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Abstract. Today, the manufacturing of Integrated Circuits (ICs) is dis-
tributed over various foundries, resulting in untrustworthy supply chains.
Therefore, major concerns regarding the security, privacy, and reliability
of the fabricated ICs exist. Logic locking is one widely disseminated
protection technique against malicious intentions. Recently, the emerging
technology of Reconfigurable Field-Effect Transistors (RFETs) has been
utilized to implement logic obfuscation based on polymorphic logic gates
to protect intellectual property. However, the mechanisms’ assessment is
required to reinforce the newly introduced logic locking and, hence, to
tackle the growing security threats. Previous research like [1] proposes a
promising approach on determining the protection quality of such a logic
obfuscation by assessing the security threat of incorrect keys. However,
the number of assessable keys is limited by the computation time during
the assessment. Therefore, it is essential to assess the keys, forming the
most critical security breach for the logic locking mechanism. This work
proposes a novel approach on determining the most intimidating incor-
rect keys for improving the assessment quality of arbitrary logic locking
mechanisms. In particular, based on the concept of a SAT-based attack,
a procedure for determining the most safety-critical keys is developed.
The experimental evaluation proves that the proposed key determination
procedure unveils weaknesses of the protection mechanism that remain
undetected when using existing techniques and, hence, clearly outperforms
any other existing key determination procedures.
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1 Introduction

Nowadays, designers can benefit from access to advanced technology nodes
without having the large capital expenditure of operating their own semicon-
ductor foundries. This is thanks to the distributed manufacturing of the Inte-
grated Circuits (ICs). However, such a distribution also yields a growing threat
of compromising the integrity of once trusted IC processes by unauthorized
or untrusted users [2]. During the last decade, Complementary Metal-Oxide-
Semiconductor (CMOS)-based protection mechanisms have been the dominant
technology for implementing various protection measures. However, the layout-
level obfuscation by using CMOS-based camouflaging causes a significant overhead
with respect to the resulting power consumption and the required area [3].

Recent research works like [2, 4, 5] have been focusing on achieving high
protection while still preserving low overhead by utilizing reconfigurable silicon
nanowire field-effect transistor-based polymorphic logic gates [2]. In [2], an
algorithm is proposed that replaces gates impacting the original functional
behavior of the circuit by reconfigurable polymorphic logic gates. Afterward, the
quality of the resulting logic locking functionality is assessed by a metric based
on the Hamming Distance (HD) of the outputs over randomly applied stimuli
and keys. The result is considered optimal if the HD is 50% of the maximal HD.
The formal approach proposed in [1] shows the limitations of simulation-based
approaches, unveiling further weaknesses in the protection mechanisms. In [1], a
limited number of corrupting keys is calculated, which later be assessed. Thereby,
a corrupting key is defined as a key that behaves equivalent to the correct key
when considering at least one stimulus.

This work proposes a novel technique to determine corrupting keys, forming
the most critical security breaches. More precisely, a framework is designed to
calculate the most intimidating corrupting keys based on the concept of a SAT-
based attack. In contrast to other techniques, the proposed approach calculates
the corrupting keys based on Distinguishing Input Patterns (DIPs), maximizing
the number of equivalent behaving stimuli. This improves the quality of the
assessment of potential security threats using logic locking mechanisms.

Various experiments have been conducted on the ITC’99 benchmark set. The
results prove that the improved key calculation unveils weaknesses in the pro-
tection structures that remain undetected when using current approaches. The
proposed technique utilizes the concept of a SAT-based attack to provide a metric
for evaluating the threat of a specific corrupting key. In conclusion, the proposed
approach allows a more accurate evaluation of the security of a logic locked
circuit.

The remainder of this work is structured as follows: Section II briefly introduces
the preliminaries of this work. Section III describes the proposed key determina-
tion procedure in detail. Finally, Section IV presents the experimental evaluation.
A conclusion and an outlook on future work are given in Section V.



2 Preliminaries

Within the last decade, a lot of research has been spent on enhancing electronic
systems, while the classical CMOS technology has exceeded its physical limits.
Research in the field of reconfigurable technologies has gained a lot of interest
since it has a great potential to realize even more complex systems. This emerging
technology is a promising candidate for overcoming the constraints of Moore’s
law by employing polymorphic logic gates.

