Self-Explaining Digital Systems — Some Technical Steps

Goerschwin Fey!
"Hamburg University of Technology, 21071 Hamburg
2University of Bremen, 28359 Bremen

3DFKI, 28359 Bremen

Abstract

Rolf Drechsler??

Today’s increasingly complex adaptable and autonomous systems are hard to design and difficult to use. Partly this is due
to problems in understanding why a system executes certain actions. We propose to extend digital systems such that they
can explain their actions to users and designers. We formalize this as self-explanation and show how to implement and
verify a self-explaining system. A robot controller serves as proof-of-concept for self-explanation.

1 Introduction

Digital systems continuously increase in their complexity
due to integration of various new features. Systems han-
dle failures and have complex decision mechanisms for
adaptability and autonomy. Understanding why a system
performs certain actions becomes more and more difficult
for users. Also designers have to cope with the complex-
ity while developing the system or parts of it. The main
difficulties are the inaccessibility of the inner logic of the
digital system or a lack in understanding all the details. An
explanation for actions executed by a digital system unveils
the reasons for these actions and, by this, can serve various
purposes.

From the outside a user may be puzzled why a technical
device performs a certain action, e.g., “why does the traf-
fic light turn red?” In simple cases the user will know the
reason, e.g., “a pedestrian pushed the button, so pedestri-
ans get green light, cars get red light”. In more complex
cases, explanations for actions may not as easily be ac-
cessible. When the digital system that controls the larger
technical device provides an explanation, the user can un-
derstand why something happens. This raises the user’s
confidence in the correct behavior. The explanation for ac-
tions required in this case must refer to external input to
the system, e.g., through sensors, and to an abstraction of
the internal state that is understandable for a user.

Also designers of digital systems can benefit from explana-
tions. A typical design task is debugging where a designer
has to find the reason for certain actions executed by a dig-
ital system. Depending on the current design task a de-
signer may use the same explanations that help users. Ad-
ditionally, more detailed explanations, e.g., justifying data
exchange between functional units may be useful. Thus,
debugging and development are supported by explanations
giving simple access points for a designer justifying the
system’s execution paths. At design time a designer can
use explanations to understand the relation between the
specification and the implementation.

Correctness of the system is validated through explana-
tions if these explanations provide an alternative view that
justifies the actual output. For in-field operation explana-
tions may even be exploited for monitoring as a side-check
that validates the actual execution of the system to detect
failures and unexpected usage. In particular, problems are

detected earlier when explanations cannot be generated,
are not well-formed, or are not consistent with respect to
the actual behavior.

Given a digital system the question is how to provide an ex-
planation for observable actions online. While on first sight
this mainly concerns functional aspects also non-functional
aspects like actual power consumption or response time of
the system deserve explanations.

During online operation either the system itself or some
dedicated additional entity must provide the explanations.
This incurs a cost, e.g., for storing historical data that ex-
plains and, by this, also justifies current and future actions.
This overhead must be kept as low as possible.

A non-trivial challenge is to provide concise explanations
in a cost-efficient way. While some actions of a system
may have very simple explanations, e.g., “the power-on
button has been pressed”, other actions may require a deep
understanding of the system, e.g., “when the distance to an
energy source is large and the battery level is low, we save
energy by reducing light as well as speed and move to-
wards the energy source”. Such an explanation may in turn
require knowledge about what an energy source is, what
thresholds are used, and how the system detects where the
next energy source may be found.

Our contributions are the following:

e We formalize explanations and define what a self-
explaining system is. We explain how to verify
whether a system is self-explaining.

e We provide a technical solution for explanations on
the functional level and explain how to automatically
infer and to extend explanations to non-functional as-
pects.

e We consider a robot controller implemented at the
register transfer level in Verilog as a case study.

The paper is structured as follows: While there is no di-
rectly related work, Section 2 considers the aspect of ex-
planation in other areas. Section 3 formalizes explanations,
defines a self-explaining system, its implementation and
verification. Section 4 studies a self-explaining controller
for an autonomous robot and explains how explanations
may automatically be inferred. Section 5 draws conclu-
sions.

