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Abstract

RISC-V is a modern open and free Instruction Set Architecture (ISA) that is designed in a very modular way and enables
to integrate custom instruction extensions in order to build highly application specific solutions. Extensive verification
and validation is crucial to ensure that the design meets all requirements from the specification. Constrained Random
Verification (CRV) has been shown to be a very effective technique for this purpose. RISC-V DV is a powerful CRV
framework that is tailored for RISC-V and under active development by Google. In this paper we provide an overview,
evaluation and discussion of CRV for RISC-V, based on the RISC-V DV framework. In our evaluation we assess the bug
hunting capabilities of RISC-V DV by means of mutation samples and we provide additional execution metrics for the
framework. Moreover, we add a discussion on the approach and sketch ideas for future research directions in this area to

further boost the approach.

1 Introduction

RISC-V [31}132] is a royalty free open source Instruction
Set Architecture (ISA) that had a significant impact on re-
cent advancements in the design of embedded systems, for
example in the Internet-of-Things (IoT) context. RISC-V
has extensive potential to become a game changer in this
area and as of today is being strongly adopted in academia
and industry. Beside being open and free, a key feature of
RISC-V is the modern clean slate design that puts a strong
emphasis on a high modularity and extensibility. It is pos-
sible to choose between different architecture bitwitdhs as
well as standard instruction set extensions, such as multi-
plication and division, or atomic operations. Further cus-
tomization is achieved by integrating custom instruction set
extensions, a use-case that is specifically considered by the
design of RISC-V. This allows to build highly application
specific solutions that work very efficiently in combination
with limited resources.

Extensive verification and validation is very important
to ensure that the system fulfills the specification re-
quirements with regard to functional as well as extra-
functional aspects. Due to their ease of use and scalabil-
ity, simulation-based methods still form the backbone to
drive the verification and validation effort. In this context,
Virtual Prototypes (VPs) are commonly employed as simu-
lation backends [[16]. A central component of the VP is the
Instruction Set Simulator (ISS), which is an abstract model
of the processor and thus responsible to process instruc-
tions one after another. Simulation-based methods require
strong test generation techniques to achieve comprehensive

*This work was supported in part by the German Federal Ministry
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results. Constrained Random Generation (CRG) [34), 26]
is a powerful and scalable test generation technique that
has been shown very effective in many different applica-
tion areas, including functional verification [29, [14]], val-
idation of power management functionality [21]], or error
resiliency evaluations [33| [12] among others. CRG is a
central building block of a Constrained Random Verifica-
tion (CRV) framework. It works by specifying and solving
constraints to generate new tests in a structured approach
thus yielding better results than pure randomized genera-
tion. Coverage information is tracked and utilized to mea-
sure the verification progress as well as assess the verifica-
tion quality.

RISC-V DV [4, 2] is a powerful CRV framework that is
actively developed by Google and is tailored for RISC-V.
It provides a large set of features including support for the
complete 32 and 64 bit standard instruction extension set.
RISC-V DV leverages SystemVerilog and UVM (Univer-
sal Verification Methodology) to generate tests in assem-
bly format based on randomized instruction streams. Each
test is executed on a reference system and the system un-
der test (high-level simulator or RTL core). In a final step,
the output of both systems is compared. This enables a
comprehensive end-to-end verification and validation flow.
RISC-V DV is designed as configurable framework that
enables to select specific test generation strategies and sim-
ulation backends. Both of which can be further extended
to meet application specific demands.

In this paper we provide an overview, evaluation and dis-
cussion of CRV for RISC-V, based on the RISC-V DV
frameworkﬂ In our evaluation we perform a mutation-
based analysis to assess the bug hunting capabilities of

Visit http://www.systemc-verification.org/risc-v to find
our most recent RISC-V related approaches.
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Figure 1 Overview on our evaluation setup to assess the bug hunting capabilities of the RISC-V DV framework. SV =

SystemVerilog in the figure.

