xp1 7 10 1181 865 26.8 177.0 1424 1080 24.2 205.6
rd84 8 4 2072 2062 0.5 133.3 2528 2528 0.0 130.2
sym9 9 1 16535 16487 0.3 42.8 5088 5088 0.0 40.7
sym10 10 1 37057 35227 4.9 45.7 8408 7984 5.0 45.4
add6 12 7 5112 5084 5.5 370.1 5232 5232 0.0 348.6
alu2 10 6 5958 4476 24.9 188.2 4824 3960 17.9 165.0
alu4 14 8 79311 43850 44.7 594.1 56752 36784 35.2 494.6
apex4 9 19 59175 50680 14.4 315.3 54400 48552 10.8 338.3
b9 41 21 4237 3800 10.3 1331.2 4040 3632 10.1 1307.7
b12 15 9 1082 1049 3.0 417.8 1176 1112 5.4 412.1
con1 7 2 188 162 13.8 30.4 264 224 15.2 40.2
clip 9 5 5243 4484 14.5 151.8 4472 3808 14.8 164.4
duke2 22 29 11360 10456 8.0 1849.3 10016 9248 7.7 1846.8
log8mod 8 5 1118 941 15.8 102.3 1312 1160 11.6 101.6
misex1 8 7 475 466 1.9 190.0 608 608 0.0 185.0
misex3 14 14 82914 67206 18.9 940.8 72528 58464 19.4 890.5
misex3c 14 14 100481 85330 15.1 1016.6 88144 74544 19.4 850.0
sao2 10 4 6005 5147 14.3 141.6 3200 2704 15.5 154.4
spla 16 46 50399 49419 1.9 2498.5 42424 41672 1.8 2392.4
sqrt8 8 4 605 461 23.8 108.1 672 512 23.8 98.7
squar5 5 8 292 251 14.0 18.7 488 448 8.2 17.0
t481 16 1 275 237 13.8 56.1 352 320 9.1 55.2
table3 14 14 46727 35807 23.4 825.7 40208 30800 23.4 843.2
table5 17 15 54729 34254 37.4 1253.0 45408 28440 37.4 1147.7
ttt2 24 21 2540 2445 3.7 1216.2 2720 2584 5.0 1181.4
vg2 25 8 22918 18417 19.6 564.2 18280 14432 21.1 566.0

the cost of the circuits generated from the initial PSDKRO representation (de-
noted by Init. Cost) and generated from the optimized PSDKRO representation
(denoted by Opt. Cost) are provided. Furthermore, the resulting improvement
(given in percent and denoted by Impr.) as well as the needed run-time (given
in CPU seconds and denoted by Time) is listed. We distinguish thereby between
the optimization with respect to quantum cost and the optimization with respect
to transistor cost.

As can be seen, exploiting evolutionary algorithms significantly helps to re-
duce the cost of reversible circuits. For the majority of the benchmarks, double-
digit improvement rates are achieved in less than an hour – in many cases just
a couple of minutes is needed. If transistor cost is considered, the reductions are
somewhat smaller. This was expected as this cost model is linear in comparison
to the exponential quantum cost model (see Table 1). In the best case, quantum
cost (transistor cost) can be reduced by 44.7% (37.4%) in less than 10 minutes
(20 minutes).

6 Conclusions

In this paper, an evolutionary algorithm is applied in order to improve ESOP-
based synthesis of reversible circuits. By this, PSDKROs are considered which
are a subclass of ESOPs. Reversible circuits received significant attention in the
past – not least because of the promising applications in the domain of low-power
design or quantum computation. ESOP-based synthesis is an efficient method
for synthesis of this kind of circuits. Applying the proposed approach, the results
obtained by this method can be improved significantly – in most of the cases by
double-digit percentage points.

Acknowledgment

This work was supported by the German Research Foundation (DFG) (DR
287/20-1).



10

References

1. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev 17(6), 525–
532 (1973)

2. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. on Comp. 35(8), 677–691 (1986)

3. Cuykendall, R., Andersen, D.R.: Reversible optical computing circuits. Optics Let-
ters 12(7), 542–544 (1987)

4. Davio, M., Deschamps, J., Thayse, A.: Discrete and Switching Functions. McGraw-
Hill (1978)

5. Desoete, B., Vos, A.D.: A reversible carry-look-ahead adder using control gates.
INTEGRATION, the VLSI Jour. 33(1-2), 89–104 (2002)

6. Fazel, K., Thornton, M.A., Rice, J.E.: ESOP-based Toffoli gate cascade genera-
tion. In: IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing. pp. 206–209 (2007)

7. Finder, A., Drechsler, R.: An evolutionary algorithm for optimization of pseudo
kronecker expressions. In: Int’l Symp. on Multi-Valued Logic. pp. 150–155 (2010)

8. Goldberg, D., Lingle, R.: Alleles, loci, and the traveling salesman problem. In: Int’l
Conference on Genetic Algorithms. pp. 154–159 (1985)

9. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic
circuits. IEEE Trans. on CAD 25(11), 2317–2330 (2006)

10. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving objects: a general
purpose evolutionary computation library. In: Int’l Conference in Evolutionary Al-
gorithms. pp. 231–244 (2001), the EO library is available at eodev.sourceforge.net

11. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183 (1961)

12. Merkle, R.C.: Reversible electronic logic using switches. Nanotechnology 4, 21–40
(1993)

13. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Design Automation Conf. pp. 318–323 (2003)

14. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge Univ. Press (2000)

15. Reed, I.: A class of multiple-error-correcting codes and their decoding scheme. IRE
Trans. on Inf. Theory 3, 6–12 (1954)

16. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic
circuits. IEEE Trans. on CAD 22(6), 710–722 (2003)

17. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible
circuit design. In: Workshop on Reversible Computation (2010), RevKit is available
at www.revkit.org

18. Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.3.1.
University of Colorado at Boulder (2001), CUDD is available at
vlsi.colorado.edu/˜fabio/CUDD/

19. Song, N., Perkowski, M.: Minimization of exclusive sum of products expressions for
multi-output multiple-valued input, incompletely specified functions. IEEE Trans.
on CAD 15(4), 385–395 (1996)

20. Thomson, M.K., Glück, R.: Optimized reversible binary-coded decimal adders. J.
of Systems Architecture 54, 697–706 (2008)

21. Toffoli, T.: Reversible computing. In: de Bakker, W., van Leeuwen, J. (eds.) Au-
tomata, Languages and Programming, p. 632. Springer (1980), technical Memo
MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

22. Whitley, D., Starkweather, T., Fuquay, D.: Scheduling problems and traveling sales-
man: The genetic edge recombination operator. In: Int’l Conference on Genetic
Algorithms. pp. 133–140 (1989)

23. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Design Automation Conf. pp. 270–275 (2009)

24. Zhirnov, V.V., Cavin, R.K., Hutchby, J.A., Bourianoff, G.I.: Limits to binary logic
switch scaling – a gedanken model. Proc. of the IEEE 91(11), 1934–1939 (2003)


