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Abstract—The execution of large-scale quantum algorithms is
currently constrained by the limited number of available qubits,
qubit connectivity restrictions, and the inherent noise in quantum
processors. To address these limitations, a design methodology
known as Dynamic Quantum Circuits (DQC) has emerged. DQC
leverages non-unitary operations—such as active reset, mid-
circuit measurement, and classically controlled gate operations—
to reduce qubit requirements during circuit design. Recently,
DQC-based implementations have been explored for various al-
gorithms, including Shor’s Prime Factorization, Quantum Phase
Estimation (QPE), and Bernstein-Vazirani (BV), as well as for
key operations like state preparation, Toffoli networks, and non-
local gates. While DQC offers a significant reduction in qubit
usage, it introduces a trade-off in the form of increased circuit
depth. Therefore, assessing the reliability of such circuits becomes
crucial in the context of current quantum hardware architectures.
In this paper, we analyze the reliability of DQC-based quantum
circuit realizations as a function of qubit count and circuit depth.
‘We present empirical results for two algorithms and evaluate how
architectural parameters impact their reliability.

Index Terms—Dynamic Quantum Circuits, Quantum Algorithms,
Reliability and Fidelity

1. Introduction

Recent advancements in quantum computing have high-
lighted its potential to tackle computationally hard problems,
leading to the development of small to medium-scale quantum
processors and a growing focus on demonstrating quantum
supremacy [!]. However, executing quantum algorithms re-
mains challenging due to the limited number of physical
qubits and coupling constraints within target quantum pro-
cessors. The principle of deferred measurement enables the
incorporation of non-unitary operations—such as active re-
set, mid-circuit measurement, and classically controlled gate
operations—into quantum circuits, giving rise to Dynamic
Quantum Circuits (DQC). This approach allows for design
trade-offs, such as reducing qubit requirements by recycling
them for subsequent operations (e.g., [2]).

Numerous studies have investigated DQC-based design
methodologies and successfully implemented them on real
quantum hardware, demonstrating their potential for construct-
ing quantum circuits in resource-constrained environments.
These efforts span a range of applications, including quantum
algorithms [3], [4], Toffoli gate operations [5], [6], quantum
state preparation [7], and non-local gate implementations [8].
Notably, for algorithms such as Shor’s prime factorization [2],
Quantum Phase Estimation (QPE) [3], and the Bernstein-
Vazirani (BV) algorithm [9], DQC techniques enable imple-
mentations using only a single input qubit, regardless of the
number of input or result qubits originally required.

However, this qubit-efficient realization comes at the cost
of increased circuit depth, which in turn leads to higher
latency. Since quantum circuits are susceptible to errors from
both gate operations and decoherence, deeper circuits tend to
suffer from reduced computational reliability. To address this
challenge, a study presented in [!0] proposes an alternative
realization of Shor’s algorithm that minimizes the number of
input qubits while also optimizing circuit depth, making it suit-
able for both monolithic and distributed quantum computing
environments.

In this work, we present a study on a dynamic transforma-
tion scheme aimed at minimizing the depth of quantum cir-
cuits. Our approach highlights the importance of incorporating
hardware-specific information, enabling an architecture-aware
DQC-based transformation followed by gate mapping. This
facilitates a performance trade-off between circuit depth and
qubit count, allowing the algorithm to be tuned based on the
number of available qubits—more qubits result in shallower
circuits. We further analyze how variations in circuit depth
impact the fidelity of quantum circuits. Experimental results
are provided for several well-known quantum algorithms, in-
cluding BV [11], QPE [12], and Deutsch-Jozsa (DJ) [13].

The rest of this paper is organized as follows: Section
IT provides a brief overview of quantum circuits, NISQ-era
processors, and the principles of DQC. Section III details
the proposed DQC transformation under resource constraints.
Section IV presents the experimental results, followed by
concluding remarks in Section V.
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Figure 1: A 3-qubit quantum circuit realizing DJ algorithm for
evaluating a black-box function F(a,b) = a + b.