2 Related Work

The concept of self-explaining digital systems is new but
related to explanation as understood in other domains.
Thus, there is no tightly related work. But various com-
munities are interested in a deeper understanding of sys-
tems, implementations, or algorithms for different reasons
as discussed in the following.

Causation has a long history in philosophy where [15] is
a more recent approach that relates events and their causes
in chains such that one event can cause a next one. Of-
ten underlying hidden relations make this simple approach
controversial. A rigorous mathematical approach instead
can use statistical models to cope with non-understood as
well as truly non-deterministic dependencies [26]. Artifi-
cial intelligence particularly in the form of artificial neu-
ral networks made a significant progress in the recent past
modeling such relations. However, given an artificial neu-
ral network it is not understandable how it internally pro-
cesses data, e.g., what kind of features from the data sam-
ples are used or extracted, how they are represented etc.
First approaches to reconstruct this information in the in-
put space have been proposed [9, 21].

Decision procedures are a class of very complex algo-
rithms producing results needed to formally certify the in-
tegrity of systems. The pairing of complexity and certifi-
cation stimulated the search for understanding the verdict
provided by a decision procedure. Typically, this verdict
either yields a feasible solution to some task, e.g., a sat-
isfying assignment in case of Boolean satisfiability (SAT)
solver, or denies the existence of any solution at all, e.g.,
unsatisfiability in case of SAT solving. A feasible solu-
tion can easily be checked. Understanding why some task
cannot be solved is more difficult. Proofs [10, 30], unsatis-
fiable cores [25] or Craig-interpolants [11] provide natural
explanations.

Understanding complex programs is a tedious task requir-
ing tool support [29]. One example is the analysis of data-
flow in programs and of root causes for certain output.
Static [28] and dynamic [13] slicing show how specific data
has been produced by a program. Dynamic dependency
graphs track the behavior, e.g., to extract formal proper-
ties [19].

Debugging circuits is hard due to the lack of observability
into a chip. Trace buffers provide an opportunity to record
internal signals [5]. The careful selection of signals [18]
and their processing allows to reconstruct longer traces.
Coupling with software extensions allows to much more
accurately pin point time windows for recording [16].
Verification requires a deep understanding of a system’s
functionality. Model checking is a well established and au-
tomated approach for formal verification. Typically, logic
languages like Linear Temporal Logic (LTL), Computation
Tree Logic (CTL), or System Verilog Assertions (SVA) are
used to express properties that are then verified. These
properties summarize the functionality of a design in a
different way and thus explain the behavior. Verification
methodology [2, 1] ensures that properties capture an ab-
straction rather than the technical details of an implemen-
tation.

Beyond pure design time verification is the idea of proof
carrying code to allow for a simplified online verification
before execution [24].

Self-awareness of computing systems [12] on various lev-
els has been proposed as a concept to improve online
adaption and optimization. Application areas range from
hardware level to coordination of production processes,
e.g., [23, 27]. The information extracted for self-awareness
relates to explanation usually focused towards a specific
optimization goal.

While all these aspects relate to explanation, self-
explanation has been rarely discussed. For organic com-
puting, self-explanation has been postulated as a useful
concept for increasing acceptance by users [22]. The
human-oriented aspect has intensively been studied in
intelligent human computer interfaces and support sys-
tems [20]. Self-explanation has also been proposed for
software systems although limited to the narrow domain of
agent-based software [7] and mainly been studied in the
form of ontologies for information retrieval [8]. Expert
systems as one very relevant domain in artificial intelli-
gence formalize and reason on knowledge within a specific
context with the goal to diagnose, control, and/or explain.
Particularly, real-time expert systems have been proposed,
e.g., for fault tolerance [17]. Aspects like online-reasoning
on formalized knowledge have been considered in this do-
main.

The overview in [6] introduced an abstract concept for self-
explanation and also discusses in-field verification and se-
curity under reconfiguration. However, that paper lacks the
technical details on self-explanation as it does neither pro-
vide a formalization nor an implementation approach nor a
case-study.