RISC-V DV. Therefore, we define mutation classes tailored
for RISC-V and select elements from these classes for the
evaluation. Each mutation represents a modification in the
behavior of the simulator. In addition, we also provide ex-
ecution metrics and statistics for RISC-V DV. Finally, we
provide a discussion with a particular focus on future work
with promising ideas to boost CRV for RISC-V further.

In the following, we start with an overview on related
work (Section [2) and relevant background information on
RISC-V (Section [3). Then, we describe our evaluation
setup in more details and present our obtained results (Sec-
tion[d). We end with the aforementioned discussion (Sec-
tion 5 and then conclude the paper (Section [6)).

2  Related Work

Several approaches have been proposed to generate
processor-level stimuli for the purpose of verification. For
example, they integrate model-based techniques with con-
straint solving [10L 25] or leverage coverage-guided test
generation based on Bayesian networks [13]] and other ma-
chine learning techniques [23]] as well as fuzzing [28]].
Recently, approaches specifically tailored for RISC-V ver-
ification have emerged. The baseline is provided by the
official RISC-V unit and compliance tests [, [3], which
are directed test suites. The Scala-based RISC-V Torture
Test [6] framework generates tests by integrating random-
ized instruction templates. Compared to RISC-V DV the
feature set is much more limited. In [[18]], a cross-level ver-
ification methodology has been presented that uses a ref-
erence ISS in a tight co-simulation setting with an RTL
core under test. A randomized instruction stream gener-
ator is integrated that evolves the instruction stream dy-
namically at runtime. While the technique is very generic
and efficient, it requires a deep pipeline understanding of
the RTL core under test to achieve the instruction stream
integration in the co-simulation setting. Other RISC-V
test generation approaches leverage constraint-based spec-
ification mechanism to define coverage requirements [17]],
utilize coverage-guided fuzzing techniques to generate
tests [[19} [15], and use symbolic execution techniques to
find specific inputs [22].

In addition to test-generation methods, there are also a
few formal verification approaches for RISC-V. No-

table approaches that leverage model checking are riscv-
formal 9], the OneSpin 360 DV RISC-V verification
app [8] and the C-S2QED [11] approach for pipelined mi-
croarchitectures. However, formal methods may be sus-
ceptible to scalability issues in general and can benefit from
complementary verification techniques to cross-validate
them.

For the past decades the area of mutation-based testing
has been investigated as a part of software testing tech-
niques [24]. In [27]] mutation testing is applied for VPs
and embedded software systems. Additionally [22] show
an approach for mutation-based compliance testing for
RISC-V ISS. Through [30] mutation-based verification
techniques have been proposed for the domain of RTL
based hardware descriptions.

In this paper we provide an overview, evaluation and dis-
cussion of CRV for RISC-V, based on the RISC-V DV
framework. We leverage mutation-based testing tech-
niques inspired from the software domain to assess the test
generation quality.

3  Background on RISC-V

As mentioned in the introduction, RISC-V is a royalty free
and open source ISA that offers enourmous flexibility in
building application specific solutions. RISC-V features
an extremely modular design. The foundation is a manda-
tory base integer instruction set denoted RV32I, RV64I or
RV128I with corresponding register widths. On top of that
optional extensions, typically denoted as single letters, e.g.
M (multiplication/division), A (atomics), C (compressed
instructions) etc. are defined. Thus, RV32IC denotes a
32 bit ISA with the C extension. It has 32 General Pur-
pose Registers (GPRs) each with 32 bit width. Compressed
instructions have a length of 16 bit and are mapped to
corresponding 32 bit uncompressed instructions from the
base integer ISA. It provides different instruction classes
such as arithmetic, load/store and branch/jump. They ac-
cess registers (source: RS1 and RS2, destination: RD) and
immediates to perform their operation. All instruction in
RV32I have a length of 32 bit. Please refer to the RISC-V
unprivileged ISA specification [31] for more information
on RV32[ and the available standard instruction set ex-
tensions, which includes a description of the instruction



Table 1 Chosen RISC-V DV test strategies and their description

Name ‘ Description

# of instructions

basic_arithmetic_test
rand_instr_test
jump_stress_test
loop_test
unaligned_load_store_test

format and semantic. In addition, RISC-V provides Con-
trol and Status Registers (CSRs), which are special pur-
pose registers that for example enable trap handling and
environment interaction, which are described as part of the
RISC-V privileged architecture specification [32].

