
Automated Debugging from Pre-Silicon to
Post-Silicon

Mehdi Dehbashi Görschwin Fey
Institute of Computer Science, University of Bremen

28359 Bremen, Germany
{dehbashi, fey}@informatik.uni-bremen.de

Abstract—Due to the increasing design size and complexity
of modern Integrated Circuits (IC) and the decreasing time-to-
market, debugging is one of the major bottlenecks in the IC
development cycle. This paper presents a generalized approach
to automate debugging which can be used in different scenarios
from design debugging to post-silicon debugging. The approach is
based on model-based diagnosis. Diagnostic traces are proposed
as an enhancement reducing debugging time and increasing di-
agnosis accuracy. The experimental results show the effectiveness
of the approach in post-silicon debugging.

I. INTRODUCTION

The cost of VLSI systems verification and debugging has
significantly increased in the recent years as design size
and complexity has increased. Also due to time-to-market
constraints, 100% verification coverage at the design level is an
elusive task. Thus, in addition to electrical bugs, design bugs
may appear in the final IC product. In this case, automated
debugging approaches handling different kinds of bugs can
effectively help to reduce the development time of IC products.

Verification aims at deciding if there is an error in a
system with respect to a specification. The system is an
implementation of a design in pre-silicon verification, and
an IC in post-silicon verification. If there is an error, the
erroneous behavior is returned as a counterexample. Having
a counterexample, debugging is responsible to localize and
rectify the root cause of the erroneous behavior. This process
often remains as a manual task and increases the time of the
development cycle significantly. Automated debugging identi-
fies the potential sources of the observed errors corresponding
to the counterexamples. Each potential source of the errors is
a fault candidate which can fix all erroneous behavior of the
available counterexamples.

Different approaches have been proposed for automating
pre-silicon and post-silicon debugging. Automated approaches
in pre-silicon debugging rely on simulation [1], Binary Deci-
sion Diagrams (BDD) [2], and Boolean Satisfiability (SAT)
[3]. In [4], SAT-based debugging is used to debug different
abstraction levels of the system description. The post-silicon
debugging requires a larger effort. The main challenge of
post-silicon debugging is the limited observation of internal
signals. To overcome this problem, various on-chip solutions
for internal signal observation have been proposed such as
scan chains [5] [6] and trace buffers [7] [8] [9]. The tech-
niques based on the trace buffers are widely accepted in the
industry [9] [10]. Even by using the trace buffers, getting
an execution trace of the on-chip signals related to the time
of bug activation is a challenging problem. To address this
problem different methods for different kinds of bugs have
been proposed. In [10], the approach re-runs the chip with
new trigger conditions to "backspace" the content of the trace

This work has been funded in part by the German Research Foundation
(DFG, grant no. FE 797/6-1).

buffer until the traces related to the activation time of the
design bug can be extracted. In [11] and [12], some quick
error detection mechanisms for the electrical bugs are used
to efficiently store the erroneous behavior related to the bug
activation time in the trace buffer.

The works in [13] and [14] use randomly generated test pat-
terns to obtain more counterexamples for automating debug-
ging and to apply automatic correction. Automatic correction
increases the computational cost and is not guaranteed to fix
an error in the desired way. Using random counterexamples
may decrease the diagnosis accuracy, and may increase the
iterations between verification and debugging. In [15], a pre-
silicon debugging flow is proposed for testbench-based ver-
ification environments. The approach uses diagnostic traces
to obtain more effective counterexamples and to increase the
diagnosis accuracy.

Here we propose a generalized framework to automate
debugging that tightly integrates model-based diagnosis using
Boolean Satisfiability [16] and diagnostic trace generation
[15]. The main contributions of this paper are:

- a unified view on pre- and post-silicion debugging
automation and

- a detailed discussion of the post-silicon debugging sce-
nario

Our approach relies on model-based diagnosis as an underly-
ing step. Diagnostic traces [15] close the loop between verifi-
cation and model-based diagnosis. Diagnostic traces differen-
tiate the fault candidates and increase the diagnosis accuracy.
The debugging flow can be applied to electrical bugs as well
as design bugs which slip into the IC from different levels
of the system description. An instantiation of the generalized
automated debugging flow is applied to post-silicon debugging
of design bugs.