This brief overview of very diverse works in several fields
shows that understanding a system has a long tradition and
is extremely important. Recent advances in autonomy and
complexity reinforce this demand. In contrast to previous
work, we show how to turn a given digital system into a
self-explaining system.

3 Self-Explanation

Figure 1 gives a high-level view for self-explanation as
proposed here. The digital system is enhanced by a layer
for self-explanation that holds a — potentially abstracted —
model of the system. Any action executed by the system
at a certain point in time is an event (bold black arrows in
the figure). The explanation layer stores events and their
immediate causes as an explanation and provides a unique
tag to the system (dotted black arrows). While processing
data, the system relates follow-up events to previous ones
based on these tags (blue zig-zag arrows). Besides events,
references to the specification can provide causes for ac-
tions. The user or designer may retrieve an explanation for
events observable at the output of the system as a cause
effect chain (green dots connected by arrows). This cause
effect chain only refers to input provided to the system, the
— abstracted — system model, and the specification.

User, designer

Self-Explanation

y (abstract) system model + requirements \

4

\/\I-)\ V\/\/’\ ‘\/\/_’

Digital system

W

Figure 1 Approach

In the following we formalize self-explanation, provide
an approach for implementation and verification. We also
propose a conceptual framework that uses different layers
for making explanations more digestible for designers and
users, respectively.

3.1 Formalizing Explanations

We consider explanations in terms of cause-effect relation-
ships. Before defining explanations we describe our system
model. The system is represented by a set of variables V
composed of disjoint sets of input variables /, output vari-
ables O, and internal variables. A variable is mapped to a
value at any time while the system executes.

This system model is quite general. For a digital system
a variable may correspond to a variable in software or to a
signal in (digital) hardware. For a cyber-physical system a
variable may also represent the activation of an actuator or
a message sent over the network.

Based on this system model we introduce our notion of ac-
tions, events, causes, and explanations to formalize them
afterwards. An action of a system fixes a subset of vari-
ables to certain values'. An observable action fixes ob-
servable output values of the system. An input action fixes
input variables that are not controlled by the system, but by
the environment. An action executed at a specific point in
time by the running system is an event. We assume that a
set of requirements is available for the system from a pre-
cise specification. A cause is an event or a requirement. An
explanation for an event consists of one or more causes.
These terms now need more formal definitions to reason
about explanations. An action assigns values to a subset of
either 1, O or V /(O UI) of the variables introduced above.
We define an ordered set of actions < with i(a) fora € o/
providing the unique index of a, a set of requirements %
and the set of explanations & C &7 x N x 2% x 27 x NI¥/I.
An explanation e = (a,t,R,A,T) € & relates the action a
with unique tag t, i.e., the event (a,1) to its causes. The tag ¢

! An extension of our formalism could consider more complex actions
that include a certain series of assignments over time, e.g., to first send an
address and afterwards data over a communication channel. However, for
simplicity we assume here that an appropriate abstraction layer is avail-
able. Nonetheless, multiple valuations of the variables may be associated
to the same action, e.g., the action “moving towards front left” may ab-
stract from the radius of the curve followed by a system

may be thought of as the value of a system-wide wall-clock
time when executing the action. However, such a strong
notion of timing is not mandatory. Having the same tag for
a particular action occurring at most once is sufficient for
our purpose and is easier to implement in an asynchronous
distributed system. The vector T in an explanation relates
all actions in A to their unique tags using the index function
i(a) such that a € A is related to the event (a, T;,)) where
T; denotes the jth element of vector T'. Since A C &/ the
relation |A| < |T| holds, so unused tags in T are simply dis-
regarded. Technically, the reference to prior events directly
refers to their explanations. Note, that there may be multi-
ple justifications for the same action, e.g., the light may be
turned off because there is sufficient ambient light or be-
cause the battery is low. We require such ambiguities to be
resolved during run time based on the actual implementa-
tion of the system.