2. Background

2.1. Quantum Circuit Model

In quantum computing, we carry out a sequence of gate
operations on a set of qubits that are often classified as
data, answer or ancilla qubits. Initially all the qubits are set
to some computational basis state (|0) or |1)), and during
computation their states evolve and may goes in superposition,
e.g. [¢) = a|0) 4+ B |1), or entangled with the state of some
other qubit, e.g. |¢) = «|00) + 3|11), where o and S are
complex amplitudes such that |a|? + |3|> = 1. Finally to
obtain the result, the qubit states are measured that causes
the states like |¢)) and |¢) to settle down into one of the basis
states |0) or |1), and |00) or |11), with probabilities |a|? or
|3]2, respectively. Such computation can have the edges over
classical computing in certain applications.

Typically, quantum algorithms are described as circuits,
using gates of various types such as 1-qubit R, (6), R, () and
R.(0) gates, Pauli gates (X, Y and Z), Phase gates (P(6),
S and T') and Hadamard gate (H), and multi-qubit gates like
Toffoli, CNOT, Fredkin and SWAP. The inverse of any such
gate U is often denoted by Uf, ie. UU! = UTU = I.
The Clifford+T gate library [14] that comprises of H, X,
T/T' and CNOT gates, is the most common choice due to its
fault-tolerance capability [15]. Fig. 1 shows a quantum circuit
with three qubits realizing the Deitsch-Jozsa (DJ) algorithm to
evaluate the constant/balance nature of a black-box function
F(a,b) = a + b surrounded by the dashed-rectangle.
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Figure 2: (a) The coupling-graph of a 7-qubit IBM Lagos quantum
processor, and (b) average gate and measurement error rates as well
as qubit decoherence time.

2.2. NISQ-era Processors

Today’s quantum processors have small number of noisy
qubits that limits the size of quantum algorithms that can
be executed, are also susceptible to errors in producing the
desired outcome. This is due to imperfections in realizing
gate and measurement operations as well as retaining the
state of the qubits for a reasonable time period. Fig. 2a
shows the coupling-graph of a 7-qubit IBM Falcom proces-
sor, IBM Lagos. The gate set supported by the device is
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Figure 3: DJ algorithm described using Clifford+T gates for evalu-
ating the function F(a,b) = a + b using IBM Lagos processor.

{Rz(0),X,v/X,CNOT}. The gate and measurement error
rates as well as coherence period differ from qubit to qubit
as shown in Fig. 2b.

In order to run any quantum algorithm on a Noisy
Intermediate-Scale Quantum (NISQ) device, the algorithm
must be expressed using basis gates, at the same time satisfy-
ing the qubit coupling constraints of the processor. There are
various approaches (e.g. [16]) that can be used to obtain the
basis gate description from the initial Clifford+T realization
by replacing individual gate operation with their equivalent
basis gate description (e.g. H and T/TT operations from
Clifford+T library can be replaced with R (%)vV X Rz (%) and
Rz(%)/Rz(—7) respectively).

The violation of coupling constraints is often compensated
using additional SWAP gates [17]. The SWAP gates further
increases the depth of the circuit and also compromises the
operational fidelity. Fig. 3 shows the Clifford+T description
of the DJ algorithm for the black-box F(a,b) = a + b (see
Fig. 1) for the mapping: (qo, g1, ¢2) — (0,2,1). A SWAP gate
(shown as the dashed rectangle) is inserted before the final two
CNOT operations to address the coupling-map violation of the
IBM Lagos processor (see Fig. 2a) for the present mapping.
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Figure 4: A 2-qubit dynamic description of DJ algorithm for evalu-
ating the black-box function F(a, b) = a+ b using unrolled dynamic
Toffoli realization [9].