4 Evaluation

In this section we present our mutation based testing ap-
proach that we use to evaluate the RISC-V DV framework.
We start with an overview.

4.1 Overview

Fig. [I] shows an overview of our evaluation setup with
the RISC-V DV framework. Following the RISC-V DV
testing approach, the evaluation performs three subsequent
main steps. In the first step, the SystemVerilog/UVM based
test generator produces a set of tests in RISC-V assem-
bly. Therefore, different test strategies can be used that
control the test generation process according to the pro-
vided SystemVerilog constraints. In the second step the
assembly tests are compiled into executable RISC-V bi-
nary files (ELFs) which are executed one after another on
both, the normal VP (reference simulator) and the mutated
VP (simulator under test). In Section @] we present mu-
tation classes from which we manually chose a set of spe-
cific sample mutations (for example replace a *+’ operator
of the ADD instruction with a ’-> operator) for this evalua-
tion. The mutated VP is obtained by applying the respec-
tive sample mutation in the ISS of the normal VP. A muta-
tion is killed, in case a mismatch is detected in the execu-
tion between the normal and mutated VP. Therefore, each
VP generates an execution trace, in the RISC-V DV trace
format, for each executed test. The trace records changes
of the internal simulation state and provides information
on each executed RISC-V instruction. This includes each
program counter, changes to a GPR or CSR, as well as a
disassembly of the respective instruction. In the third and
last step, both traces are compared to detect mismatches
in the simulation results. Based on traces the RISC-V DV
framework can also compute functional coverage informa-
tion by using System Verilog covergroup definitions.

In the following, we first present our mutation classes
in Section [4.2] that we consider for this evaluation. Then,
we provide more details on the actual evaluation setup
in Section Next, we show and discuss our obtained
results in Section[4.4} Finally, we present additional infor-
mation on the instruction distribution of selected test strate-
gies in Section[4.5]

Arithmetic instruction test, no load/store/branch/jump instructions
Random instruction stress test

Stress back-to-back jump instruction test

Random instruction stress test with loops

Unaligned load/store test

10000
10000
5000
10000
6000

4.2 Mutation Classes

We have defined six mutation classes for this evaluation
that represent common faults that may occur during the im-
plementation:

M1 Modify a single bit in the result of an instruction that
is written to the destination register RD.

M2 Swap the operator of an instruction with another (e.g.
change + to -, < to >, etc.).

M3 Add or remove an unary operator (e.g. !, - and ~) to a
calculation.

M4 Modify the behavior of the branch instructions (e.g.
swap == with !=, <= with <, etc.).

M35 Change the alignment of bytes for load and store in-
structions, i.e. shift values, treat signed as unsigned
and vice versa.

M6 Change the immediate format in an immediate in-
struction for another (e.g. change an I-type immediate
for an B-type immediate)

We chose a set of specific sample mutations as representa-
tives from these six mutation classes based on user experi-
ence.

4.3 Setup

For this evaluation we use our our open source RISC-V
VP [[7, 20]]. We focus on the base 32 bit RISC-V ISA with
compressed instruction extension support (RV32IC).

We consider 5 different test strategies which are provided
by RISC-V DV and focus on arithmetic, branches and
jumps, memory access, and randomized instructionﬂ Ta-
ble 1] shows a short description (column: Description) for
each of the 5 test strategies (column: Name) and the con-
figuration setting on the number of instructions to be gen-
erated (column: # of instructionsﬂ The values used in
Table [T] are the default values for the test strategies by the
RISC-V DV framework. We apply each test strategy one
after another on every sample mutation (to see if it kills the
mutation).