Lewis [15] requires for counterfactual dependence of an
event e on its cause ¢ that ¢ — e and —¢ — —e. However,
an event is identified with precisely the actual occurrence
of this event. There may be alternative ways to cause a
similar event, but the actual event e was precisely due to
the cause c. Consider the event that “the window was bro-
ken by a stone thrown by Joe”. The window may have
alternatively been broken by a ball thrown by Joe, but this
would have been a different “window broken” event. Lewis
achieves this precision by associating the actual event e
with a proposition O(e) that is true iff e occurs and false
otherwise. These propositions allow to abstract from the
imprecise natural language. Here we achieve this precision
by adding tags to actions.

Lewis [15] defines causation as a transitive relationship
where the cause of an event is an event itself that has its
own causes. Similarly, we go from an event to the causes
and from these to their causes until reaching requirements
or inputs of the system.

Definition 1 For an explanation e = (a,t,R,A,T), the im-
mediate set of explanations is given by E(e) = {€ =
(a0, R\AT") € &ld' € Aandt' =Ty}

Definition 2 We define the full set of explanations E*(e) as
the transitive extension of E(e) with respect to the causing
events, i.e.,
ife =(d,t',R A, T") € E*(e) and
there exists €' = (a' ;1" ,R", A", T") € &
witha" € A" and t" = Tl.’(a,,>,
then ¢" € E*(e).

Now we define well-formed explanations that provide a
unique explanation for any action and must ultimately be
explained by input data and requirements only:

Definition 3 A set of explanations & is well-formed, iff
1. foranye=(a,t,R,A,T) € & there does not exist ¢ =
(a,1,R, A", T') € E*(e) with (R,A,T) # (R, A", T"),
2. forany e € & if ¢ = (d',t',R',A",T") € E*(e) then
for any a" € A'/A), where A|; is the set of ac-

tions in A’ that fix values of inputs I there exists
(a//,[//,Rl/7A//,T//) c E*(e)

FUI
c

a EUI
it

FU2

Figure 2 Implementation

Note, that our notation is similar to classical message-
based events for formalizing asynchronous distributed sys-
tems, e.g., used in the seminal work of Lamport [14] that
explains how to deduce a system-wide wall-clock time. An
important difference is, however, that in our case the exe-
cution of the system perfectly describes the order of events.
An explanation then captures this order without additional
mechanisms for synchronization. The only requirement is
the association of an action with a unique tag to form an
event, i.e., any action occurs at most once with a particular
tag.

Our formalism provides the basis for extending an actual
digital system to provide explanations for each observable
action. The sets of variables, actions, requirements, and
explanations are freely defined. This leaves freedom to de-
cide on the granularity of explanations available during run
time, e.g., whether an action only captures the driving di-
rection of a robot or the precise values of motor control
signals.

The set of observable actions must be derived at first. The
methodology must ensure that for each possible system
output there is a related action.

Definition 4 A set of observable actions is complete with
respect to a given system iff for any observable output of
the system there exists a related observable action.

Definition 5 A set of explanations is complete iff it is well-
formed and explains all observable actions.

Definition 6 A digital system is self-explaining iff it has a
complete set of observable actions and creates a complete
set of explanations.

3.2 Implementation

Practically, explanations are produced by adding appro-
priate statements to the design description. To create the
cause-effect chain, we think of functional units that are
connected to each other. A functional unit may be a hard-
ware module or a software function. To produce explana-
tions for the actions, each unit records the actions and their
explanations from preceding units together with the input.
By this, data being processed can always be related to its
causes, likewise actions triggered by that data can be asso-
ciated to their causes.

In the following we describe a concrete approach to im-
plement a self-explaining digital system. Functional units
derive causes for their actions. We associate an explana-
tion unit for storage, reference, and usage of explanations
to each functional unit. Whenever a functional unit exe-
cutes an action, the cause for that action is forwarded to

front (f)

fl fr
If Ir
left (1) I right (r)
back (b)
Lightsensor (1s)

+ Microphone (mi) " Push-button (pb)

I Active wheel (wl) Passive wheel

Figure 3 Robot

the explanation unit. The explanation unit then provides
unique tags for the action to form an event, merges it with
the cause, and stores the resulting explanation. Other func-
tional units query the explanation unit to associate incom-
ing data with an event and its explanation. This informa-
tion must then be passed jointly while processing the data
to provide the causes for an action. Figure 2 illustrates this.
Functional unit FUI executes an action a passed to func-
tional unit FU2. The cause ¢ of a is stored in explanation
unit EU] that provides a unique tag . FU2 refers to the
event (a,t) to derive causes for its own actions.

