
Towards Increasing
Test Compaction Abilities of SAT-based ATPG

through Fault Detection Constraints
Stephan Eggersglüß∗† Melanie Diepenbeck∗ Robert Wille∗ Rolf Drechsler∗†

∗Institute of Computer Science
University of Bremen

28359 Bremen, Germany
{diepenbeck,rwille}@informatik.uni-bremen.de

†Cyber-Physical Systems
DFKI GmbH

28359 Bremen, Germany
{Stephan.Eggersgluess, Rolf.Drechsler}@dfki.de

Abstract—Automatic Test Pattern Generation (ATPG) based
on Boolean Satisfiability (SAT) is a robust alternative to classical
structural ATPG. Due to the powerful reasoning engines of
modern SAT solvers, SAT-based algorithms typically provide a
high test coverage because of the ability to reliably classify hard-
to-detect faults. However, a weak point of SAT-based ATPG is the
test compaction ability. In this paper, we propose a new method-
ology which combines the classical SAT-based ATPG formulation
with additional fault detection constraints resulting in a pseudo-
Boolean optimization problem. This leads to an increasing test
compaction ability of SAT-based ATPG. Experiments show that
the resulting test set generated by pure SAT-based ATPG without
any test compaction techniques can significantly be decreased by
up to 49%.

I. INTRODUCTION

The test set size for the post-production test of digital
circuits is an important factor. A large test set typically leads
to high test costs and immense efforts are undertaken to
reduce test pattern counts in order to reduce test costs. At
the same time, a high fault coverage and high quality tests are
necessary to guarantee the absence of manufacturing defects
and, therefore, the production of high quality devices. With the
increasing size of integrated circuits as well as with the recent
developments of 3D-integrated circuits, the significance of test
pattern reduction and robust ATPG algorithms are expected to
grow.

Automatic Test Pattern Generation (ATPG) based on
Boolean Satisfiability (SAT) [1], [2] has been shown to provide
a high fault or test coverage for large industrial circuits [3],
[4] since the powerful learning and implication techniques
of modern SAT solvers are well suited to generate tests for
hard-to-detect faults. Classical structural ATPG approaches
typically have problems to cope with these kind of faults.
Recently, SAT-based algorithms have also been shown to be
well suited to generate high-quality tests targeting for example

small delay defects [5]–[7] or As-Robust-As-Possible tests [8]
where usually a significantly increased search space has to be
considered. However, a drawback of SAT-based ATPG is that
the test compaction abilities are typically not as good as the
test compaction abilities of structural ATPG algorithms.

SAT-based dynamic compaction techniques were proposed
in [9]. Here, a test cube for an initial fault is generated. Then,
additional faults are targeted taking the pre-generated test as
constraint. By this, the unspecified values of the test cube are
assigned in a way that other faults can be detected as well.
The SAT-based approach presented in [10] works in a different
manner. A set of faults F is chosen and the ATPG directly
generates a test detecting all faults in F if possible. However,
this approach heavily relies on a heuristic which determines
which faults could possibly be detected together.

In this paper, we propose a new basic test formulation
which is able to improve the test compaction abilities of SAT-
based ATPG. In contrast to previous approaches, the aim of
this methodology is to generate an initial test for one fault
which is able to detect a large number of other faults without
explicitly targeting any other faults. In order to achieve this,
the SAT-based ATPG formulation is combined with additional
fault detection constraints influenced by fault simulation and
path tracing techniques. These constraints determine if a fault
can be detected and propagated locally. A pseudo-Boolean
optimization procedure is then applied to the SAT-based ATPG
formulation which leverages the powerful SAT solving engine
and improves the local fault detection of the test.

By this, the generated test is typically able to detect a larger
number of faults without targeting any of them explicitly.
In general, applying pseudo-Boolean solving techniques to
problems such as SAT-based ATPG where the majority of
constraints are in CNF is similar to the application of direct
SAT encodings as used in [5], [6]. Experiments show that the



test set size generated by SAT-based-ATPG can significantly
be reduced. The proposed basic test formulation can easily
be coupled with other dynamic or static test compaction
techniques to achieve further reduction.

The remainder of this paper is structured as follows: The
next section briefly reviews the basics on SAT-based ATPG.
Afterwards, Section III outlines the idea of fault detection
constraints before results obtained by an initial experimental
evaluation are reported in Section IV. Finally, the paper is
concluded and possible future work is discussed in Section V.