The remainder of this paper is organized as follows. Sec-
tion II introduces preliminary information on hardware struc-
tures for post-silicon debugging and model-based diagnosis.
Then, our generalized approach to automate debugging is
presented in Section III. Section IV describes our automated
debugging for post-silicon to diagnose different kinds of bugs.
A concrete instantiation of our approach for design bugs
is presented in Section V. Section VI presents experimental
results on benchmark circuits. The last section concludes the
work.

II. PRELIMINARIES

A. Hardware Structures for Post-Silicon Debugging
The hardware structures for post-silicon debugging are di-

vided into two main categories: Design-For-Test (DFT) Struc-
tures and Design-For-Debug (DFD) structures. Scan chains
are commonly used as a DFT structure in manufacturing test.
This hardware can be reused for post-silicon debugging [17].

During the test mode, the state of all the scan registers can
be extracted by performing a scan dump. Unless two-state
elements are used for each register, which leads to an excessive
area overhead, the test environment needs to be restarted
after each scan dump [18]. The scan registers with two-state
elements are used in [19] for online detection of design bugs.

An overview of DFD structures is given in [7]. Trace
buffers are commonly used as a DFD structure in industry.
A trace buffer is based on an on-chip memory which records
internal signals. The trace buffer includes control logic which
is responsible to trigger on-line monitoring of circuit behavior.
Once the trigger condition is asserted by control logic, the
trace buffer can start/stop recording the selected signals values
[18]. The trace buffer size in practice is typically 1K × 8 bits
to 8K × 32 bits [20].
B. Model-based diagnosis (MBD)

Model-based diagnosis (MBD) is a precise approach which
is frequently used to localize bugs in hardware and soft-
ware [21] [22]. In MBD, a system model is provided in
terms of components and their interconnections [23]. The
component models describe how each component behaves.
Then a domain-independent reasoning engine calculates the
diagnosis from the model and system observations. SAT-based
reasoning engines have been shown as a robust and efficient
approach to diagnose and localize the bugs, called SAT-based
debugging [3].

In SAT-based debugging, a circuit is divided into compo-
nents. Depending on which elements are chosen as compo-
nents, the granularity of the debugging result differs. Typical
choices are gates or expressions, but also hierarchical or
structural information are taken into account [24] [25]. SAT-
based debugging searches for all possible fault candidates
in the circuit. Given an implementation of a circuit and a
set of counterexamples, one copy of the circuit is created
for each counterexample. Then, the inputs and outputs are
constrained to the input stimuli and to the correct output
response of the corresponding counterexample. Also the circuit
is enhanced with correction logic by adding a multiplexer at
the output of each component. The original output function
Fc of component C is replaced by F ′

c. The select line Sc of
the added multiplexer controls F ′

c such that if Sc is activated
F ′

c = Rc where Rc is an unconstrained variable and a value for
correcting the erroneous behavior may be injected, otherwise
F ′

c = Fc. The select line is also called abnormal predicate.
The number k of active abnormal predicates is controlled by
a fault cardinality constraint.

To reduce the space requirement, instead of running the
SAT solver on the all counterexamples, SAT solver can be
run consecutively on the counterexamples [3]. In this way,
the memory consumption is independent of the number of
counterexamples.

Debugging for sequential circuits is done by unrolling
the circuit for some time steps equal to the length of the
counterexample [3]. The correction logic is added as in the
combinational case and usually the same abnormal predicate
is used for the same gate in all time steps and for all
counterexamples.
III. GENERALIZED AUTOMATED DEBUGGING PROCEDURE

Here we present a generalized Automated Debugging (AD)
procedure which uses MBD and diagnostic traces for automa-
tion and accurate localization of potential root causes of an

error. AD can be reused in different contexts for various debug-
ging situations. 1 Diagnostic traces help automated debugging
by distinguishing fault candidates.

The diagnosis in a system starts with system observa-
tions violating normal system behavior determined by the
system specification. This discrepancy between a system and
its specification is called counterexample. Having an initial
counterexample, MBD tries firstly to localize fault candidates,
i.e., components capable of rectifying the erroneous behavior.
But usually the initial number of fault candidates is large.
Thus, diagnostic traces are introduced to discriminate the fault
candidates and to help debugging to accurately localize the
root cause of the error. More erroneous behavior is discovered
by diagnostic traces and this new behavior should be used to
iterate MBD for excluding fault candidates that cannot fix the
new erroneous behavior.