In total we chose 21 sample mutations and perform 10 it-
erations for each of the 5 test strategies. This makes a total

2RISC-V DV supports some additional specialized test strategies that
focus on testing of CSRs, interrupts and the MMU. We have not included
them, as they go beyond the scope of our RV32IC evaluation.

3This number of instructions is interpreted as a guideline by the test
strategy and not as a fixed requirement, thus the number of instructions
varies around that configuration value.



Table 2 Results of our evaluation using the 21 sample mutations with the 5 different test strategies. For each test strat-
egy 10 iterations have been performed, i.e. 10 test cases generated by RISC-V DV.
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ADD | Mask result bit 3 with constant 1 0| 50| 100 66.9 62.5 213.4 60.2 | 65.1
M1 SUB Mask result bit 1 with constant 0 8 42 84 217.6 264.4 571.0 2729 | 73.0
AND | Mask result bit 5 with constant 1 9| 41 82 717.2 109.6 370.0 128.0 | 71.0
LUI Mask result bit O with constant 1 0 50 | 100 5.0 5.0 5.0 5.0 5.0
ADD | Swap + for - 6| 44 88 130.3 112.4 | 484.1 118.0 | 72.3
M2 SUB Swap - for + 8| 42 84 99.7 | 463.6 | 463.6 162.7 | 73.0
AND | Swap & for | 9| 41 82 708.4 181.8 | 405.0 140.5 | 71.0
ORI Swap | for » 11 39 78 || 1186.5 | 319.2 | 9939 | 306.0 | 68.0
XOR | Introduce ~at RS2 8| 42 84 702.1 99.1 471.3 128.6 | 63.5
M3 OR Introduce ~at RS2 9| 41 82 716.0 1242 | 410.2 102.3 | 68.0
AND | Introduce ~at RS2 9| 41 82 716.5 173.9 401.1 401.1 | 71.0
BNE | Swap !=for > 21 29 58 - | 10499 | 903.0 | 714.0 -
M4 BLT Swap < for <= 29 | 21 42 - | 3062.4 | 1510.0 | 1041.2 -
BGE | Swap >=for > 28 | 22 44 - | 19129 | 1503.8 | 884.1 -
M5 SB Shift content for store left by 8 39 11 22 - 565.2 - - | 76.0
LB Shift content for load left by 8 38 12 24 - 112.8 - - | 74.0
LB Treat loaded value as unsigned 38 12 24 - 120.9 - - | 74.0
LBU | Treat loaded value as signed 37 13 26 - 223.1 - - | 64.7
M6 ANDI | Change I-Imm for J-Imm 9| 41 82 717.1 276.8 | 6525 192.6 | 65.0
SLTI | Change I-Imm for J-Imm 33 17 34 || 3173.0 | 2129.4 | 2255.0 | 2001.4 -
XORI | Change I-Imm for B-Imm 9| 41 82 751.8 | 3483 | 6237 | 2589 | 74.0

Total [[ 358 [ 692 [ 659 |

of 21-10-5 = 1050 tests that are executed on the normal
and mutated VP.

All tests have been performed on an Intel Xeon Gold 6240
processor running Ubuntu 20.04.1 LTS and using the com-
mercial RTL simulator QuestaSim 2019.4 with System Ver-
ilog/lUVM support for test generation.

4.4 Results

Table[2]shows the results grouped by the chosen 18 sample
mutations. The table is seperated by double columns into
three horizontal parts:

1. The left part describes the respective sample mutation
X. It shows the mutation class of X, the instruction
opcode on which X is applied, and a short description
of X.

2. The middle part provides information on how many
of the 50 tests do kill the respective sample mutation.

3. The right part presents for each of the 5 test strategies
how many instructions are executed on average (for

all 10 test iterations) until the mutation is killed. The
character ’-” denotes that the mutation has not been
killed by the respective test strategy.

