
A Memory-Upscaled Boolean Satisfiability Solver
for Complex On-Chip Self-Verification Tasks

Buse Ustaoglu∗ Sebastian Huhn∗† Rolf Drechsler∗†

∗Cyber-Physical Systems, DFKI GmbH
28359 Bremen, Germany
{buse.ustaoglu}@dfki.de

†University of Bremen, Germany
{huhn,drechsler}@uni-bremen.de

Abstract—The verification gap is ever-widening with the in-
creased complexity of electronic circuit designs. A novel approach
to tackle this arising challenge concerns the self-verification,
which paves the way for continuing the systems’ verification
tasks after their deployment. For realizing such a self-verification
capability, a verification package is required on-chip, which
merges verification techniques – like Bounded-Model Checking
– and application-specific co-processors – like hardware-based
Boolean Satisfiability (SAT)-solvers – within the circuit-under-
verification together. Previous works have proposed compact
Hardware Boolean Satisfiability Solvers (HW SAT-solver) to solve
a-priori given arbitrary SAT-instances; however, the maximum
processable instance size is bounded and, hence, their appli-
cability on complex verification tasks is limited. This work
proposes a novel memory-upscaling scheme for lightweight HW
SAT-solvers to cope with even large and industrial-relevant
instance sizes. More precisely, external memory resources are
orchestrated, which are seamlessly integrated into the HW SAT-
solver by implementing a suitable interface module and protocol.
Experiments clearly demonstrate the effectiveness of this work.

I. INTRODUCTION

Electronic system designs occur in almost all parts of our
daily life, including safety-critical applications. Consequently,
it is of utmost importance that the resulting systems oper-
ate without any failure. To ensure the correctness of these
systems, verification forms a crucial step checking whether
the functionality of the design meets its specification or not.
Due to the challenging time-to-market, state-of-the-art designs
are deployed without being fully verified [1]. The concept of
self-verification has been proposed to tackle the ever-widening
verification gap [2], [3]. It is meant to be performed in
addition to existing techniques like simulation- and emulation-
based functional verification and formal verification [4]. A
lightweight verification package is required in order to apply
self-verification within the later in-field application.

Previous works have been proposed that develop verification
packages by applying verification techniques in hardware,
which utilize the Boolean Satisfiability (SAT)-problem. Con-
sequently, HW SAT-solvers must be realized in hardware,
e.g., by using the rapid prototyping Field Programmable Gate
Array (FPGA) technology. In work [5], [6], a memory model
has been proposed that stores a SAT-instance entirely in the
fast on-chip memory Block Random Access Memory (BRAM)
resources of an FPGA and further BRAM resources are
utilized for internal algorithmic purposes. Since the available
number of BRAMs is bounded, the maximum processable
SAT-instances is limited and, hence, restricts the applicable
self-verification tasks.

This work significantly improves available HW SAT-solvers
to, in the end, take advantage of self-verification for even
large and industrial-relevant instance sizes. More precisely,
large external memory resources are clever orchestrated, which
allows for storing even large SAT-instance while preserving the

lightweight characteristic of the HW SAT-solvers and avoid
any large adverse impact on the solvers’ latency.

II. HW SAT-SOLVERS FOR SELF-VERIFICATION
The SAT-problem asks the question whether an assignment

to all Boolean variables of a given Boolean function exists
such that the function evaluates to true. If this is the case,
the function is said to be satisfiable (sat) and, otherwise,
unsatisfiable (unsat). This evaluation is automatically con-
ducted by a SAT-solver, which typically processes Boolean
functions, given in a Conjunctive Normal Form (CNF). A CNF
consists of a conjunction of clauses, whereby a clause is a
disjunction of literals and each literal is a Boolean variable or
its negation. One difficult challenge when designing HW SAT-
solvers concerns the effective storage of the SAT-instance in
the available hardware. Specific criteria have to be considered
like the maximum number of variables/clauses and more
general aspects like the fact whether arbitrary instances can
be processed without enforcing a specific format like 3-CNF.
To unleash the full potential of self-verification, large arbitrary
SAT-instances must be processed within a reasonable run-time.