The inputs of the AD function include a system specification
as a reference (Ref), a system model as an object (Obj), and
one or more initial counterexamples (CEs) which show the
initial discrepancy between the system and its specification.
The output of AD is the set FCs of fault candidates which are
the potential sources of the observed error corresponding to
the available counterexamples. Each fault candidate is a set of
components of the system which can fix all erroneous behavior
of the counterexamples under consideration:

FCs = AD(Ref, Obj, CEs) (1)

The AD function includes three subfunctions. The first
subfunction of AD applies MBD. MBD finds the initial set
FCs of fault candidates as potential sources of the observed
errors according to the initial counterexamples:

FCs = MBD(Obj, CEs) (2)

Diagnosis accuracy is a function of fault candidates, e.g.,
a small number indicates good accuracy. In general, the
quantity and quality of fault candidates determine the Diag-
nosis Accuracy value. If the diagnosis accuracy determined
by fault candidates is not sufficient, then the second step of
AD starts. The second step is Diagnostic Trace Generation
(DTG). Similar to diagnostic test patterns [27] [28], diagnostic
traces distinguish the behavior of fault candidates [15]. DTG
works on sequential circuits and does not require a precise
fault model. Section V-B discusses more details. Diagnostic
traces may help the next debugging session to exclude fault
candidates which cannot fix all erroneous behavior:

DTs = DTG(Obj, FCs) (3)

Afterwards, diagnostic traces are validated with respect
to the system specification to guarantee that the diagnostic
traces really create a discrepancy between the system and its
specification. A diagnostic trace which creates a discrepancy
is a counterexample. This step is called Diagnostic Trace
Validation (DTV):

CEs = DTV (Ref, DTs) (4)

1Actually, a concept similar to diagnostic traces is used not only for
debugging in computer science but also in other sciences (e.g. medical science,
psychology, ...) to accurately discover disorders in clinical cases (as fault
candidates) out of a community (as a system) [26].

1 f u n c t i o n AD(Ref, Obj, CEs)
2 do
3 {
4 FCs = MBD(Obj, CEs)
5 NewCEs = ∅
6 i f DiagnosisAccuracy(FCs) < Threshold then
7 {
8 whi le NewCEs == ∅ and !DTsLimitation do
9 {

10 DTs = DTG(Obj, FCs)
11 NewCEs = DTV (Ref, DTs)
12 }
13 CEs = CEs ∪NewCEs
14 }
15 } whi le NewCEs! = ∅
16 end f u n c t i o n

Fig. 1. Generalized Automated Debugging Procedure

Finally, the new counterexamples are used by iterating the
process to decrease the number of fault candidates. Figure 1
shows the automated debugging function as a pseudo code. AD
is controlled by a parameter for the threshold of the Diagnosis
Accuracy (line 6), e.g., the number of fault candidates can be
used as a value for the threshold parameter. The number of
diagnostic traces is controlled by the parameter DTsLimitation
(line 8).

To apply the generalized approach to pre-silicon debugging,
Obj is a hardware design at the RTL or the gate level. Ref can
be a formal specification or a testbench. Initial counterexam-
ples CEs are given by design verification tools. In this case,
AD is invoked to search the set FCs of fault candidates such
that the appropriate diagnosis accuracy is achieved [15]:

FCs = AD(Spec, Design, CEs) (5)

When Ref is a formal specification, the functions DTG and
DTV can be integrated in a unified instance to generate new
counterexamples [29]. However, a formal specification is often
not given for complex designs. In the following, we explain
how AD is utilized in post-silicon debugging.

IV. AUTOMATED POST-SILICON DEBUGGING

This section describes how the general automated debugging
procedure is used for post-silicon debugging of design bugs
and electrical bugs. In the IC design hierarchy, there can be
multiple references for a chip as a system. By using different
references, different kinds of bugs are distinguished. As shown
in Figure 2, for post-silicon debugging usually there are
three main descriptions of the hardware system: specification,
design, and chip.

The specification as a golden model can be a formal
specification or a high level simulation model or a testbench.
The specification is used for creating the expected correct
output of a trace in the debugging process. A design is a
circuit which is represented at RTL by Hardware Description
Languages (HDL). Then, the gate level and the transistor level
designs are created respectively by logic synthesis and the
place-and-route processes for chip manufacturing.