2.1 Reconfigurable Field-Effect Transistors

Different concepts have been proposed on realizing a device-level reconfiguration
capability like RFETs. An RFET introduces a control gate that can be configured
between an n-channel and p-channel behavior [3]. The reconfiguration capabilities
of this new emerging technology can be used to implement new protection
mechanisms, e.g., an on-chip key storage by the polymorphic logic behavior [3].
Furthermore, the RFET technology is promising to introduce effective protection
mechanisms against optical reverse-engineering attacks.

A popular approach to prevent reverse engineering, even given the entire layout,
is adding logic locking mechanisms to the circuit. The correct functional behavior
of a circuit C is defined in Def. 1.

Definition 1. Given a circuit C, a set of appliable stimuli S, a set of reachable
states F and a set of possible outputs P, the function C : S ×F → P defines the
intended functional behavior of C. In particular, C(s, ψ) describes the functional
behavior ∀C, s ∈ S, ψ ∈ F , with s ∈ S be a stimuli and ψ ∈ F be an internal
state.

Logic locking encrypts the correct functional behavior by encrypting the circuit C
using a secret key kc. The functional behavior of a logic locked circuit is defined
in Def. 2.

Definition 2. The functional behavior of a logic locked circuit C is defined given
a stimuli s ∈ S, an internal state ψ ∈ F and a key k ∈ K. Applying the secret
key kc yields the correct functional behavior C(s, ψ, kc) = C(s, ψ).

CMOS-based approaches usually introduce XOR/XNOR key gates [6–8] or MUX
gates [9–12] to obfuscate the correct functional behavior of the circuit, resulting
in a huge overhead regarding the area- and power-consumption [2]. Figure 1 gives
a basic example of an XOR gate inverting the behavior of the preceding logic
when an incorrect key is applied. In the example, the locked output has the
functionality of a NAND gate instead of the intended AND gate behavior.

Polymorphic logic gates like RFETs realize multiple functionalities in the same
cell and, hence, are an effective way to implement a logic locking mechanism. The
intended functionality is chosen by configuring a control signal. To insert key gates
without the high-performance overhead of CMOS- based techniques, polymorphic
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Figure 1: Simple CMOS-based logic locking example
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Figure 2: XOR/XNOR-RFET

logic gates can replace gates of the original circuit. Meaning gates with a high
impact on the primary outputs are replaced [2]. Various functionalities can be
implemented by RFET-based cells like the NAND/NOR- or the XOR/XNOR-
RFET. An example of the RFET visualized in Figure 2, can be configured as an
XOR or XNOR gate, depending on the control signal serving as a key bit.

2.2 Boolean Satsifiability Problem

The Boolean Satisfiability (SAT) problem is one of the first proven NP-hard
problems [13]. However, a lot of research on SAT-solving techniques has signif-
icantly increased the effectiveness of SAT-solvers over the years. For example,
Dynamic Clause Activation (DCA) allows to activate or deactivate a CNF Φ
with an activation literal a in an extended Φa = Φ+ a. To satisfy Φa, Φ only has
to be satisfied if a = 0 . Therefore, Φ can be deactivated by setting a = 1. The
application of DCA in SAT can result in significant speed-up [14].



Moreover, some modern SAT-solvers are extended to solve Pseudo Boolean (PB)
logic. PB allows defining inequalities in clauses. Furthermore, weights can be
assigned to specific literals or clauses that are not required to be true in a satisfi-
able solution. Pseudo Boolean Optimization (PBO) can be used to determine a
solution maximizing or minimizing the weights of a PB instance. The optimiza-
tion is performed utilizing an objective function Θ. The function Θ is usually
defined as a maximization or minimization of a sum of weighted literals. These
PBO-based optimization techniques have been heavily orchestrated in various
domains like IC testing [15].