For this step we rely on the designer to enhance the imple-
mentation with functionality to pass causes and drive ex-
planation units by adding appropriate code. The designer
also decides whether actions are defined in terms of exist-
ing variables of the design or whether new variables are
introduced to allow for abstraction.

4 Case Study

We apply our approach to a small robot controller that ex-
plains actions executed with the controlled robot. Figure 3
shows an abstract view of the actual robot. The robot has
wheels on the left and on the right side, each equipped with
a motor that is commanded by the robot controller. The
passive wheel on the back turns freely such that by com-
manding the two motors the robot controller can steer and
move the robot. The main sensors of the robot are light-
sensors and microphones on the four sides as well as eight
push-buttons at its corners to detect collisions.

The specification in Table 1 describes the functionality.
The robot controller moves the robot towards the noise de-
tected by the microphones as long as the power levels in-
dicated by the battery are sufficient. When power gets low,
the controller steers towards the light detected by the light-
sensors. Upon a collision detected by a push-button, the
robot turns away from that button’s contact point.

The four boxes shown in Figure 4 implement the robot
controller in Verilog modules. Thus, in this case a func-
tional unit directly corresponds to a Verilog module. Sen-
sors and battery provide input data to the controller that
provides output to the motors. The battery state directly
impacts the motor speed.

Table 1 Specification

No. | content

RO | There are three battery levels:
medium, low

R1 If battery level is strong, move towards
noise.

R2 | Unless battery level is strong, move to-
wards light.

R3 | If battery level is low, use only half speed.
R4 | If push-button is pressed, move towards
other direction overriding requirements RO
to R3.

strong,

Sensors

Actuators

Figure 4 Modules of the robot controller

4.1 Adding Explanations

We consider cause-effect chains on the unit-level where
actions fix the output values. Each module is equipped
with an extra output that provides all causes for an action
to form an explanation for each event. All kinds of actions
are known in advance, so their dependence on causes is
hard-coded into the system. Each module explains all its
output data. The causes for the output data of one module
are generated by preceding module’s actions and require-
ments, so the causes explaining an action are encoded as a
bit string for referencing them.

The explanations of the robot controller already make an
abstraction from actual data. For example, instead of ex-
plaining the precise speed of the two motors, this is ab-
stracted to one of the driving directions “straight”, “for-
ward left”, “forward right”, or “turn”.

To have reproducible explanations and record their depen-
dence, we equip every module with a separate explanation
module. The explanation module stores explanations and
provides unique tags for events. An explanation module es-
sentially is a memory that stores the explanation which is a
bit vector encoding the causes for an action. The memory
address serves as the unique tag for the event associated to
the current action of the respective module. By this, the
unique tag also serves as reference to the explanation for
the event. This tag is accessible for subsequent modules to
produce their explanations. Uniqueness of these tags for
events is subject to the limited size of the memory. By
using a simple wrap-around arithmetic for the memory ad-
dresses, the size of the memory in the explanation module

Table 2 Implementation sizes

Column “entries”: number of addresses in explanation units
Column “#state bits” and “#gates”: size of the implementation

entries | #state bits #gates
no explanation - 113 5,692
with explanation 4 437 8,643
with explanation 32 2,250 21,714
with explanation 256 16,605 | 123,572

decides on the length of the history that can be recorded.
For example, the main module’s explanations always de-
pend on the actions of the sensor module and the power
module together with the respective requirements. Receiv-
ing data from the power module or the sensor module cor-
responds to an action of these modules associated to an
explanation with a unique tag. The main module stores the
unique tags for the explanations to generate the explanation
for its own action. This totals to 20 bits; in our implemen-
tation we used 24 bits to conveniently represent direction
and sensors using hexadecimal digits. Explanations for the
other modules have different lengths depending on their
needs.

