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Abstract—Despite the recent success of formal verification
methods, the computational complexity of most of them is still
unknown. It raises serious questions regarding the scalability
of the approaches. One of the most successful formal methods
to prove the correctness of adders is Binary Decision Diagram
(BDD)-based verification. It reports very good results for verifica-
tion of different adder architectures. However, the computational
complexity of BDD-based verification has not been yet fully
investigated. In this paper, we calculate the complexity of two
adder architectures: ripple carry adder and conditional sum
adder. These architectures have the smallest area and delay
among adders, respectively. Then, we show that the verification
of these architectures is possible in time polynomial in n, where
n is the size of the adder (i.e., the number of bits per input).
Finally, we confirm our theoretical calculations by experimental
results.

I. INTRODUCTION

The importance of arithmetic circuits is rapidly growing due
to the demands for complex and extensive computations in
modern systems. A wide variety of adders, multipliers, and
dividers with different architectures have been proposed to
satisfy the community needs for area-efficient, fast, and low-
power designs. These architectures are usually complicated;
thus, proving the correctness of them before implementation
is of the utmost importance to avoid bugs. Several formal
verification methods based on Binary Decision Diagrams
(BDDs) [1], Binary Moment Diagrams (BMDs) [2], [3], term-
rewriting [4], [5], and Symbolic Computer Algebra (SCA) [6],
[7], [8], [9] have been proposed to check the correctness of
arithmetic circuits. They usually report very good results when
it comes to the verification of sophisticated architectures.

Despite the practical success of formal verification meth-
ods, the computational complexity of most of them is still
unknown. Therefore, two critical problems arise: 1) we cannot
show the scalability of the verification method, and 2) we
cannot compare the complexity of two verification methods
for a particular architecture and choose the best one. A good
example of the unknown complexity is the formal verification
of integer adders using BDDs. It has been shown in practice
that BDDs are very efficient in proving the correctness of
adders. However, the computational complexity of many adder
architectures has not been yet calculated.

The core idea of the BDD-based verification is based on
symbolic simulation. During simulation, an input pattern is
applied to a circuit, and the resulting output values are ob-
served to see whether they are the expected values. Symbolic

simulation verifies a set of scalar tests in the input space with
a single symbolic test. In order to cover all the possible values
on each input, symbolic functions are encoded using BDDs. At
the end of the simulation, the resulting BDD for each primary
output is evaluated. A BDD is a canonical representation;
thus, independent of the adder architecture, the outputs’ BDDs
should be always identical.

To the best of our knowledge, PolyAdd [10] is the only
work that focuses on the complexity of adder verification
using BDDs. The author proves that the complete formal
verification process of some adder architectures can be carried
out polynomially. However, PolyAdd does not provide the
exact order of the complexity for the adder verification.

Ripple carry adder and conditional sum adder are two
important architectures whose verification complexity has not
been yet fully investigated. The ripple carry adder has a small
area compared to the other adder architectures, making it an
excellent option for the small designs. On the other hand,
the conditional sum adder has a small delay thanks to its
unique structure containing many multiplexers [11]. Therefore,
it is the first choice for the designs in which the delay is
the most important parameter. In this paper, we calculate
the computational complexity of verifying ripple carry and
conditional sum adders using BDDs. We also prove that
verifying these architectures is possible in time polynomial
in n, where n is the size of the adder (i.e., the number of bits
per input). Finally, we compare the theoretical calculations
with the experimental results to confirm the correctness of the
obtained complexities in practice.

The remainder of this work is structured as follows. Sec-
tion II reviews BDDs and the two adder architectures, i.e., rip-
ple carry and conditional sum adder. The calculations of
verification complexities for the two adders are presented in
Section III. A caparison between the theoretical complexities
and the experimental results is given in Section IV. Finally,
Section V concludes the paper.

II. PRELIMINARIES

In this section, first, formal verification using BDDs is
reviewed. Then, a brief overview of the ripple carry adder
and the conditional sum adder is given.

1



Algorithm 1 If-Then-Else (ITE)
Input: f , g, h BDDs
Output: ITE BDD

1: if terminal case then
2: return (result)
3: else if computed-table has entry {f, g, h} then
4: return result
5: else
6: v = top variable for f , g, or h
7: t = ITE(fv=1, gv=1, hv=1)
8: e = ITE(fv=0, gv=0, hv=0)
9: R = FindOrAddUniqueTable(v, t, e)

10: InsertComputedTable({f, g, h}, R)
11: return R

A. Binary Decision Diagrams

Definition 1. A Binary Decision Diagram (BDD) is a directed,
acyclic graph. Each node of the graph has two edges associ-
ated with the values of the variables 0 and 1. A BDD contains
two terminal nodes (leaves) that are associated with the values
of the function 0 or 1.