2.3 SAT-based Attacks

While camouflaging and logic obfuscation try to protect intellectual property from
malicious misuse, attackers constantly work on techniques to remove or unlock
such protection mechanisms. A popular attacking algorithm is the SAT-attack
first proposed in [16]. The idea of the SAT-based attack is to use SAT to unlock
the circuit by determining the correct key kc or an equivalent behaving key.
First, a miter structure of two instances of the logic locked circuit is created. By
solving the miter instance, a pair of keys (k1, k2) and a DIP D is calculated for
the Primary Inputs (PIs). The DIP D is an input pattern, which results in a
differing output behavior using k1 and k2, meaning that at least one of the output
behaviors of the two compared keys is incorrect. Next, an unlocked product C of
the chip is used to get the correct output behavior C(D) for the D. Before the
next DIP D′ is calculated, the key space of k1 and k2 is constrained to satisfy
the correct output behavior C(D) for the previously calculated DIP D. This
is done by adding a SAT-instance ΦD consisting of two inverted miters. Each
inverted miter forces equivalence between the logic locked circuit using keyX and
the oracle output C(D) on the stimuli D. The basic principle of the SAT-based
attack is illustrated in Figure 3.

2.4 Quality Assessment of RFET-based Logic Locking Mechanisms
using Formal Methods

This section describes the SAT-based quality assessment approach proposed
in [1]. The assessment framework analyzes a Circuit-under-Assessment (CuA)
using (RFET-based) logic locking mechanisms. First, corrupting keys - incorrect
keys that result in correct functional behavior given at least one stimulus - are
collected for a later assessment. A formal definition of a corrupting key kf is
given in Definition 3.

Definition 3. Given a logic locked circuit C, a stimuli s ∈ S and an internal
state ψ ∈ F , a key kf ∈ K is a corrupting key, iff kf 6= kc and ∃s, C(s, ψ, kc) =
C(s, ψ, kf ).
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Figure 3: Basic concept of a SAT-based attack
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Figure 4: Abstract model of the miter structure

Therefore, a miter circuit is created from the CuA considering the correct key
kc - yielding the SAT instance Φkc

- and any incorrect key K̂ yielding ΦK̂. The
basic principle of this construction is given in Figure 4. The CuA is unrolled for
N clock cycles to consider sequential elements. The FFs are modeled as Pseudo
Primary Inputs (PPIs), initialized with 0.
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Figure 5: Adapted SAT-based attack to collect constraints for the key-space

The entire model is stored as one SAT instance Φcomp and processed by a
state-of-the-art SAT solver. The inverted miter compares the unrolled Φkc

with
the unrolled ΦK̂, i.e., considering any incorrect key ki 6= kc, ki ∈ K̂. In particular,
both states – defined by the stored FFs’ values – and the primary output values
can be compared for all N observed clock cycles. If a satisfiable solution is
determined, i.e., a corrupting key kf has been detected, this circumstance results
in a functional equivalent of the CuA given at least one stimulus.

Next, the calculated security threat is assessed. More precisely, every determined
corrupting key kf is evaluated against possible stimuli leading to functional
equivalence to the correct key kc. More precisely, the individual corrupting key is
enforced in ΦK̂ by additional clauses. The key detection procedure – including the
security threat evaluation regarding the discovered corrupting key – is repeated
until Φcomp is unsatisfiable or a user-defined limit has been exceeded.

3 SAT-based Key Determination Attack

This section describes the approximative determination of the most intimidating
key to improve the quality assessment of a CuA using logic locking mechanisms.
The key determination procedure is divided into two parts. First, an adapted
SAT-based attack is applied to collect constraints for the keys. In the second
step, DCA methods are combined with the constraints to calculate a key, which
forms a maximal threat to the logic locking mechanism.

To collect the constraints narrowing the key-space, a miter SAT instance ΦDIP

is generated to calculate DIPs. Subsequently, the miter structure is constructed
from the CuA while considering the a-priori known correct key kc yielding
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the SAT instance Φkc
and any incorrect key in K̂ yielding ΦK̂. The FFs are

modeled as Pseudo Primary Inputs (PPIs) in cycle n + 1 and are connected
to the corresponding Pseudo Primary Outputs (PPOs) of the previous cycle n.
Furthermore, similar to the SAT-based approach, the primary inputs use the
same stimuli for both unrolled instances (of the CuA) and are kept constant
during the unrolling. Contrary to the SAT-based assessment framework, in the
attack framework, a miter is constructed to detect functional inequivalence. After
the miter has been added, the key is constrained for both instances of the unrolled
CuA. For Φkc

, the correct key kc is set by adding clauses implying kc, whereby
ΦK̂ is extended by a conflict clause excluding kc. The entire model is stored as
one SAT instance ΦDIP and processed by a state-of-the-art SAT solver.