The previously presented HW SAT-solvers [5], [6] im-
plement a finite state machine to control the operation,
which have been inspired by the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [7]. In particular, work [6] en-
hances the HW SAT-solver by introducing clause learning
techniques, which follows a Conflict-Driven Clause Learn-
ing (CDCL) scheme [8].

The HW SAT-solver principle of [5] is briefly described
as follows: At first, the complete SAT-instance is transferred
to the main memory after the solver’s initialization. Certain
meta information – like the number of literals in each clause
– are determined and stored into the Clause Position Mem-
ory (CPM). If one clause exists that holds only one literal
(unary clause), an implication is derived and, otherwise, a
decision is being made. The current decision level is incre-
mented by 1 with every decision. Then, the assignment is
propagated to all clauses. Subsequently, the regular DPLL-
search procedure is conducted, as implemented on hardware,
which is not described in detail due to the page limitation.
More information about the underlying DPLL-search proce-
dure and the criteria of termination is given in [7].

The conflict resolution of [6] performs clause learning,
meaning that the literals of the clause in which a conflict
occurs are stored in Reason Literal Memory (RLM). The
implication clauses are accessed via the Implication Graph
Memory (IGM) that stores the clause information of the
implied literal at each implication. For more details about the
implementation, consider the works [5], [6].

III. MEMORY-UPSCALED HW SAT-SOLVER

The fastest on-chip memory within an FPGA is BRAM,
which is, in turn, very expensive. Thus, the amount of available



BRAM within state-of-the-art FPGAs is strictly limited. In
contrast to BRAM, an external memory provides a large
storage capacity at relatively low costs. However, accessing
such an external memory requires significant more cycles
than on-chip memories. With respect to the intended HW
SAT-solver application, using external memory naively would
introduce a latency such that the SAT-instance could not be
processed within reasonable run-time. Consequently, it is of
utmost importance that a suitable trade-off between the gained
performance – in the sense of solving run-time – and the
resulting (hardware) overhead is identified.

This work proposes a clever memory-upscaling scheme such
that the SAT-instance is stored in the external memory of high
capacity while introducing only a negligible latency overhead.
By this, the allocation ratio of limited BRAMs resources of
the FPGA can heavily be reduced such that even larger and
industrial-relevant SAT-instances can be processed success-
fully. It can be taken advantage of remaining BRAM resources
to incorporate further optimization of the SAT-solving process
to improve the resulting run-time even more. More precisely,
the proposed memory-upscaling scheme allows for adjusting
the memory word lines by identifying the essential information
based on the given constraints. The encoding of a literal in
the word line of the external memory is as follows: (a) the 15
most significant bits store the decision level, (b) the 5 middle
bits keep meta information of the solving process and (c) the
remaining 17 bits store the index of the literal.

For the memory-upscaled DPLL-based solver, the BRAMs
are utilized for CPM entirely, which bounds the maximum
number of clauses, and is as follows: The 15 most significant
bits store the decision level of a clause, meaning the highest
decision level of its literals, 1 bit holds Clause Sat Status (CSS)
and the 10 least significant bits store the number of literals in
a clause. Analogously, for the memory-upscaled CDCL-based
solver, a share of the available BRAM resources is reserved
for IGM and RLM. The encoding of IGM is as follows:
The data width is 28 bits, while the first 27 bits store the
clause address of the implied literal. Furthermore, the most
significant bit checks whether the decision level is stored,
which allows to group the implications of the same decision
level, as required for a potential backtracking operation during
the conflict resolution. The RLM encoding is the same as the
literal encoding in the main memory.

IV. EXPERIMENTAL EVALUATION & CONCLUSION

The proposed HW SAT-solver has been implemented on a
Xilinx Kintex-7 KC705 Evaluation Platform with an embedded
xc7k325tffg900 FPGA core that operates at 125 MHz system
clock. This device has an external DDR3 memory that can be
accessed via the Memory Interface (MIG) to submit (memory)
read and write requests. A controller has been implemented
to seamlessly integrate the MIG within the solver’s search
procedure while keeping the lightweight character of the
solver. This is clearly proven by the low utilization ratio of
the LUTs (Muxes) FPGA resources, which are about 5.50%
(0.35%) for the DPLL-based and 6.09% (0.32%) for the
CDCL-based HW SAT-solver. The overall system is visualized
in Fig. 1 with all the semantic memory blocks, as mentioned
in the previous sections.