2.3. Dynamic Transformation Problem

The conventional quantum circuit structure described ear-
lier serves as the basis for implementing quantum algorithms
on physical quantum devices. This approach is static and
cannot adapt computations based on interim results. Dynamic
Quantum Circuit (DQC) allows certain classical computing
instructions to be executed on quantum computers, enabled by
non-unitary operations like mid-circuit measurements, active-
reset, and classical input-controlled gate operations. Recent
studies have highlighted the benefits of DQCs by demonstrat-
ing dynamic versions of Shor, QPE and BV algorithms using
fewer qubits [2], [3]. Another study explores converting the
Toffoli gate into its dynamic counterpart [9], and also discusses
dynamic implementations of 3-qubit DJ circuits using two
distinct dynamic Toffoli gate designs referred to as dynamic
1 and dynamic 2.
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Figure 5: (a) A 4-qubit BV circuit for detecting the hidden binary
string 101, and (b) its dynamic realization using two qubits.

However, dynamic realizations of quantum circuits leads
to an increase in circuit depth. For example, the dynamic
realization of a 3-qubit function using two qubits has a circuit
depth of 11 as shown in Fig. 4, while the traditional version
has a depth of 6 (see Fig. 1). The increase in depth due to
the feed-forward nature of DQC presents a challenge when
implementing them on real quantum devices.

3. Resource Constraint Transformation

The dynamic transformation of quantum circuits—shaped
by architectural constraints such as qubit availability, coupling
constraints and gate error rates—depends heavily on the spe-
cific characteristics of the circuit. In this work, we analyze
two representative cases and propose transformation strategies
optimized for limited resources.

3.1. Case I: Without Gate Dependency

Quantum algorithms are often designed considering the
data |X) and answer |Y') qubits separately. The controlled
unitary operations like CU(X,Y) are then conducted on
answer |Y) depending on the state of data |X), i.e. U|Y)
if | X) =|11---1); 1Y) otherwise. In presence of more than
one such CU operations, the dynamic transformation can be
realized using only two qubits when |Y) represent a single
qubit state. The following example illustrates the BV algorithm
with more than one C NOT operations.

Example 1. Consider the quantum circuit shown in Fig. 5a
for detecting the unknown binary string 101 from a black-
box function using BV algorithm. The qubits qo, q1 and qo
represent 3-qubit data |X) initially at state |000) while g3
represents the single-qubit answer |Y) = |—). The outcome
is obtained by measuring the three data qubits qy, q1 and qs
at the end of execution into three classical single-bit registers
co, c1 and co, respectively.

When there is no dependency (non-commutativity) among
the control unitaries, the interaction between one of the data
qubit and the answer qubit can be conducted independently
in any order. This does not sacrifice the execution reliability
as long as the measured outcomes are stored in appropriate
classical registers as illustrated in the following example.
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Figure 6: (a) A 4-qubit dynamic realization of the previously con-
sidered BV algorithm for detecting the hidden binary string 101, and
(b) its equivalent 6-qubit dynamic realization of minimal depth.

Example 2. Consider again the circuit shown in Fig. 5a,
and its 2-qubit realization shown in Fig. 5b. While q; is
dedicated to the single-qubit answer |Y') initialized to |—)
during the entire execution of the circuit, qo is assigned the
role of one of the three data qubits of actual circuit (see
Fig. 5a) interchangeably. In between the transition of role,
qo is measured in corresponding classical register using mid-
circuit measurement operation before applying active reset
operation to prepare it for the next unassigned data qubit.

The dynamic transformation approach addresses the area
requirements (in terms of number of qubits) and eliminates
the chances of additional noise due to the SWAP overhead.
However, the circuit depth corresponding to the answer qubits
|Y') remain a concern as qubits suffer from limited coher-
ence period. The depth of answer qubit interaction can be
minimized by replicating it more than once depending on
its availability in the target architecture, without affecting
the execution outcome in certain cases when the answer |Y")
represent the eigenstate like the BV algorithm. The depth
minimization of answer |Y') is discussed in the following
example.