Like in the SAT-based assessment framework, the CuA is unrolled for N
clock cycles since for the assessment of sequential circuits, sequential elements –
meaning Flip-Flops (FFs) – have to be considered [17]. Here, the value N has
to be adjusted for the CuA characteristics. The number of clock cycles required
to achieve the relaxation given a stimuli of the circuit varies depending on the
circuit. Similar to the approach proposed in [1], 0 is assumed as the initialization
value for all FFs in cycle n = 1.

Next, a DIP D ∈ D is calculated, distinguishing the behavior of an arbitrary
key from kc. Similar to a SAT-based attack, a constraint is modeled as instance
ΦD of the circuit that forces the equivalence to the correct key on this specific
DIP. Only one inverted miter instance is required since the correct key kc is given.
Next, a new D′ ∈ D can be calculated. Like in a SAT-based attack, this procedure
is repeated to narrow the search space for the keys until every remaining key
results in a functional equivalent behavior (as yielded when the correct key is



being applied). The algorithm terminates after the calculation of all constraints
ΦX , X ∈ D , meaning that ΦD, ΦD′ , ΦD′′ , ... constrain the corrupting key to fully
unlock the circuits. The basic principle of this adapted SAT-based attack is
visualized in Figure 5.

Afterward, DCA is used to add a new activation variable a ∈ A for ΦD, such
that ΦDa = ΦD + a. Next, ΦDa is added to the final key determination problem
instance ΦKD, so that Φkd = Φkd ∗ ΦDa. By assuming a = 0, ΦDa = ΦD and,
hence equivalence to the correct key on this specific DIP is forced. Now, the next
DIP D′ can be calculated. In Figure 6 a complete key determination instance
∀D,D′ ∈ D and ∀a, a′ ∈ A is illustrated.

Once ΦKD is complete, containing all the activatable ΦDa, the most intim-
idating key is determined. First, the weight w(a) = −1 is assigned for every
activation signal a ∈ A. PBO-solving techniques are utilized to determine the
most intimidating key. In particular, an objective-function θ, defined in Equation
1, is used to maximize the number of activated instances ΦD. Therefore, the
PBO-solver increases the functional equivalence to the correct behavior on the
calculated DIPs.

θ = max(
∑
a∈A

(w(a)) (1)

A corrupting key is calculated by solving the problem instance ΦKD ∗ θ that
satisfies the functional equivalence to kc on the maximum number of DIPs. The
DIPs of a SAT-attack are iteratively narrowing the search space of the keys
to find a key that unlocks the circuit. Therefore, a key is considered a most
intimidating corrupting key that satisfies the maximum number of constraints as
given by the DIPs.Consequently, ΦKD ∗ θ is solved for a predefined number of
keys, which will be assessed afterward.

The assessment of the detected keys can be performed with an arbitrary
assessment technique, for example, the HD-approach or the approach proposed
in [1].

4 Experimental Evaluation

This section describes the experimental evaluation of the proposed technique
to determine corrupting keys during the quality assessment of logic locking
mechanisms. The experiments compare the novel approach with the determination
of corrupting keys proposed in [1], which are used as the baseline. For the
assessment of the detected keys, the assessment framework defined in [1] is used
for both key determination approaches.