After the chip is manufactured, post-silicon validation is
started by running a test program, such as an end-user appli-
cation or functional tests, or applying the test vectors. An error
may be observed by hardware or software assertions. In this
case, signal traces are stored in trace buffers. The content of
the trace buffer is used to extract the system state, its inputs,
and the corresponding outputs. Then, the specification and
the design are used to check the extracted traces. There are

Out

=

=

Trace

1 2 3 4

✓

✓ ✓

✓

Spec

Design

Chip

Fig. 2. The start of debugging after an error detection on a chip. × shows
the inconsistency between the corresponding responses in each level.

some shared observation points among specification, design,
and chip which can be assumed as a partial state equivalence
for debugging. Our general idea is based on inconsistencies
detected between different system descriptions which can be
used to distinguish different bugs. As Figure 2 shows, after an
error occurrence, the traces and their corresponding responses
are extracted from the trace buffer. Checking the extracted
traces from the trace buffer in the specification and in the
design leads to four cases. For each case, the general AD
function is configured in different ways to efficiently diagnose
bugs. In the following, we discuss each case.

A. Case 1: Design Bug
In this case (Figure 2, case 1), the extracted traces applied

to the design create responses which are consistent with the
extracted responses from the trace buffer. Applying the traces
to the specification and the design creates different responses.
This shows there is a bug in the design which has escaped
pre-silicon verification and has slipped into the chip. Actually,
the extracted traces show a special sequence of the system
traces which was not verified in the pre-silicon verification.
This is revealed after running the chip for a longer time and
in communication with the peripherals. In this case, erroneous
behavior obtained from trace buffer data (chip) or design,
and expected behavior obtained from specification constitute
a counterexample. The AD function localizes the bug on the
design:

FCs = AD(Spec, Design, CEs) (6)

In this case, diagnostic traces are validated by the specifi-
cation.

B. Case 2: Electrical Bug
The extracted responses from the trace buffer are not repro-

duced in the design while the responses of the design and the
specification are consistent (Figure 2, case 2). As the silicon is
assumed to implement the RTL correctly, in this case, there is
an electrical bug which can be reproduced neither in the design
nor the specification. The erroneous behavior obtained from
trace buffer data (chip) and the expected behavior produced
by the design or the specification constitute one or more
counterexamples. Then, the AD function operates on the
design (as RTL or gate level) to localize the root cause of
electrical bugs:

FCs = AD(Chip, Design, CEs) (7)

For electrical bugs, fault candidates are found on the design
as this allows to access the internal structure of the circuit.
Also there is a mapping between the design and IC compo-
nents. Diagnostic traces generated by DTG are checked by
being applied to the chip. For electrical bugs, the difficulty

Diagnostic Traces

CEs

MBD

DTG

DTV

Initial CEs

Fault Candidates

New CEs

Trace Analysis

Spec

Design

Spec

TB

Design

Fig. 3. Automated post-silicon debugging of design bugs

is to generate diagnostic traces which can reactivate the
bug. Diagnostic traces can be generated by considering the
suspected electrical bug type (e.g. drive strength, coupling,
antenna effects, ...) and the layout information. Diagnostic
traces can be applied instead of randomly generated traces
[14] to improve the debugging performance. A diagnostic
trace which creates an inconsistency between the chip and the
design is a counterexample. There are different methods for
applying the diagnostic traces to a chip. Diagnostic traces can
be applied to a chip by hardware structures like scan-chains
or wrappers allowing what-if analysis [7]. In microprocessor-
based systems, Software-Based Self-Testing (SBST) methods
are effectively used to apply test patterns [30]. In [31], a set
of instructions, called Access-Control Extensions (ACE), are
defined and used to access and to control the microprocessor’s
internal state. ACE instructions are used to run directed tests
on the hardware.

C. Case 3: Electrical Bug and Design Bug
This case is a rare case in practice. When the extracted traces

create different behaviors in the design in comparison to the
extracted behavior of the chip, an electrical bug has occurred.
In the case (Figure 2, case 3), also the extracted traces create
different behavior in the design and the specification which
shows a design bug. Here debugging the design bug and the
electrical bug can be performed independently and in parallel.
Calling the functions defined by Equations (6) and (7) can
discover the root causes of the design bug and the electrical
bug concurrently:{

FCsD = AD(Spec, Design, CEsD)
FCsE = AD(Chip, Design, CEsE)

D. Case 4
After the error detection on a chip, the extracted traces from

the trace buffer create no inconsistency in any level. In this
case (Figure 2, case 4), the erroneous behavior related to the
bug activation time may not be stored in the trace buffer and is
overwritten. To overcome this problem some approaches have
been proposed in the cases of electrical bugs and the design
bugs. In [10], to get and to backspace an execution trace of on-
chip signals for many cycles leading up to the activation time
of a design bug, the chip is re-run with new trigger conditions.
In each run, the state of the trace buffer is dumped out. This
procedure is repeated automatically until the traces related to

L

L

XFC1
1 XFC f

1 XFC1
2 XFC f

2... ...