II. PRELIMINARIES

In contrast to classical structural ATPG which works di-
rectly on the gate-level netlist, SAT-based algorithms work
on a Boolean formula in Conjunctive Normal Form (CNF). A
CNF Φ is a conjunction of clauses. A clause ω is a disjunction
of literals and a literal λ is a Boolean variable in its positive
(λ) or negative form (λ). Due to the development of powerful
implication and learning techniques, SAT solvers, e.g. MiniSat
[11], are well suited to solve hard problem instances. In order
to leverage the powerful solving techniques for ATPG, the
ATPG problem has to be formulated in CNF [1] (see [4] for
detailed information).

Each connection x is assigned a Boolean variable x. The
functionality of each gate g is transformed into a set of clauses
Φg . The CNF ΦC of the circuit C is then constructed by a
conjunction of the CNF of each single gate of C, i.e.

ΦC = Φg1 · . . . · Φgn
.

In order to generate a test for a fault f , the circuit CNF ΦC has
to be augmented by additional constraints for fault detection
and fault propagation ΦF for the specific fault f , i.e.

Φf
Test = ΦC · Φf

F .

The solution space of Φf
Test includes all possible tests which

detects f and the SAT solver provides one satisfying assign-
ment which can be transformed into a test or proves that no
such assignment exists.

Due to the powerful solving techniques, SAT solvers often
work as core engines for other kind of solvers, e.g. Pseudo-
Boolean Optimization (PBO) solvers like clasp [12]. PBO
solvers can be applied to search for the best solution included
in the solution space of a CNF.1 In order to apply PBO solvers
to the ATPG problem, the CNF Φf

Test has to be augmented
by an optimization function F . The function F is defined as
follows:

F = c1x1 + . . .+ cnxn

1This is only one application possibility of PBO solvers. These solvers can
also be applied to a broader range of applications.

Each Boolean variable xi is assigned a constant value ci. The
result of F is the accumulation of all constants for which the
corresponding variable is set to 1. The task of the PBO solver
is to search a solution which satisfies Φf

Test and at the same
time minimizes (or maximizes) the result of F .

III. INTEGRATION OF FAULT DETECTION CONSTRAINTS

In the classical SAT-based ATPG formulation, exactly one
fault f is targeted and the generated test is guaranteed to detect
this specific fault. However, the tests are able to detect other
faults as well. This is exploited during test compaction to
obtain a small test set. The generated test is fault simulated and
all faults which are detected by this test can be deleted from
the fault list. The number of additional faults has a significant
influence on the test compaction effectiveness. Dynamic test
compaction techniques [13], [14] used in practice leverage
the circumstance that tests typically contain many unspecified
values (X). Once a test is generated, additional faults are
explicitly targeted to check whether the unspecified values can
be specified to detect these explicit faults. However, this is
a cumbersome methodology, since additional faults have to
be targeted very often. This is particularly serious for SAT-
based ATPG since the time to generate the SAT instance is
not negligible.

In order to address this, we propose a new SAT-based
ATPG formulation which does not explicitly target additional
faults but include additional fault detection constraints. These
constraints are able to determine whether faults can be detected
and propagated locally. The aim is to directly generate a
test which satisfies as many local fault detection conditions
as possible. This does not guarantee that these faults are
actually detected since the fault detection conditions are only
locally applied, e.g. they do not consider reconvergences and
fault masking. However, the generated tests are typically able
to detect a significant larger number of faults due to the
integration of more information.

The fault detection conditions added to the SAT instance
are influenced by fault simulation and path tracing techniques.
Two additional variables xf0 and xf1 are assigned to each
connection x denoting whether the stuck-at-0 (f0) or stuck-
at-1 (f1) fault2 can be locally detected and propagated. In
order to activate the local fault detection condition, i.e. to set
xf0(xf1) = 1, the following properties have to be satisfied:

• The value of connection x has to be inverted to the fault
value, i.e. 0 for (xf1) and 1 for (xf0). Otherwise, the fault
cannot be activated.

2Due to similarity of the stuck-at and transition fault model, this technique
can be applied to both fault models. For reasons of simplicity the stuck-at
fault model is considered only in this paper.



TABLE I
FAULT DETECTION CONDITIONS

ΦActivate x = 1→ xf1 = 0

x = 0→ xf0 = 0

ΦGate y = cv→ xf1 = 0

y = cv→ xf0 = 0

ΦPath zf0 = 0 ∧ zf1 = 0→ xf1 = 0

zf0 = 0 ∧ zf1 = 0→ xf0 = 0

• All other inputs of the successor gate h have to assume
the non-controlling value in order to propagate the fault
through h.

