
A Codeword-based Compaction Technique for
On-Chip Generated Debug Data Using Two-Stage

Artificial Neural Networks

Sebastian Huhn∗† Marcel Merten∗ Stephan Eggersglüß‡ Rolf Drechsler∗†

∗University of Bremen, Germany
{huhn,mar_mer,drechsle}

@informatik.uni-bremen.de

†Cyber-Physical Systems, DFKI GmbH
28359 Bremen, Germany

‡Mentor Graphics Tessent R©
21079 Hamburg, Germany

Stephan_Eggersgluess@mentor.com

Abstract—The steadily increasing complexity of state-of-the-
art designs requires enhanced capabilities for post-silicon test
and debug to meet the demands concerning quality as well as
diagnosis. Several sophisticated techniques have been proposed
in the past to address these new challenges. However, these
techniques heavily enlarge the on-chip generated data that have
to be stored in rarely available and highly expensive memory and,
especially, to be transferred via a low-speed interface. Thus, ap-
plying data compression is a highly beneficial objective to reduce
the dedicated on-chip memory and the required transfer time.
This work proposes a novel compression technique, which sig-
nificantly reduces the volume of on-chip generated debug data,
by orchestrating a deliberately parameterized two-stage neural
network. More precisely, a codeword-based compression proce-
dure is realized, which can be directly implemented in hardware
and, hence, be seamlessly integrated in an existing test/debug
infrastructure. So far, it has not been possible to realize such
a compression by classical (algorithmic) approaches allocating
only reasonable hardware resources. First experiments already
show that the proposed scheme achieves similar results as off-
chip codeword-based approach being applied for incoming data.

I. INTRODUCTION

Different breakthroughs in the field of electronic design
automation have enabled an enormous increase of the com-
plexity of Integrated Circuits (ICs). Modern ICs often realize
a System-on-a-Chip (SoC), which typically contains several
nested components. Due to the limited external controllability
and observability of a state-of-the-art of internal signals of
these components, a new challenge concerning post-silicon
validation arises. Generally, this challenging circumstance is
typically addressed by introducing a dedicated Test Access
Mechanism (TAM) into the SoC. The IEEE Std. 1149.1 (JTAG)
specifies such a TAM, which is widely disseminated in modern
designs to provide access to the boundary pins of the embedded
components. In particular, various debugging scenarios require
more comprehensive mechanism to succeed.

Several enhancements [1]–[3] have been proposed in the
past, which further enhance the standardized base function
of JTAG following the intent of Design-for-Debug (DfD).
These enhanced capabilities allow to accomplish a certain level
of quality and diagnosis abilities. However, these functions
strongly increase the resulting volume of on-chip generated
data, e.g., emerged by tracing specific internal signals or by
capturing certain functional registers. Due to the typical low-

speed transfer via TAMs, transferring large data sets is a
time-consuming and, hence, expensive task. Furthermore, the
available size of dedicated memory for debugging is strictly
limited on-chip.

To tackle this challenge of increasing data volume, com-
pression techniques are applied for post-silicon debug. Typi-
cally, a trade-off exists between the desired compression ratio,
the introduced hardware overhead and the loss of information
(induced by lossy data compression). In this field, codeword-
based approaches have proven themselves to be well-working
for compressing incoming data [4]. However, these data have
to be priorly processed off-chip, which is typically done by
a retargeting procedure running on a workstation. Due to the
strictly limited on-chip resources, codeword-based techniques
have not been applicable for outgoing data as generated by the
enhanced debug functions [1]–[3].

This work proposes a novel codeword-based compression
technique, which enables to compress on-chip generated debug
data, and which can be seamlessly integrated into an existing
TAM. More precisely, the technique orchestrates a fast two-
stage Artificial Neural Network (ANN), which significantly
reduces the volume of generated debug data in-place and, thus,
improve the diagnosis capabilities even more. First experi-
ments are conducted on a large trace data set, which has been
determined by observing randomly selected signals of a state-
of-the-art open-source microprocessor implementation [5], and
prove that the proposed scheme works in principle.

The remainder of this work is structured as follows: In
Section II briefly introduces the preliminaries. The proposed
two-stage ANN scheme is described in Section III and experi-
mentally evaluated in Section IV. Finally, some conclusion are
drawn and a outlook to future work is given in Section V.