Definition 2. An Ordered Binary Decision Diagram (OBDD)
is a BDD, where the variables occur in the same order in each
path from the root to a leaf.

Definition 3. A Reduced Ordered Binary Decision Diagram
(ROBDD) is an OBDD that contains a minimum number of
nodes for a given variable order. The ROBDD of a Boolean
function is always unique.

The ITE operator (If-Then-Else) is used to calculate the
results of the logic operations in BDDs:

ITE(f, g, h) = (f ∧ g) ∨ (f̄ ∧ h) (1)

The basic binary operations can be presented using the ITE
operator:

f ∧ g = ITE(f, g, 0),

f ∨ g = ITE(f, 1, g),

f ⊕ g = ITE(f, g, g),

f � g = ITE(f, g, g),

f̄ = ITE(f, 0, 1) (2)

ITE can be also used recursively in order to compute the
results:

ITE(f, g, h) =

ITE(xi, ITE(fxi , gxi , hxi), ITE(fxi , gxi , hxi)) (3)
where fxi (fxi ) is the positive (negative) cofactor of f with
respect to xi, i.e., the result of replacing xi by the value 1 (0).

The algorithm for calculating ITE operations is presented
in Algorithm 1. The result is computed recursively based on
Eq. (3) in this algorithm. When calculating the results of ITE
operations for the f , g, h BDDs, the arguments for subsequent
calls to the ITE subroutine are the sub-diagrams of f , g and
h. The number of sub-diagrams in a BDD is equivalent to

the number of nodes. For each of the three arguments, the
sub-routine is called at most once. Assuming that the search
in the Unique Table is performed at a constant time, the
computational complexity of the ITE algorithm, even in the
worst-case, does not exceed O(|f | · |g| · |h|), where |f |, |g|
and |h| denote the size of the BDDs in terms of the number
of nodes [12].

In order to formally verify an adder, we need to have the
BDD representation of the outputs. Symbolic simulation helps
us to obtain the BDD for each primary output. During a
simulation, an input pattern is applied to a circuit, and the
resulting output values are observed to see whether they match
the expected values. On the other hand, symbolic simulation
verifies a set of scalar tests (which usually cover the whole
input space) with a single symbolic test. Symbolic simulation
using BDDs is done by generating corresponding BDDs for
the input signals. Then, starting from primary inputs, the BDD
for the output of a gate (or a building block) is obtained using
the ITE algorithm. This process continues until we reach the
primary outputs. Finally, the output BDDs are evaluated to see
whether they match the BDDs of an adder.

B. Adder Architectures
We now review the structure of two integer adders, i.e., rip-

ple carry and conditional sum adder.
Ripple Carry Adder: Fig. 1 presents the structure of an n-
bit ripple carry adder. In this structure, one Half-Adder (HA)
and n−1 Full-Adders (FAs) are cascaded to compute the sum
result. The carry will be generated at every FA stage in the
circuit. The generated carry output is forwarded to the next
FA and applied as a carry input. This process continues up
to the last FA stage. The ripple carry adder occupies the least
area among the adder architectures. However, it is the slowest
adder due to the fact that the carry must propagate through
every FA before the addition is complete.
Conditional Sum Adder: Fig. 2 shows the structure of a
4-bit conditional sum adder. In this architecture, two sets of
outputs are generated for a given group of k operand bits.
Each set contains k sum bits and one outgoing carry. For one
of the sets, it is assumed that the eventual incoming carry
will be zero, while for the other set it will be one. Once the
incoming carry is known, we select the correct set of outputs
using multiplexers. The conditional sum adder has a large
architecture among the integer adders. On the other hand, it
enjoys a small delay thanks to its unique structure containing
many multiplexers.

The MUX blocks in Fig. 2 consist of two multiplexers: a
multiplexer to select between two k-bit sums and a multiplexer
to select between two 1-bit carries. These MUX blocks can
be put in different levels based on their inputs. Fig. 3 shows
the MUX blocks (boxes) of an 8-bit conditional sum adder in
four levels. The number inside each box presents the size of
the input sum bits, i.e., k.

III. COMPUTATIONAL COMPLEXITY

In this section, we calculate the computational complexity
of verifying the ripple carry adder and the conditional sum
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Fig. 3. MUX blocks in an 8-bit Conditional sum adder

adder. We also prove that verification of these two adders is
possible in polynomial time.