From Table [2| it can be observed that the highest per-
centage of mutants were killed in the mutation class M1
(82% to 100%) followed by M2 (82% to 88%), M3
(82% to 84%), M4 (42% to 58%), M5 (22% to 26%)
and M6 (34% to 82%). The test strategies are tailored
for specific use-cases and thus are suitable to find differ-
ent errors. The basic_arithmetic_test strategy did
not kill mutants from the M4 and M5 classes since it
does not focus on branch or jump instructions. Similarly,
jump_stress_test and loop_test did not kill mutants
from M5 and unaligned_load_store_test did not kill
mutants from M4. Therefore, it is important to combine
multiple test strategies to obtain comprehensive results.

The mutation in the LUI instruction has always been killed
after 5 instructions in each test because a respective LUI in-
struction is used for initialization purposes in every test. In
total 692 of the 1050 tests killed a mutation, which cor-
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responds to 65.9% of the tests. In combination the test
strategies were able to kill all considered sample mutations
at some point.

The average number of instructions until a mutant is killed
is derived from the logfiles generated by the test frame-
work. For each mutant the number is added up to an av-
erage value if the mutant was killed by the test. Thus, this
value can help to find anomalous events as shown by the
LUI instruction.

In total, around 8000 instructions are processed per sec-
ond. This includes the test generation, execution on both
VPs, and comparison of the trace logs.

4.5 Instruction Distribution

Fig. exemplarily show the distributions of in-
structions for the basic_arithmetic_test and

random_instruction_test. The error bars in the
histograms represent the deviation that the average value
has for that specific instruction. This way each average
value also illustrates the spread of the 10 test iterations
that were executed.

For both histograms it can be observed that the instructions
ADDI and ADD occur more often than other instructions.
These instructions are used to setup values in the registers
for calculations.

The  majority of the  distribution in  the
basic_arithmetic_test (Fig. top) is approxi-
mately even for the arithmetic instructions in the different
instruction classes. Store, branch and jump instructions
occur significantly less often, which is to be expected for
an arithmetic test.

In the histogram of the random_instruction_test
(Fig. 2] bottom), also a very even distribution can be ob-
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served for the different instruction classes’]l The main dis-
tribution is at around 200 instructions accross all instruc-
tions. A major outlier is the JALR instruction which per-
forms a register-based jump and thus is difficult to test in a
randomized way (since arbitrary jumps can cause runtime
errors).

These histograms exemplarily indicate that the RISC-V
DV test strategies provide a good distribution of instruc-
tions tailored for the respective strategy. This statement is
supported by the other test strategies as well (we omitted
their histograms for brevity).

4.6 Register and Immediate Coverage
Statistics

We analyzed all binaries generated by the RISC-V DV
framework to obtain coverage information with respect to
register and immediate access statistics. The access statis-
tics are combined for all observed RISC-V instructions.
Fig. 3| shows the distribution of the number of register ac-
cesses (orange bar, left each) and number of unique regis-
ter values (blue bar, right each). Please note the different
scaling of the two y-axes. Most registers were accessed
between 10000 and 30000 times with register xO having
around 90000 accesses. This difference with register x0
can be explained with the fact, that x0 is not a pure gen-
eral purpose register but hardwired to zero. Thus, there
is only a single unique value available in x0. It can also
be observed that the relation between the number of ac-
cesses and number of unique values stored in the registers
is mostly consistent.

Table 3| shows coverage information based on access
statistics of immediate fields. This includes the differ-

4For example load and store byte (LB,LBU,SB), branch equal and not
equal (BEQ,BNE), branches with comparison (BLT,BGE,BLTU,BGEU),
immediate shifts (SLLL,SRLI,SRAI), etc.

ent RISC-V immediate types (as specified by the RISC-V
specification per instruction) including the SHAMT (shift
amount) field. The first and second rows of the table show
the number of accesses and observed unique values for
the respective immediate field. The last row gives a per-
cent value that denotes how many of the possible values
of the respective immediate field have been covered. For
example, I-imm is a 12 bit field with, thus has a possible
value range of 4096 values. With the observed 3595 val-
ues (combined over all executed instructions with I-imm
fields), 87.77% of the possible values have been covered.
Based on this evaluation, it can be observed that in partic-
ular the coverage for the branch and jump immediates can
be further improved.