• At least one local fault detection variable of the successor
gate must be activated, i.e. equal to 1, to ensure that there
is a propagation path to an observation point.

This results in the implications shown in Table I. The impli-
cations in this table are given for connection x which is input
of a gate z with inputs x, y. The controlling value of gate z
is denoted by cv.

The implications for each connection are transformed into
CNF (resulting in the CNF ΦFDC) and added to Φf

Test as local
fault detection conditions. Note that these constraints do not
alter the solution space with respect to the tests but are only
used to activate/deactivate the fault detection conditions.

Then, an optimization function F is formulated. Since the
goal is to maximize the activated fault detection conditions,
F includes all fault detection variables whose corresponding
faults have not been detected yet. Given a set of yet unde-
tected faults F = f1, . . . , fn, the optimization function F is
formulated as follows:

F = (−1) · f1 + . . .+ (−1) · fn

By this, all constants which are associated with an activated
fault detection variable are accumulated. Since PBO solvers
typically minimize the result, each fault detection variable is
associated with a negative variable. It would also be possible to
prioritize certain regions by associating higher constant values
to certain faults.

Applying a PBO solver to Φf
Test · ΦFDC and the given

optimization function F , the solver provides the test with
the maximum of activated fault detection conditions. This test
typically detects a larger number of additional faults as a test
generated with the classical SAT-based ATPG procedure. Note
that this procedure does not prevent the use of additional test
compaction techniques like dynamic compaction but rather
complements these techniques.

These concepts are eventually illustrated by the following
example.

Example 1: Consider the circuit shown in Fig. 1(a). Using
the classical SAT-based ATPG formulation targeting e.g. a

a

bf0X

c

1

1

1

d

e

f

g

hf0X

(a) Using classical ATPG formulation

af0X

bf0X

c

1

1

0

df0X

e

ff0X

gf1X

hf0X

ΦActivate: a = 1→ af1 = 0

a = 0→ af0 = 0

b = 1→ bf1 = 0

b = 0→ bf0 = 0

. . .
ΦGate: a = cv→ bf1 = 0

a = cv→ bf0 = 0

b = cv→ af1 = 0

b = cv→ af0 = 0

. . .
ΦPath: ff0 = 0 ∧ ff1 = 0→ af1 = 0

ff0 = 0 ∧ ff1 = 0→ af0 = 0

ff0 = 0 ∧ ff1 = 0→ bf1 = 0

ff0 = 0 ∧ ff1 = 0→ bf0 = 0

. . .
Opt. function: F = −af1 − af0 − bf1 − . . .

(b) Using proposed ATPG formulation

Fig. 1. Exemplary illustration

stuck-at-0 fault at signal b, a test pattern 111 may result. This
only detects one further fault, namely a stuck-at-0 at signal h.
If instead fault detection constraints as shown below the circuit
of Fig. 1(b) are additionally applied, the pattern 111 does
not satisfy the optimization criterion. Hence, another pattern,
namely 110, is obtained. This pattern detects not only two, but
six faults in total (namely stuck-at-0’s at signals a, b, d, f, h
and a stuck-at-1 at signal g).

IV. EXPERIMENTAL RESULTS

This section presents experimental results for the proposed
approach. The proposed SAT-based ATPG procedure was
implemented in C++. The solver clasp [12] was used as
PBO/SAT solver. The ISCAS’85, ISCAS’89 and ITC’99 cir-
cuits were used as benchmarks. The following procedure was
used for test generation: All stuck-at faults of the circuits were



TABLE II
EXPERIMENTAL RESULTS - TEST SET SIZE

Circuit #Faults #Tests Classic #Tests FDC Red.
c1908 3766 203 136 33%
c2670 5060 230 172 25%
c3540 7036 227 116 49%
c5315 10384 295 243 18%
c6288 12512 19 16 16%
c7552 14888 298 214 28%
s713 1342 113 71 37%
s5378 10026 298 270 9%
s9234 17968 483 427 12%

s13207 24778 669 516 23%
s15850 30326 528 396 25%
s35932 67064 72 68 6%
s38417 73194 1357 884 35%
s38584 73404 584 465 20%

b01 192 20 15 25%
b04 2892 149 86 42%
b05 4372 59 48 19%
b14 42546 1766 1433 19%
b15 39054 1144 842 26%

stored in a fault list. Then, a fault f is taken from the fault list
and a test is generated detecting fault f using the proposed
SAT-based ATPG formulation with maximized fault detection
conditions. The test is fault simulated and all additional faults
detected by this test are removed from the fault list. This is
continued until all faults became classified.