A. Ripple Carry Adder

In order to obtain the computational complexity of an n-
bit ripple carry adder, we first calculate the complexity of a
single FA. The sum and carry bits of a FA can be shown by

ITE operations:

Si = Ai ⊕Bi ⊕ Ci−1 = ITE(Ci−1, Ai �Bi, Ai ⊕Bi) =

ITE(Ci−1, ITE(Ai, Bi, Bi), ITE(Ai, Bi, Bi)), (4)
Ci = (Ai ∧Bi) ∨ (Ai ∧ Ci−1) ∨ (Bi ∧ Ci−1) =

ITE(Ci−1, Ai ∨Bi, Ai ∧Bi) =

ITE(Ci−1, ITE(Ai, 1, Bi), ITE(Ai, Bi, 0)) (5)

The ITE operations are computed by Algorithm 1 to get the
BDDs for the Si and Ci signals. Assuming that f , g and h
are the input arguments of an ITE operator, the computational
complexity is computed as |f | · |g| · |h|. As a result, the
complexity of computing Si and Ci is as follows:

Complexity(Si) = |Ci−1| · |Ai|2 · |Bi|2 · |Bi|2

= 729 · |Ci−1| (6)

Complexity(Ci) = |Ci−1| · |Ai|2 · |Bi|2

= 81 · |Ci−1| (7)

where Ai, Bi, and Bi BDDs have only one internal node and
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two terminal nodes; thus, the size of them is the same and
equals 3.

It has been proved in [13] that the BDD size of the ith

carry bit (Ci) is bounded above by 3(i+ 1). Thus, the overall
complexity of verifying a ripple carry adder can be obtained
as follows:

complexity[RCA] = 810 ·
n−1∑
i=1

|Ci−1| = 2430 ·
n−1∑
i=1

i

= 1215n2 − 1215n (8)

We can conclude that the order of the verification complex-
ity is O(n2), where n is the number of bits per input (i.e., size
of the adder). As a result, proving the correctness of a ripple
carry adder has quadratic time complexity.

B. Conditional Sum Adder

An n-bit conditional sum adder is divided into two main
stages: 1) 2n − 1 FAs to generate initial sum and carry bits.
2) An array of MUX blocks (see Fig. 3) to select the sum and
carry bits. We first calculate the computational complexity of
the first stage in verification; then, we focus on the second
stage. Finally, we add up the two complexities to obtain the
overall verification complexity.

A FA with a ’0’ input (blue FAs in Fig. 2) is a Half-Adder
(HA); thus, the output BDDs can be obtained by two ITE
operations:

si = Ai ⊕Bi = ITE(Ai, Bi, Bi),

ci = Ai ∧Bi = ITE(Ai, Bi, 0) (9)

Similarly, the output BDDs of a FA with an ’1’ input (red
FAs in Fig. 2) can be obtained as follows:

s′i = Ai �Bi = ITE(Ai, Bi, Bi),

c′i = Ai ∨Bi = ITE(Ai, 1, Bi) (10)

The computational complexity of these two adders is the
same and equals:

Complexity(si) = Complexity(s′i)

= |Ai| · |Bi| · |Bi| = 3 · 3 · 3 = 27

Complexity(ci) = Complexity(c′i)

= |Ai| · |Bi| = 3 · 3 = 9 (11)

Since there are 2n−1 FAs in the first stage of the adder, the
overall complexity of the first stage is calculated as follows:

complexity[stage1] = (2n− 1) · (27 + 9) = 72n− 36 (12)

In order to calculate the computational complexity of the
second stage, we first need to obtain the complexity of a single
MUX block. A MUX block in level l (see Fig. 3) receives two
inputs with 2l + 1 bits, i.e., M [2l : 0], and N [2l : 0]. These
inputs are the results of adding two 2l-bit numbers. Then,
the MUX selects between these two inputs based on the c
signal, which is an output carry resulted from adding two 2l-
bit numbers. Therefore, a MUX block can be translated into

2l + 1 ITE operations as follows:
o0 = ITE(c,M0, N0),

o1 = ITE(c,M1, N1),

...
o(2l) = ITE(c,M(2l), N(2l)) (13)

Thus, the overall complexity of a MUX block is calculated
as follows:

complexity[MUX] = |c| ·
2l∑
i=0

|Mi| · |Ni| (14)

It has been proven in [13] that the BDD size of the ith

sum and carry bits are bounded above by 3i + 5 and 3i + 3,
respectively. Based on the facts that Mi and Ni are the sum
bits, and c is the (2l)th carry of an addition, we have:

complexity[MUX] = (3 · 2l + 3) ·
2l∑
i=0

(3i + 5)2 (15)

The number of MUXs in each row and the number of
rows in a conditional sum adder (see Fig. 3) are calculated
as follows:

number of MUXs in row = 2(log2 n−l+1) − 1,

number of rows = log2 n + 1 (16)
where the equations are exact for all word length being a power
of 2 (i.e., n = 2m) [11].