4.2 Results

Figure 5 shows an excerpt of the recorded explanations
where nodes denote events and edges lead from a cause
to an event. In this excerpt sensor input and power-
state ultimately explain driving direction and speed. Node
“Main: 217 gives an explanation with unique tag “21” for
the main module. According to the powerstate medium
(node “Power: 02”) and Requirement R2 the robot goes
“straight” to the lightsensors “Is”. This is one reason for
the observable actions in nodes “Motor_left: 21" and “Mo-
tor_right: 21”. The other reason is the current powerstate.
Figure 6 shows a similar explanation, but the powerstate
changed from low to medium after deciding direction and
speed in the main module and before adjusting the speed
in the motor driver. Whether this is wanted or not depends
on the implementation. Definitely, this explanation gives
some insight into the behavior.

The original design has 257 lines of code, extensions for
self-explanation require 119 lines, and the explanation unit
has 28 lines. Table 2 gives an impression about the design
and the cost for explanation. The numbers of state bits and
gates are shown for four configurations: the plain robot
controller without explanation and with explanation with
sizes of 4, 32, and 256 entries in the memories of the ex-
planation modules. In the table these memories are counted
as state bits plus the decoding and encoding logic that adds
to the gates in the circuit. For memories with 256 entries
about 2 KByte of memory are required (the numbers in the
table count bits). Note, that the encoding of explanations
was not optimized for size. The main aims were a sim-
plified implementation and easily separable reasons in a
hexadecimal representation. A rather typical implementa-
tion of the controller would use microcontrollers connected
over buses instead of pure Verilog. In that case a 2 KByte
overhead for explanation would be rather small.

Power: 02 Sensors: 17
Act: medium Act: changed: Is

Main: 21
Act: straight Is,powerNotStrong

.i

Motor_right: 21

Motor_left: 21
Figure 5 First excerpt from the explanations

Table 3 Wrap around in tags for a trace of 10,000 cycles

Column “entries”: number of addresses in explanation units
Other columns: number of wrap arounds for unique tags of

modules
entries|Main|Motor_left|Motor_right|Power|Sensor
4| 269 252 252 15 158
32| 32 30 30 1 18
256 3 2 2 0 1

The number of entries in the memories decides for how
long an explanation can be traced back before the unique
tags for explanations wrap to zero again, i.e., are not unique
anymore. This restricts the self-explanation to recent his-
tory. Table 3 shows how many times the tags were set back
to zero for the different explanation units in a run of 10,000
cycles. The number of wrap arounds per module are differ-
ent as the number of events also differs between the mod-
ules. Some of the events of one module do not necessar-
ily trigger a follow-up event in a subsequent module, e.g.,
values of the microphones are only relevant, if the robot
currently follows the sound. With 256 entries the length of
the history increases to approximately 3,300 cycles for the
main module having 3 wrap arounds.

Obviously, optimizations in the size required for explana-
tions are possible, e.g., by adjusting the number of entries
of explanation units per module or by encoding explana-
tions in fewer bits. But this is not the scope of this paper
which focuses on the concept of self-explanation.

4.3 Reasoning about Explanations

Having the design enhanced with explanations immedi-
ately supports a user or a designer in understanding the
design’s actions. Additionally, consistency of the expla-
nations and the related actions is an interesting question.
Due to the abstraction, e.g., in case of the driving direction
it may not be fully clear what kind of actions precisely cor-
respond to an explanation. We give some examples how
to clarify this using model checking. We assume that the
reader is familiar with model checking [4] so we do not
provide any details for this process.

Considering the main module some facts can be analyzed
by model checking, e.g., if the explanation of the main
module says a certain action means moving “straight”, this
should imply that both motors are commanded to move in
the same direction with the same speed. Indeed the sim-

Sensors: 1f
Act: changed: Is

Figure 6 Second excerpt from the explanations

ple robot controller always moves forward at full speed. In
CTL this is proven using the formula:

AG(exp[23:20] =straight —
(speed_left[7:0]=255 A speed_right[7:0]=255
A direction_right=fwd A direction_left=fwd))

The 24-bit vector “exp” refers to the explanation of the
main module where only the bits corresponding to the
description of the action are selected; the 8-bit vectors
“speed_right” and “speed_left” correspond to the speed
for the left and right motor, respectively; likewise the
“direction”-variables.