5 Discussion and Future Work
RISC-V DV is a powerful CRV framework tailored for
RISC-V with already strong bug hunting capabilities for
the RISC-V base ISA, as indicated by our experimental
evaluation. To boost CRV for RISC-V further, for future
work we plan to:

e Provide a more extensive evaluation with additional
mutation classes that are comprehensively processed
together with a larger number of test iterations. In
addition to using an ISS, also perform the evaluation
on an RTL core and evaluate an ISS/RTL cross-level
setting.

e Utilize RISC-V DV for different use-cases that go
beyond functional verification.  Advanced extra-
functional use-cases include error resiliency evalua-
tion, testing of information flow tracking or side chan-
nel evaluations. This requires designated test genera-
tion techniques and coverage metrics to be effective.



Table 3 Number of accesses and unique values in the observed immediate fields over all tests (combined for all ob-

served instructions)

Description H SHAMT \ I-Imm \ S-Imm \ B-Imm \ J-Imm \ U-Imm

# of accesses 49363 | 105932 15991 | 27006 | 24777 | 27209
# of unique values 32 3595 1928 212 99 1722
% of possible values covered 100% | 87.77% | 47.07% | 5.18% | 0.01% | 0.16%

e Integrate coverage information in a feedback loop
with the test generation process to guide the instruc-
tion stream generation towards maximizing the cov-
erage goals faster. RISC-V DV leverages System Ver-
ilog/lUVM constraints as foundation for the test gen-
eration, thus an efficient coverage-guided loop would
require to dynamically evolve the constraint descrip-
tions at runtime.

e Provide designated support for RISC-V instruction set
extension with the RISC-V DV framework. This re-
quires to generate appropriate constraint classes to en-
able test generation for the new instruction set. In ad-
dition, the new test generators need to be tightly cou-
pled and interleaved with the existing ones to ensure
a comprehensive and efficient test generation process.
We envision to extract instruction set constraints for
the purpose of test generation from a Domain Specific
Language (DSL) for functional RISC-V ISA descrip-
tion (such as the CoreDSL [1]]).

e Investigate an integration of dynamic information,
available through the ISS simulation model, with the
SystemVerilog/UVM constraint-based test generation
process. We envision to guide the test generation pro-
cess by accessing the architectural state of the ISS on-
the-fly during execution. Based on this precise run-
time information, instruction generated can be more
efficiently and significantly simplified, for example by
avoiding illegal memory accesses and infinite loops
more easily by exactly knowing the current execution
state of the ISS.

e Boost performance by employing parallelization and
by utilizing FPGAs for test execution in particular
when using an RTL core simulation (e.g. in a cross-
level setting with a reference ISS).

o Investigate Artificial Intelligence (Al) methods to help
in detecting suceptible regions for functional bugs and
other issues inside of a simulator or RTL core in order
to guide the test generation process. This requires an
appropriate integration with the constrained random
generator.

6 Conclusion

In this paper we provided an overview, evaluation and dis-
cussion of CRV for RISC-V, based on the RISC-V DV
framework. RISC-V DV is a powerful CRV framework
that is under active development by Google and provides
strong constraint-driven test generation methods tailored

for RISC-V. In our evaluation we assessed the bug hunting
capabilities of RISC-V DV by means of mutation testing
and provided relevant execution metrics. Our experiments
indicate the RISC-V DV is effective in finding common
implementation bugs. Finally, we provided an extensive
discussion that identifies promising research directions for
future work to further boost CRV for RISC-V.
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