II. PRELIMINARIES

Within the last decades, the JTAG interface has been con-
tinuously improved and been adopted to address the upcoming
challenges of highly complex SoC designs. For instance,
the authors of [1] realize well-known software debugging
mechanisms like break points. In work [2] a scheme is pro-
posed to transfer debug data via the embedded TAM and a
enhanced built-in self-test and physical layer test capabilities
are presented in [6]. Beside this, commercially representative
state-of-the-art micro-controllers are also equipped with certain



Figure 1: Proposed scheme of two-staged ANN

debug mechanism like ARM CoreSightTM [7] to provide a pow-
erful debug architecture. However, these improvements also
affect a strong increase in the on-chip generated debug data,
which requires both, strictly limited dedicated memory and
time consuming data transfer. To address these shortcomings,
compression techniques have to be taken into consideration for
these applications. Particularly while designing on-chip com-
pression techniques, specific requirements (meaning hardware
constraints) exist, which are discussed in work [4] and it is
shown, for instance, in [8] that a codeword-based technique
works well for the intended application. Such a compression
technique utilizes an embedded dictionary holding N code-
words c1, ..., cN such that codeword ci can be individually
configured in D with specific (uncompressed) dataword ui.
Thus, the dictionary D realizes a mapping function Ψ with
Ψ(c1) → ui, i.e., every single codeword ci is projected to
a data word ui. The compressor condenses a data stream
consisting of m datawords u1, ..., um to a suitable sequence
of n codewords c1, ..., cn with respect to the given D. In
contrast to this, the decompressor restores the original data
stream u1, ..., um equivalently by expanding every codeword
c1, ..., cn.

To solve a computationally hard task within an application
holding limited resources –as given here by the compressor–
a common technique is to invoke an approximation function,
which typically requires less resources compared to an exact
implementation. For instance, an ANN acts as an approxima-
tion function and holds two main advantages compared to other
approximation function like (classical) regression methods: At
first, an ANN can cope with non-linear relationships, which
prevail in the application and, secondly, the ANN can be
implemented by a little among of a-priori known data. Such
an ANN consists of multiple neurons (nodes), which are
clustered in different hierarchical layers: The input-, output-
and a variable number of hidden-layers. All links (edges)
between neurons hold a certain weight, which is individually
adjusted in a training-phase - here based on a supervised
learning procedure, i.e., every training sample is labeled with
the expected value.

III. SCHEME OF TWO-STAGE NEURAL NETWORKS

A two-stage ANN scheme is orchestrated to implement the
required compressor, which is order of magnitudes harder to

realize compared to the decompressor (as described and im-
plemented in [9]). Thus, this proposed scheme implements an
approximation function, which works well for data with non-
linearly relationships as clearly given by the given application.

In Figure 1 the overall flow is shown, which is designed
as follows: The Stage-I ANN calculates the lower boundary
of the approximated number of codewords n≈, which have
to be at least used to compress the given data. Currently, the
proposed scheme holds 32 nodes in the input-layer, i.e., 32 bits
are simultaneously compressed and, especially, the determined
n≈ emitted by the output-layer. Internally, a multi-class loss
layer is applied to compute the single gradient value. For the
remainder, three different classes are distinguished: a) exact
matches n≈ = n, b) non-critical overestimation n≈ > n and c)
critical underestimation n≈ < n. In fact, c) has to be avoided,
otherwise the Stage-II processing can be impacted adversely.
Finally, the Stage-II ANN determines the actual sequence of
codewords with respect to the implicitly encoded dictionary D,
whereas it also processes the determined n≈. Evaluating n≈,
beneficially affects the actual compression, which is due to the
fact that optimal parameters can be selected for the adoption
of this ANN. To the end, the codewords c1, .., cn –representing
the compressed data– are emitted at the output-layer’s nodes.

IV. EXPERIMENTAL EVALUATION

This work focuses on the evaluation of Stage-I, which
determines n –the number of required codewords (with respect
to the given dictionary D, which is assumed to be static) for
an arbitrarily given uncompressed data stream, which is mostly
due to the page limitation.

All experiments were executed on an Intel i5-6200U 2.8
GHz with 8 GB system memory within a C++ software-
environment, which uses the dlib 19.7 [10] as a library to
implement ANNs. The realized ANN can be transformed to
a digital hardware implementation by following the proposed
scheme of [11]. The considered training as well as validation
data sets have been generated by a randomly investigated set
of 32 signals of a state-of-the-art open-source microprocessor
implementation [5]. These random data are characterized by a
very high entropy, so that the lower bound for compression ra-
tio should be determined [12]. In particular, the ANN is trained
with a set of 64K samples, i.e., a training rate of 1.5× 10−5



is achieved, and the following experimental evaluation is done
on basis of a disjoint validation set holding 64K samples as
well. The labels –representing n– for the training data set are
calculated by applying the technique of [4] and hold an average
size of 14.6.

The experiments have been conducted for two fully-
connected Stage-I ANN2 holding 2 hidden-layers and ANN4

holding 4 hidden-layers, respectively. The training phase re-
quires 7559 sec. (20286 sec.) and the validation phase requires
<1 sec. (<1 sec.) for ANN2 (ANN4). The classification ratios
in % for matches : overestimations : underestimations are
distributed as follows 68.9 : 15.5 : 15.6 (73.5 : 12.0 : 14.5)
for ANN2 (ANN4) In fact, the validation time is negligible for
both ANN types, the training time of ANN4 is 2.7 times higher
due to the increased number of hidden-layers, and accordingly
the larger network size. However, introducing two additional
layer increases the performance, i.e., higher ratio of matches
and, thus, lower ratio of over- as well as underestimations.