+
=?

XFC1 XFC f
...

+
=?

FC
1

FC f

FC
1

FC f

1

1

...

...

(a)

X_Observation

X_Observation

t=2t=1

t=1

s 1

i1 o1

s 1

i1 i2o1 o2

(b)

Fig. 4. Diagnostic Trace Generation method for sequential circuits with
single faults: (a) first time step. (b) second time step

the activation time of the design bug can be extracted. In [11]
and [12], quick error detection and localization mechanisms
are used to efficiently debug the electrical bugs.

Another situation which may result in case 4 is a software
bug or a bug related to hardware/software integration. The
bugs in this state may be distinguished by running N-version
programs (like software fault tolerant systems) and analyzing
their behavior on software and hardware assertions.

V. AUTOMATED POST-SILICON DEBUGGING OF DESIGN
BUGS

In this section, we focus on case 1 when a design bug
occurs in the system. Exemplarily we present AD for post-
silicon debugging. Section V-A describes our automated flow
for post-silicon debugging which integrates data analysis of
the trace buffer, model-based diagnosis, and diagnostic trace
generation to be used for increasing the accuracy of debugging.
In Section V-B, we present a heuristic method for diagnostic
trace generation which increases the diagnosis accuracy of
automated debugging.

A. Automated Flow for Post-Silicon Debugging

Figure 3 shows the overall approach which consists of four
steps. These steps are data analysis of the trace buffer, model-
based diagnosis, diagnostic trace generation, and diagnostic
trace validation. In the first step, trace buffer data which is
obtained after running a test program on the chip should
be analyzed and compared with the expected correct outputs
obtained from the specification. As we consider only design
bugs, the design and the chip have same behavior. If there
is an inconsistency between trace data and golden data, this
inconsistency or erroneous behavior represents a counterexam-
ple. By having the initial counterexample, the generalized AD
(Equation (6)) is invoked to execute MBD, DTG, and DTV
(Equations (2)-(4)). Here we use SAT-based debugging as an
effective approach to MBD. DTV is performed by applying
the diagnostic traces to a simulation model or a formal model
of the specification. DTG is explained in the following.

TABLE I
DIAGNOSIS ACCURACY

 Init ial Result Heuristic Me thod Random Method

Circuit #C #FC #CE #FC #CE #Trace #FC #CE #Trace

436 5 1 3 5 41 3 7 153

1865 7 6 7 13 12 7 6 2000

732 20 3 12 8 296 20 3 2000

or1200_if 463 5 3 1 9 6 5 3 2000

793 3 2 2 9 10 3 7 2000

376 11 3 7 8 62 11 3 2000

278 7 10 7 15 13 7 10 2000

 Method

or1200_alu

or1200_ctrl

or1200_genpc

or1200_lsu

or1200_operandmuxes

or1200_wbmux

B. Diagnostic Trace
A diagnostic trace is an input stimulus which tries to activate

a fault candidate (or a set of fault candidates) and propagate its
behavior to the outputs. The work in [15] presents a heuristic
technique which generates diagnostic traces by only having
fault candidates and a faulty circuit. The technique considers
the X-value as a token for the behavior of one fault candidate
or a set of fault candidates. Firstly the token X is injected
at a fault candidate in the faulty circuit. Then, the algorithm
searches for the diagnostic traces in a way that the token
X is propagated from inputs, crosses only the considered
fault candidates and arrives at outputs. This procedure is
iterated for all fault candidates. After this step, there are some
diagnostic traces which can discriminate the behavior of all
fault candidates. If the set of fault candidates and the number
of fault candidates having the value X are denoted by FCs and
L respectively, the algorithm firstly tries to find the diagnostic
traces which satisfy the following formula when L = 1:

|FCs|∑
i=1

(FCi == X) = L (8)

If there is no diagnostic trace with one fault candidate
having X which can create a counterexample, the algorithm
tries to find the diagnostic traces with more fault candidates
having X until at least one counterexample is found. The
algorithm continues until L is equal to the number of fault
candidates. The diagnostic traces generated by this heuristic do
not necessarily find counterexamples decreasing the number of
fault candidates. But the experimental results show that in most
of the experiments they are effective to decrease the number
of fault candidates.