Similar facts can be formalized for other situations. Using
a more expressive language like SVA, properties may be
formulated in an even nicer way, e.g., using expressions
over bit-vectors. The underlying concepts for explanation
remain the same.

4.4 Extensions

Currently, an action is defined to be a variable assignment.
In practice, more complex actions may be of interest, e.g.,
to perform a burst access to a communication resource.
Appropriate extensions are possible by allowing for a more
general specification of an action, e.g., in terms of a for-
mal property language that describes conditional sequen-
tial traces.

We propose completeness and well-formedness as basic
criteria for self-explanation. Further properties of interest
are aspects like determinism or consistency with an envi-
ronment model. The systems considered here are limited to
generating explanations for themselves and out of the avail-
able view onto the environment which is largely unknown
to the system. If the system itself incorporates a more de-
tailed model of the environment, the expected impact on
the environment can also be incorporated into the expla-
nations. This provides an even deeper insight for the ob-
server of the system and would immediately allow to judge
the consistency of explanations with the actual behavior.
Potentially this serves as the basis for an autonomous diag-
nosis loop.

Non-functional aspects like reaction time or power con-
sumption similarly require self-reflexive functionality in
the system, e.g., to determine the current processing load or
current sensors and a prediction on future activities. This
again can be seen as a model of the environment within the
digital system.

4.5 Automated Inference

Manually enhancing a design for self-explanation may be
time consuming. Thus, further automation is useful. Tech-
nically, one option to automatically derive explanations is
the use of model checking engines. Given a precise spec-
ification of an observable action in terms of a formal lan-
guage, model checking can derive all possible ways to exe-
cute this observable action. Logic queries [3] may serve as
a monolithic natural tool to identify causes. Deriving these
causes in terms of inputs of a functional unit and then con-
tinuing to preceding functional units allows to automati-
cally derive well-formed explanations. Completeness must
be ensured by formalizing all observable actions properly.

5 Conclusions

Future complex systems driving real-world processes must
be self-explaining. Naturally, our proposal is just one tech-
nical solution that cannot consider many of the alternative
ways to create a self-explaining system.

Our paper provides a formal notion of self-explanation and
a proof-of-concept realization. We studied a robot con-
troller as a use case. We gave an idea on how to automat-
ically provide self-explanations. The extension to reactive
systems in general and to systems where new actions may
be defined on-the-fly remains for future work.

6 Literature

[1] P. Basu, S. Das, A. Banerjee, P. Dasgupta, P.P.
Chakrabarti, C.R. Mohan, L. Fix, and R. Armoni.
Design-intent coverage: A new paradigm for for-
mal property verification. [EEE Trans. on CAD,
25(10):1922 -1934, 2006.

[2] Jorg Bormann. Complete Functional Verification.
PhD thesis, University of Kaiserslautern, 2009. En-
glish translation 2017.

[3] William Chan. Temporal-logic queries. In Computer
Aided Verification, volume 1855 of Lecture Notes in
Computer Science, pages 450-463, 2000.

[4] Edmund M. Clarke, Orna Grumberg, and Doron
Peled. Model Checking. MIT press, 01 2001.

[5] Sergej Deutsch and Krishnendu Chakrabarty. Mas-
sive signal tracing using on-chip dram for in-system
silicon debug. In Int’l Test Conf., pages 1-10, 2014.

[6] Rolf Drechsler, Christoph Liith, Gorschwin Fey, and
Tim Giineysu. Towards self-explaining digital sys-
tems: A design methodology for the next generation.

In International Verification and Security Workshop
(IVSW), pages 1-6, 2018.

[7] Johannes Fdhndrich, Sebastian Ahrndt, and Sahin Al-
bayrak. Towards self-explaining agents. In Trends in
Practical Applications of Agents and Multiagent Sys-
tems, pages 147-154, 2013.