The proposed clever orchestration of the memory resources
in combination with an effective memory model allows for a
significant enhancement of the processible SAT-instance sizes.
The resulting limits are as follows: The maximum number of
clauses and literals is 524, 288 for DPLL-based solver and

Fig. 1. HW SAT-solver DDR system

TABLE I
RUN-TIME RESULTS

Instance #Var #Cls Status Run-time [s] Run-time [s]
DPLL-based CDCL-based

ii16b1 1,728 24,792 SAT timeout 49.04
b12-4 2,450 20,666 UNSAT 0.13 0.05
b17-100 50,282 183,811 SAT timeout 17,990.00
average-1 65,210 177,351 UNSAT 89.45 67.50
weighted-2 116,106 140,078 UNSAT timeout 5,720.66

262, 144 for CDCL-based solver, which can hold at maxi-
mum 131, 072 implications. Besides this, a maximum number
of decision levels (literals per clause) is 65, 536 (1, 024)
is supported, which were not exceeded by any considered
benchmark. In comparison to previously published approaches,
the proposed memory-upscaled DPLL-based solver allows for
processing over 30 times and CDCL-based solver over 15
times larger instances.

Table I presents the resulting run-time of both memory-
upscaled HW SAT-solver when considering large benchmark
SAT-instances. Note that the previous solvers could not handle
these instances. The DPLL-based solver is not able to solve
some specific instance within 5 hour, which is assumed as a
timeout. The CDCL-based solver solves all considered bench-
mark successfully since the invoked clause learning techniques
improve the search process, in particular, when processing
hard-to-solve SAT-instances.

This paper proposed a new memory-upscaling scheme for
hardware-based SAT-solvers, which is seamlessly integrated
into both a DPLL-based and a CDCL-based solver while
retaining the solvers’ lightweight character. The proposed
memory scheme allows for a clever orchestration of DDR3
memory resources in combination with the available BRAMs
for both, the original SAT-instance and learnt clauses. The
considered benchmark clearly demonstrated that the newly
proposed scheme allows for the first time to process even large
SAT-instances within a reasonable time. Different parameters
exist to provide a trade-off between utilized resources and
the maximum processible instance size. By this, it is even
possible to enlarge the boundaries and, hence, to tackle
the upcoming challenges in the context of self-verification
successfully.

Acknowledgments: This work was supported by the German
Federal Ministry of Education and Research (BMBF) within the
project SELFIE under grant no. 01IW16001.

REFERENCES

[1] W. C. Rhines, “Design verification challenges: Past, present and future,” in DVCon
US, 2016.

[2] M. Ring, F. Bornebusch, C. Lüth, R. Wille, and R. Drechsler, “Better late than never:
Verification of embedded systems after deployment,” in DATE, 2019, pp. 1–6.

[3] R. Drechsler, M. Fränzle, and R. Wille, “Envisioning self-verification of electronic
systems,” in ReCoSoC, 2015, pp. 1–6.

[4] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 1999.
[5] B. Ustaoglu, S. Huhn, D. Große, and R. Drechsler, “SAT-Lancer: a hardware SAT-

solver for self-verification,” in GLSVLSI, 2018, pp. 479–482.
[6] B. Ustaoglu, S. Huhn, F. Sill Torres, D. Große, and R. Drechsler, “SAT-Hard: a

learning-based hardware SAT-Solver,” in DSD, 2019, pp. 74.–81.
[7] M. Davis, G. Logeman, and D. Loveland, “A machine program for theorem proving,”

Comm. of the ACM, vol. 5, pp. 394–397, 1962.
[8] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, “Efficient conflict driven

learning in a boolean satisfiability solver,” in ICCAD, 2001, pp. 279–285.

2