Consequently, the overall computational complexity of the
second stage is obtained:

complexity[stage2] =

log2 n∑
l=0

(2
(log2 n−l+1) − 1) · (3 · 2l + 3) ·

2l∑
i=0

(3i + 5)
2

 =

384

35
n
4
+

720

7
n
3
+ 488n

2
+ 399n log2 n−

795

7
n− 75 log2 n +

1601

35
(17)

Finally, the overall computational complexity of a condi-
tional sum adder is calculated by adding up the complexity of
the two stages in Eq. (12) and Eq. (17).
complexity[CSA] =

384

35
n
4
+

720

7
n
3
+ 488n

2
+ 399n log2 n−

291

7
n− 75 log2 n +

341

35
(18)

Based on the calculated complexity, we can observe that
the order of the verification complexity is O(n4). Therefore,
proving the correctness of a conditional sum adder using
BDDs has quartic time complexity.

IV. EXPERIMENTAL RESULTS

We have implemented the BDD-based verifier in C++. The
tool takes advantage of the symbolic simulation to obtain the
BDDs for the primary outputs. Then, the BDDs are evaluated
to see whether they match the BDDs for an adder. In order to
handle the BDD operations, we used the CUDD library [14].
The benchmarks for the three prefix adders are generated using
GenMul [15]. All experiments are performed on an Intel(R)
Core(TM) i7-8565U with 1.80 GHz and 24 GByte of main
memory.

After calculating the verification complexity bound for
a conditional sum adder, we check the correctness of the
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Fig. 4. Run-time graphs of the Adders

theoretical results in practice. Fig. 4(a) (Fig. 4(b)) presents
the run-times of verifying ripple carry adders (conditional sum
adders) with different sizes. We fit a curve (dash lines) to the
points with an acceptable error and evaluate the curve function.
We can fit a curve with the order of 2 to the verification run-
times of ripple carry adders in Fig. 4(a). On the other hand, a
curve with the order of 4 can be fitted to the verification run-
times of conditional sum adders in Fig. 4(b). It confirms that
verification of the ripple carry adder and the conditional sum
adder has quadratic and quartic time complexity, respectively.

V. CONCLUSION

In this paper, we calculated the computational complexity
of verifying one of the smallest adders (i.e., ripple carry adder)
and one of the fastest adders (i.e., conditional sum adder)
using the BDD-based method. Based on the calculations,
we proved that verification of the ripple carry adder and
the conditional sum adder has quadratic and quartic time
complexity, respectively. We also confirmed the correctness of
the complexity bounds obtained in our theoretical calculations
by experimental results.

Our research is the first step for the polynomial formal
verification of arithmetic circuits. In the future, we plan to
calculate the complexity bounds for available formal verifica-
tion methods when they are applied to different architectures,
particularly arithmetic circuits.
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[5] M. Temel, A. Slobodová, and W. A. Hunt, “Automated and scalable
verification of integer multipliers,” in Computer Aided Verification, 2020,
pp. 485–507.

[6] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: clean your
polynomials before backward rewriting to verify million-gate multipli-
ers,” in International Conference on Computer-Aided Design, 2018, pp.
129:1–129:8.

[7] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA: Using reverse
engineering to bring light into backward rewriting for big and dirty
multipliers,” in Design Automation Conf., 2019, pp. 185:1–185:6.

[8] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler, “Towards formal
verification of optimized and industrial multipliers,” in Design, Automa-
tion and Test in Europe, 2020, pp. 544–549.

[9] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers
by combining SAT and computer algebra,” in Int’l Conf. on Formal
Methods in CAD, 2019, in press.

[10] R. Drechsler, “PolyAdd: Polynomial formal verification of adder cir-
cuits,” in IEEE Symposium on Design and Diagnostics of Electronic
Circuits and Systems, 2021, pp. 99–104.

[11] R. Zimmermann, “Binary adder architectures for cell-based VLSI and
their synthesis,” Ph.D. dissertation, Swiss Federal Institute of Technol-
ogy, 1997.

[12] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of a BDD package,” in Design Automation Conf., 1990, pp. 40–45.

[13] I. Wegener, Branching Programs and Binary Decision Diagrams.
SIAM, 2000.

[14] F. Somenzi, “CUDD: CU decision diagram package release 2.7.0,”
available at https://github.com/ivmai/cudd, 2018.

[15] A. Mahzoon, D. Große, and R. Drechsler, “GenMul: Generating archi-
tecturally complex multipliers to challenge formal verification tools,” in
Int’l Workshop on Logic Synth., 2019.

5

https://github.com/ivmai/cudd

	Introduction
	Preliminaries
	Binary Decision Diagrams
	Adder Architectures

	Computational Complexity
	Ripple Carry Adder
	Conditional Sum Adder

	Experimental Results
	Conclusion
	References