For sequential circuits, firstly the circuit is unrolled for some
time steps. In this case, each FCi ∈ FCs has one component
in each time step: FCi = {FC1

i , FC2
i , . . . , FCs

i }, where s is
the number of time steps. The erroneous behavior of a fault
candidate can be propagated to outputs by each component or
by a combination of components. This behavior is modeled
by inserting one OR-gate for each fault candidate to control
the components of the fault candidate. To clarify this method,
Figure 4 shows a sequential circuit with a single fault where
the number of fault candidates is represented by |FCs| =
f . Figure 4(a) considers one time step which is similar to a
combinational circuit. Figure 4(b) shows two time steps where
the circuit is unrolled two times. For each fault candidate, there
is one OR-gate. The inputs of the OR-gates correspond to the
variables of fault candidates specifying the X value. The output
of the OR-gates are added and constrained to L.

VI. EXPERIMENTAL RESULTS

This section presents the effect of automated post-silicon
debugging of design bugs (as described in Section V) on
diagnosis accuracy, time, and memory. The hardware structure

is written at RTL with Verilog hardware description language.
The experiments are evaluated on the modules of the Open-
RISC CPU from OpenCores [32]. A matrix multiplication
program is used as a test program to be run by OpenRISC
in ModelSim environment. The experiments are executed for
each module independently. For each experiment, a random
single functional bug (wrong assignment, incorrect case state-
ments, etc) is inserted into the RTL code. The trace data is
recorded in the trace buffer of the corresponding module such
that for a time window with 8 cycles we have initial states at
the first step of the window, inputs, and output results at the
end of window. The size of the trace buffer is different for
different modules, but the maximum size of the trace buffer
is assumed to be 8K × 32 bits.

For specification, here we consider each bug-free Verilog
module as a black box module with access only to module
inputs, module outputs, and some internal registers (state bits)
which would typically be available in a high level specifica-
tion, too. For each time window, the recorded initial states and
inputs are applied to the specification. Then, output results are
compared to the output results of the corresponding window
in the trace buffer to detect inconsistencies and to constitute
initial counterexamples. After having initial counterexamples,
the buggy RTL design is unrolled for 8 time steps for MBD.

The experiments are carried out on a Quad-Core AMD Phe-
nom(tm) II X4 965 Processor (3.4 GHz, 8 GB main memory)
running Linux. MiniSAT is used as underlying SAT solver
[33]. The techniques described in the paper are implemented
using C++. Run time is measured in CPU seconds, and the
memory consumption is measured in MB. In the experiments,
we compare the heuristic method for diagnostic trace genera-
tion to a method based on random trace generation.

In these experiments the methods are limited to a maximum
of five iterations between the debugging and the verification
procedures. The number of generated traces is limited to 2000
traces.

Table I presents the experimental results with respect to the
diagnosis accuracy. The first and second columns show the
module name of OpenRISC and the total number of compo-
nents (#C) which are used for SAT-based debugging as men-
tioned in Section II-B. The third and fourth columns present
the debugging result in the first session when debugging tries
to find the potential number of fault candidates (#FC) with
the initial counterexamples (#CE). The diagnosis accuracy is
considered to be the inverse of #FC. The columns 5-7 show
the result when the heuristic method is used for generating
the diagnostic traces, while the columns 8-10 are related to
the random trace generation. The best results are marked bold
in Table I.