In case of such an overestimation, the compression ratio is
reduced. More precisely, the Stage-II ANN does not reach the
optimum (highest possible compression ratio), which is due
to the incorrect paramitrization by Stage-I. Although the data
content is not affected at all. In contrast to this, an occurring
underestimation can lead to a (partial) data corruption. This
partial corruption is completely negligible for different debug
applications as long as a certain boundary is not exceeded, e.g.,
some corrupted signals in a very small among of the overall
debug traces does not affect the application. In case, however,
the corruption has to be completely avoided, a safety margin
can be added to the Stage-I prediction value or a recalculation
of the compressed data can be induced, if a certain level of
confidence is undershot.

Figure 2 presents the final results as a heat-map for ANN4

while holding the single validation sample at the x-axis, the
(relative) distance n≈ − n to the expected value on the y-
axis and the (absolute) expected value n on the z-axis used
for colorizing. For the ANN4, the data show clearly that the
classification works very well for ≈ 88% of all investigated
data, which have not been a-priori known: The standard error
of the calculation is just about 0.04. Even in case of an
underestimation – as occurring in 14.5% of the validations
– the standard error is 0.06, whose adverse impact on the final
compression ratio is manageable.

V. CONCLUSIONS

This paper presents a novel scheme orchestrating a two-
stage ANN to implement a (codeword-based) compressor,
which can be introduced to modern SoC designs. To the end,
the proposed approach allows to compress on-chip generated
debug data to, finally, reduce the size of required memory
and accelerate the download of on-chip generated data. Future
work will focus on the further evaluation of Stage-II and,
additionally, on improvements of Stage-I such that the ratio of
underestimations is reduced. In particular, additional boosting
techniques will be evaluated for improving the prediction
quality of Stage-I ANN to, finally, address candidates, which
lead to underestimations.

Figure 2: Stage-I validation heat-map for ANN4

VI. ACKNOWLEDGMENT

This work was supported by the University of Bremen’s
graduate school SyDe, funded by the German Excellence
Initiative, by the subproject P01 ‘Predictive function’ of the
Collaborative Research Center SFB1232, funded by the Ger-
man Research Foundation, by the Institutional Strategy of
the University of Bremen, funded by the German Excellence
Initiative and by the German Research Foundation under
contract number EG 290/5-1.

REFERENCES

[1] Y. Liu, W. h. Wu, X. f. Zhou, and D. Zhou, “A novel on-chip debug
system with quick all-registers scan chain based on JTAG,” in Inter-
national Conference on Solid-State and Integrated Circuit Technology,
2006, pp. 1941–1943.

[2] X. Liu and Q. Xu, “On reusing test access mechanisms for debug data
transfer in SoC post-silicon validation,” in IEEE Asian Test Symp., 2008,
pp. 303–308.

[3] L. van de Logt, F. van der Heyden, and T. Waayers, “An extension to
JTAG for at-speed debug on a system,” in International Test Conference,
vol. 2, 2003, pp. 123–130 Vol.2.

[4] S. Huhn, S. Eggersglüß, and R. Drechsler, “VecTHOR: Low-cost
compression architecture for IEEE 1149-compliant TAP controllers,”
in IEEE European Test Symp., 2016, pp. 1–6.

[5] D. Lampret, “OpenRISC-1000 SoC,” 2003,
http://opencores.org/project,jtag.

[6] G. Jian-min and L. De-lin, “A functional enhancement methodology
to JTAG controller in complex SoC,” in International Conference on
Computer Science Education, 2009, pp. 1128–1131.

[7] A. Limited, “CoreSightTM components technical reference manual,”
2009.

[8] A. Wurtenberger, C. Tautermann, and S. Hellebrand, “Data compres-
sion for multiple scan chains using dictionaries with corrections,” in
International Test Conference, 2004, pp. 926–935.

[9] S. Huhn, S. Eggersglüß, K. Chakrabarty, and R. Drechsler, “Optimiza-
tion of retargeting for IEEE 1149.1 TAP controllers with embedded
compression,” in Design, Automation and Test in Europe, 2017, pp.
578–583.

[10] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine
Learning Research, vol. 10, pp. 1755–1758, 2009.

[11] H. Faiedh, Z. Gafsi, K. Torki, and K. Besbes, “Digital hardware imple-
mentation of a neural network used for classification,” in International
Conference on Microelectronics, 2004, pp. 551–554.

[12] K. Balakrishnan and N. Touba, “Relationship between entropy and test
data compression,” IEEE Transaction on CAD of Integrated Circuits
and Systems, vol. 26, no. 2, pp. 386–395, 2007.