[8] Johannes Fédhndrich, Sebastian Ahrndt, and Sahin Al-

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

bayrak. Self-explanation through semantic annota-
tion: A survey. In Position Papers of the 2015 Feder-
ated Conference on Computer Science and Informa-
tion Systems (FedCSIS), 2015.

Raphael Féraud and Fabrice Clérot. A methodology
to explain neural network classification. Neural Net-
works, 15(2):237 — 246, 2002.

Eugene Goldberg and Yakov Novikov. Verification
of proofs of unsatisfiability for CNF formulas. In De-
sign, Automation and Test in Europe, pages 886—891,
2003.

B. Keng and A. Veneris. Scaling VLSI design de-
bugging with interpolation. In Int’l Conf. on Formal
Methods in CAD, pages 144-151, 2009.

Jeffrey O. Kephart and David M. Chess. The vision
of autonomic computing. Computer, 36(1):41-50,
2003.

Bogdan Korel and Janusz Laski. Dynamic program
slicing. Information Processing Letters, 29(3):155—
163, 1988.

Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications of
the ACM, 21(7):558-565, July 1978.

David Lewis. Causation.
70(17):556-567, 1973.

David Lin, Eshan Singh, Clark Barrett, and Subhasish
Mitra. A structured approach to post-silicon valida-
tion and debug using symbolic quick error detection.
In Int’l Test Conf., pages 1-10, 2015.

Wei Liu. Real-time fault-tolerant control systems. In
Cornelius T. Leondes, editor, Expert Systems, pages
267-304. Academic Press, 2002.

Xiao Liu and Qiang Xu. Trace signal selection for
visibility enhancement in post-silicon validation. In
Design, Automation and Test in Europe, pages 1338—
1343, 2009.

Jan Malburg, Tino Flenker, and Goerschwin Fey.
Property mining using dynamic dependency graphs.
In ASP Design Automation Conf., pages 244-250,
2017.

Mark T. Maybury and Wolfgang Wahlster, editors.
Readings in Intelligent User Interfaces. Morgan
Kaufmann Publishers Inc., 1998.

Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Miiller. Methods for interpreting and under-
standing deep neural networks. Digital Signal Pro-
cessing, 73:1 — 15, 2018.

Christian Miiller-Schloer and Sven Tomforde. Or-

ganic Computing — Technical Systems for Survival in
the Real World. Birkhauser, 2017.

Mischa Mostl, Johannes Schlatow, Rolf Ernst, Henry
Hoffmann, Arif Merchant, and Alexander Shraer.
Self-aware systems for the internet-of-things. In In-
ternational Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), pages 1—
9,2016.

Journal of Philosophy,

[24]

'~
4

[26]

[27]

(28]

[29]

(30]

George C. Necula and Peter Lee. Safe, untrusted
agents using proof-carrying code. In Giovanni Vi-
gna, editor, Mobile Agents and Security, pages 61-91.
Springer Berlin Heidelberg, 1998.

Yoonna Oh, Maher N. Mneimneh, Zaher S. Andraus,
Karem A. Sakallah, and Igor L. Markov. AMUSE: a
minimally-unsatisfiable subformula extractor. In De-
sign Automation Conf., pages 518-523, 2004.

Judea Pearl. Causality. Cambridge University Press,
2010.

Lydia C. Siafara, Hedyeh A. Kholerdi, Aleksey
Bratukhin, Nima Taherinejad, and Axel Jantsch.
SAMBA - an architecture for adaptive cognitive con-
trol of distributed cyber-physical production systems
based on its self-awareness. Elektrotechnik und In-
formationstechnik, 135(3):270-277, 2018.

Mark Weiser. Program slicing. In International Con-
ference on Software Engineering, pages 439-449,
1981.

Steven Woods and Qiang Yang. The program under-
standing problem: analysis and a heuristic approach.
In International Conference on Software Engineer-
ing, pages 615, 1996.

Lintao Zhang and Sharad Malik. Validating
SAT solvers using an independent resolution-based
checker: Practical implementations and other appli-

cations. In Design, Automation and Test in Europe,
pages 880885, 2003.