For or1200_alu, the heuristic method obtains four new
counterexamples after generating 41 diagnostic traces. Thus
by a total number of five counterexamples (one initial coun-
terexample and four new counterexamples) the diagnosis ac-

TABLE II
TIME AND MEMORY

 Heuristic Method

 T ime Memory T ime Memory

Circuit #C Deb. (s) Ver. (s) Total (s) (MB) Deb. (s) Ver. (s) Total (s) (MB)

or1200_alu 436 0.44 11.41 11.85 13 0.47 16.98 17.45 13

or1200_ctrl 1865 22.81 106.81 129.62 166 20.55 234.45 255 166

or1200_genpc 732 17.33 214.3 231.63 144 15.9 123.38 139.28 144

or1200_if 463 4.25 7.76 12.01 72 4 81.71 85.71 72

or1200_lsu 793 7.86 27.42 35.28 145 8.21 144.9 153.11 145

or1200_operandmuxes 376 49.25 80.01 129.26 41 45.65 74.86 120.51 41

or1200_wbmux 278 42.83 7.16 49.99 54 42.4 62.78 105.18 54

 Method Random Method

 Parameter

curacy increases, i.e., the total number of fault candidates
decreases. Also the random method has the same accuracy
for or1200_alu. For or1200_ctrl, or1200_genpc, or1200_if ,
or1200_operandmuxes, and or1200_wbmux, the random
method cannot obtain any counterexample, while the heuris-
tic method obtains the new counterexamples with a small
number of diagnostic traces. For or1200_lsu, the random
method generates some counterexamples which do not have
potential to reduce the number of fault candidates, while the
counterexamples obtained from diagnostic traces reduce the
number of fault candidates. Totally, in four experiments out
of seven experiments, the heuristic method achieves a better
diagnosis accuracy than the random method.

Table II shows the required run time (Time), and the
maximum memory consumption (Memory) for each method.
The time is related to debugging time and verification time.
The best total times are marked bold. The heuristic method
spends less verification time than the random method in most
of the experiments. Because usually after generating a small
number of diagnostic traces, some new counterexamples are
identified.

Overall, the experimental results show that debugging au-
tomation by using diagnostic traces increases the diagnosis
accuracy and decreases the debug time.

VII. CONCLUSION

This paper presented an approach for automating debugging
which can be used in different debugging scenarios from pre-
silicon to post-silicon. The approach integrates model-based
diagnosis and diagnostic trace generation. The experimental
results on post-silicon debugging showed that automated de-
bugging by using diagnostic traces increases diagnosis accu-
racy and decreases debug time.

REFERENCES

[1] A. Veneris and I. N. Hajj, “Design error diagnosis and correction via test
vector simulation,” IEEE Trans. on CAD, vol. 18, no. 12, pp. 1803–1816,
1999.

[2] P.-Y. Chung and I. N. Hajj, “Diagnosis and correction of multiple logic
design errors in digital circuits,” IEEE Trans. on VLSI Systems, vol. 5,
no. 2, pp. 233–237, 1997.

[3] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606–1621, 2005.

[4] A. Sülflow and R. Drechsler, “Automatic fault localization for pro-
grammable logic controllers,” in Formal Methods for Automation and
Safety in Railway and Automotive Systems, 2010, pp. 247–256.

[5] A. Hopkins and K. McDonald-Maier, “Debug support for complex
systems-on-chip: a review,” Proc. of Computers and Digital Techniques,
vol. 153, no. 4, pp. 197–207, 2006.

[6] B. Vermeulen, T. Waayers, and S. Bakker, “IEEE 1149.1-compliant
access architecture for multiple core debug on digital system chips,”
in Int’l Test Conf., 2002, pp. 55–63.

[7] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller, “A reconfigurable design-for-debug infrastructure for SoCs,”
in Design Automation Conf., 2006, pp. 7–12.

[8] J.-S. Yang and N. A. Touba, “Expanding trace buffer observation
window for in-system silicon debug through selective capture,” in VLSI
Test Symp., 2008, pp. 345–351.

[9] Y. Lee, T. Matsumoto, and M. Fujita, “On-chip dynamic signal sequence
slicing for efficient post-silicon debugging,” in ASP Design Automation
Conf., 2011, pp. 719–724.

[10] F. M. de Paula, A. Nahir, Z. Nevo, A. Orni, and A. J. Hu, “TAB-
BackSpace: Unlimited-length trace buffers with zero additional on-chip
overhead,” in Design Automation Conf., 2011, pp. 411–416.

[11] Y. L. Ted Hong, S.-B. Park, D. Mui, D. Lin, Z. A. Kaleq, N. Hakim,
H. Naeimi, D. S. Gardner, and S. Mitra, “QED: Quick error detection
tests for effective post-silicon validation,” in Int’l Test Conf., 2010, pp.
1–10.