All experiments have been executed on an AMD 4750U processor with 32
GB system memory. All implementations are solely in C++. For the evaluation,
different benchmark circuits of the ITC’99 benchmark suite are considered. For
each of these circuits, 15 of the NOR, NAND, XOR and XNOR gates have
been randomly replaced by RFETs, while the functional behavior is retained



Table 1: Results - 15 Key-bits

SAT-attack-based approach Baseline approach [1]

circuit DIPs #{kc}
#stimuli #{kc}

#stimuli
minimum average maximum minimum average maximum

b05 0 - - - - 1,024 2 2 2
b06 2 1,024 4 4 4 1,024 2 3 4
b07 1 3 2 2 2 3 2 2 2
b08 2 63 256 256 256 63 256 256 256
b09 1 1 2 2 2 1 2 2 2
b10 2 1,024 1,024 1,024 1,024 1,024 256 256 512
b11 1 1,024 128 128 128 1,024 126 126 128
b12 1 1,024 32 32 32 1,024 32 32 32
b13 1 1,024 1,024 1,024 1,024 1,024 512 768 1024
b14 2 1,024 1,024 1,024 1,024 1,024 1,024 1,024 1,024
b15 2 1,024 1,024 1,024 1,024 1,024 1,024 1,024 1,024
b17 3 1,024 1,024 1,024 1,024 1,024 1,024 1,024 1,024
b20 1 0 0 0 0 0 0 0 0
b21 1 0 0 0 0 0 0 0 0
b22 1 0 0 0 0 0 0 0 0

if the correct key is applied. Experimental evaluations have shown that 15
RFETs can be considered a sufficient number of key gates to create logic locking
structures with weaknesses that are non-trivial to analyze and, hence, hard to
detect. Consequently, each circuit has 15 control signals resulting in 215 = 32, 768
possible keys. Similar to the results in [1], the 1,024 most intimidating keys are
assessed on both the proposed and the baseline approach. Furthermore, up to
1,024 stimuli with functionally correct behaving Primary Outputs (POs) (per
corrupting key kf ) are captured.

The FFs of the CuA are initialized with 0, and the stimuli are kept constant
over all five clock cycles. Each circuit has been unrolled for five clock cycles since
it has been proven as an appropriate parameter to cover the functional behavior’s
majority of the considered benchmark circuits [18].

Table 1 shows the detailed results of the two approaches for determining the
corrupting keys. It illustrates the number of detected corrupting keys, their
minimum, the average and maximum number of corrupted stimuli for the novel
SAT-based key determination approach and the baseline approach proposed in [1].
Furthermore, the number of calculated DIPs for the SAT-attack-based approach
are shown.

For the b05, b07, b08, b09, b12, b14 and b15, the results are equivalent regarding
the number of detected corrupting keys and corrupted stimuli. However, in the case
of the b05, the proposed approach shows that no DIP can be calculated, meaning
all 32,768 keys are behaving equivalent. This provides additional information
about the poor quality of the underlying logic locking mechanism. Considering
the circuits: b06, b10, b11, and b13, the novel approach shows that there are more
critical corrupting keys than those ones as detected by the baseline approach. In
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fact, the baseline key collection algorithm can lead to a major misjudgment of
the quality of a logic locking mechanism.

Figure 7 presents the number of activated constraints for the corrupting keys
when using the SAT-based key determination technique. The diagram shares
further information about the actual equivalence of the corrupting keys to the
correct behavior. For example, in the case of the b17, seven corrupting keys
are able to fully unlock the circuit, while 80 corrupting keys can satisfy two
constraints and 712 corrupting keys are able to satisfy one constraint. In the case
of the b10, all 1,024 assessed keys are able to satisfy the equivalent behavior to
the correct key on both calculated DIPs. Therefore, at least 1,024 corrupting keys
exist that fully unlock the circuit’s functional behavior resulting in an unbearable
security breach. On the other hand, the results for the b14 and b15 show that no
corrupting key fully unlocking the circuit’s functional behavior exists.

This clearly shows that the novel approach outperforms other approaches of
determining the most intimidating corrupting keys, providing a more appropriate
quality assessment of logic locking mechanisms.

5 Conclusions

This paper presented a novel method of calculating the most intimidating cor-
rupting keys for logic locking mechanisms. In the end, the proposed technique
allows determining keys, which form an enormous security threat, by adapting
the conceptual structure of SAT-based attacks and enhancing the idea with



PBO techniques. The resulting metric ensures the detection of potential security
breaches and outperforms the existing key determination mechanisms. Future
work will investigate a sophisticated weight calculation for the activation signals
to prefer activating instances ΦD, implying that the most equivalent functional
behavior is achieved.
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