Table II shows the impact of the procedure on the test set
size. The number of target faults for each circuit is given
in column #Faults. The number of generated tests of the
proposed approach (column #Tests FDC) is compared against
the number of tests of a classical SAT-based ATPG approach
(column #Tests Classic). The reduction of the test set size is
given in column Red. Both approaches do not use any further
compaction techniques. The results show that the test set size
of the proposed approach can be significantly reduced. The
highest reduction can be achieved for circuit c3540 where
only around half the tests are needed to detect all faults. The
results clearly show the potential of this new SAT-based ATPG
formulation with respect to the test set size.

V. CONCLUSIONS AND FUTURE WORK

A new SAT-based ATPG approach has been presented which
couples additional fault detection constraints with the classi-
cal SAT-based ATPG formulation. An optimization solver is
applied to maximize local fault detection conditions in order
to generate tests detecting a larger number of faults without
explicitly targeting additional faults. Experiments shows the
potential of the new SAT-based ATPG formulation and the
impact on the test set size. Future work focuses on the

combination of the proposed approach with classical com-
paction techniques for further test set reduction. Particularly,
the application of this techniques for the reduction of de-
lay tests, e.g. generated by timing-aware ATPG, should be
investigated. Besides that, run-time remains an issue. The
proposed approach still requires much more run-time than the
classical approach. However, this is left to be addressed by the
development of techniques or heuristics for run-time reduction,
i.e. using incremental SAT.

REFERENCES

[1] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 11, no. 1, pp. 4–15, 1992.

[2] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Com-
binational test generation using satisfiability,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
no. 9, pp. 1167–1176, 1996.

[3] S. Eggersglüß and R. Drechsler, “Efficient data structures and method-
ologies for SAT-based ATPG providing high fault coverage in industrial
application,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 30, no. 9, pp. 1411–1415, 2011.

[4] ——, High Quality Test Pattern Generation and Boolean Satisfiability.
Springer, 2012.

[5] M. Sauer, A. Czutro, T. Schubert, S. Hillebrecht, I. Polian, and
B. Becker, “SAT-based analysis of sensitisable paths,” in Proceedings
of the IEEE Symposium on Design and Diagnosis of Electronic Circuits
and Systems, 2011, pp. 93–98.

[6] M. Sauer, J. Jiang, A. Czutro, I. Polian, and B. Becker, “Efficient SAT-
based search for longest sensitisable paths,” in Proceedings of the IEEE
Asian Test Symposium, 2011, pp. 108–113.

[7] S. Eggersglüß, M. Yilmaz, and K. Chakrabarty, “Robust timing-aware
test generation using pseudo-boolean optimization,” in Proceedings of
the IEEE Asian Test Symposium, 2012.

[8] S. Eggersglüß and R. Drechsler, “As-Robust-As-Possible test generation
in the presence of small delay defects using pseudo-Boolean optimiza-
tion,” in Proceedings of Design, Automation and Test in Europe, 2011,
pp. 1291–1297.

[9] A. Czutro, I. Polian, P. Engelke, S. M. Reddy, and B. Becker, “Dynamic
compaction in SAT-based ATPG,” in Proceedings of the IEEE Asian Test
Symposium, 2009, pp. 187–190.

[10] S. Eggersglüß, R. Krenz-Bååth, A. Glowatz, F. Hapke, and R. Drechsler,
“A new SAT-based ATPG for generating highly compacted test sets,”
in Proceedings of the IEEE Symposium on Design and Diagnosis of
Electronic Circuits and Systems, 2012, pp. 230–235.

[11] N. Eén and N. Sörensson, “An extensible SAT solver,” in Proceedings of
the International Conference on Theory and Applications of Satisfiability
Testing, ser. Lecture Notes in Computer Science, vol. 2919, 2004, pp.
502–518.

[12] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “Conflict-driven
answer set solving,” in Proceedings of the International Joint Conference
on Artificial Intelligence, 2007, pp. 386–392.

[13] P. Goel and B. C. Rosales, “Test generation and dynamic compaction
of tests,” in Proceedings of the International Test Conference, 1979, pp.
189–192.

[14] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost-effective
generation of minimal test sets for stuck-at faults in combinational logic
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 14, no. 12, pp. 1496–1504, 1995.