[12] S.-B. Park, T. Hong, and S. Mitra, “Post-silicon bug localization in
processors using instruction footprint recording and analysis (IFRA),”
IEEE Trans. on CAD, vol. 28, no. 10, pp. 1545–1558, 2009.

[13] K. Chang, I. Markov, and V. Bertacco, “Fixing design errors with
counterexamples and resynthesis,” in ASP Design Automation Conf.,
2007, pp. 944–949.

[14] K.-H. Chang, I. L. Markov, and V. Bertacco, “Automating post-silicon
debugging and repair,” in Int’l Conf. on CAD, 2007, pp. 91–98.

[15] M. Dehbashi, A. Sülflow, and G. Fey, “Automated design debugging in
a testbench-based verification environment,” in EUROMICRO Symp. on
Digital System Design, 2011, pp. 479–486.

[16] R. Reiter, “A theory of diagnosis from first principles,” Artificial
Intelligence, vol. 32, pp. 57–95, 1987.

[17] B. Vermeulen, T. Waayers, and S. Goel, “Core-based scan architecture
for silicon debug,” in Int’l Test Conf., 2002, pp. 638–647.

[18] Y.-S. Yang, N. Nicolici, and A. G. Veneris, “Automated data analysis
solutions to silicon debug,” in Design, Automation and Test in Europe,
2009, pp. 982–987.

[19] K. Constantinides, O. Mutlu, and T. M. Austin, “Online design bug
detection: RTL analysis, flexible mechanisms, and evaluation,” in Inter-
national Symposium on Microarchitecture (MICRO), 2008, pp. 282–293.

[20] H. F. Ko and N. Nicolici, “Automated trace signals identification and
state restoration for improving observability in post-silicon validation,”
in Design, Automation and Test in Europe, 2008, pp. 1298–1303.

[21] G. Friedrich, M. Stumptner, and F. Wotawa, “Model-based diagnosis of
hardware designs,” Artificial Intelligence, vol. 111, no. 1–2, pp. 3–39,
1999.

[22] W. Mayer and M. Stumptner, “Model-based debugging - state of the art
and future challenges,” ser. Electronic Notes in Theoretical Computer
Science, vol. 174, no. 4, 2007, pp. 61–82.

[23] J. de Kleer and J. Kurien, “Fundamentals of model-based diagnosis,”
in IFAC Symposium on Fault Detection, Supervision, and Safety of
Technical Processes (Safeprocess), 2003, pp. 25–36.

[24] G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault
localization for property checking,” IEEE Trans. on CAD, vol. 27, no. 6,
pp. 1138–1149, 2008.

[25] M. Ali, S. Safarpour, A. Veneris, M. Abadir, and R. Drechsler, “Post-
verification debugging of hierarchical designs,” in Int’l Conf. on CAD,
2005, pp. 871–876.

[26] J. A. Knottnerus and J. W. Muris, “Assessment of the accuracy of diag-
nostic tests: the cross-sectional study,” Journal of Clinical Epidemiology,
vol. 56, no. 11, pp. 1118–1128, 2003.

[27] F. Zheng, K.-T. Cheng, X. Yan, J. Moondanos, and Z. Hanna, “An
efficient diagnostic test pattern generation framework using boolean
satisfiability,” in ASP Design Automation Conf., 2007, pp. 288–294.

[28] T. Grüning, U. Mahlstedt, and H. Koopmeiners, “DIATEST: A fast
diagnostic test pattern generator for combinational circuits,” in Int’l
Conf. on CAD, 1991, pp. 194–197.

[29] A. Sülflow, G. Fey, and R. Drechsler, “Using QBF to increase accuracy
of SAT-based debugging,” in IEEE International Symposium on Circuits
and Systems, 2010, pp. 641–644.

[30] M. Psarakis, D. Gizopoulos, E. Sánchez, and M. S. Reorda, “Micropro-
cessor software-based self-testing,” IEEE Design & Test of Computers,
vol. 27, no. 3, pp. 4–19, 2010.

[31] K. Constantinides, O. Mutlu, T. M. Austin, and V. Bertacco, “A flexible
software-based framework for online detection of hardware defects,”
IEEE Trans. Computers, vol. 58, no. 8, pp. 1063–1079, 2009.

[32] OpenCores, http://www.opencores.org.
[33] N. Eén and N. Sörensson, “An extensible SAT solver,” in SAT 2003, ser.

LNCS, vol. 2919, 2004, pp. 502–518.