Example 3. Consider the mapping of the circuit of Fig. 5a on
a superconducting QPU with two disjoint set of coupled qubit
pairs (qo, q1) and (g2, q3). This allows replicating answer |Y')
twice on q1 and qs, while allocating one of the three data
qubits representing | X) to qo and other two to q as shown in
Fig. 6a. This leads to reduction of maximum interaction depth
of answer qubit from 11 (see Fig. 5b) to 6 (see Fig. 6a). For
simplicity of depth estimation, we ignore the gate overhead
to prepare answer |Y) to |—) and consider all the gate
operations performed on both data and answer qubits till their
final interaction. Fig. 6b shows the maximum reduction of
interaction depth of answer qubit to 4, by replicating using
three disjoint set of coupled qubit pairs (qo, q1), (qo2, q3) and
(44, g5)-

The major benefits of such dynamic configuration is three-
fold, (1) it reduces the overall depth of the transformed
quantum circuit, (2) it eliminates the requirement of SWAP
operations for executing on a coupling restricted architecture,
and (3) can be realized without DQC supprts.

3.2. Case II: In Presence of Gate Dependency

Quantum algorithms may have gate dependencies due to
interactions among data qubits, and require strict ordering
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Figure 7: (a) 3-qubit QPE algorithm for estimating the phase of gate
operation P(%’T) for any integer k£ > 0 in a 2-bit classical register
c1co, and (b) its 2-qubit dynamic realization.

of data qubits for dynamic transformation. The following
example illustrates the dynamic transformation of QPE for
estimating phase of P(%ﬂ) for any integer k£ > 0 using two
qubits.

Example 4. Fig. 7a shows a 3-qubit circuit for estimating
the phase of gate operation P(%’r) for any integer k > 0.
The qubits qo and q, represent data | X), while qo indicates
the single-qubit answer |Y'). At the end of the execution, qq
and q1 are measured in two single-bit classical registers cg
and cy, respectively to obtain the phase value as binary string
c1co. The corresponding dynamic realization using two qubits
is shown in Fig. 7b. The interaction among data qubits in
the form of CST causes a strict order of allocating qo of
the 3-qubit realization (see Fig. 7a) before allocation of ¢,
where the interaction is realized as the classically controlled
ST operation.

The transformation results in an increase in circuit depth,
while achieving area (qubit) minimization and avoiding SWAP
operations. With more number of disjoint coupled qubit pairs
available, the dynamic transformation can result in further
reduction in interaction depth. This depth optimal realization
cannot be achieved in a straightforward fashion, like the
one discussed earlier for BV algorithm. Furthermore, in the
absence of support for DQC operations, the realization can
still be obtained using (i) additional classical registers to store
the measured outcome, followed by (ii) post processing of the
classical data to obtain the desired outcome. The approach is
illustrated in the following example.

Example 5. Consider the dynamic transformation of QPE
algorithm as shown in Fig. 7b. Using two disjoint pairs of
coupled qubits (qo, q1) and (qa, q3), the data | X) and answer
|Y') qubit interaction can be caried out independently as
shown in Fig. 8a. In the absence of classically controlled
gate operations (marked as X), the realization replaces the
classically controlled ST operation (surrounded by dashed
rectangle) with I-qubit unitary ST operation by repeating
the sub-circuit instance (highlighted in red color) one more
time. This requires 3-bit classical register instead of 2-bit.
The dynamic transformation requires a post processing, i.e.
verifying the measured outcome of classical register cg, the
second bit is decided as either cy (When cy = 1) or ¢y (when
co = 0) as shown in Fig. 8b. The depth of the netlist can
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Figure 8: (a) A 4-qubit dynamic transformation of QPE algorithm
for 2-bit phase estimation of gate operation P(%”) for any integer
k > 0, (b) the required post processing of classical outcome, and (c)
6-qubit depth-optimal dynamic realization.

be reduced further by allocating one additional coupled qubit
pair to one of the split iteration due to the interaction between
the second data qubit and answer qubit as depicted in Fig. Sc.
This reduces the depth of the answer qubit from 7 to 2 ignoring
the initial state preparation for the answer qubit |Y').

The approach functions effectively in the absence of clas-
sically controlled unitary operations; however, it may lead to
exponential sub-circuit executions due to the repeated allo-
cation of dependent data qubits—specifically, those serving
as targets of controlled unitary operations—twice for each
such dependency. Furthermore, the design complexity can be
mitigated through the use of classically controlled unitaries,
but the resulted circuit also enhance the reliability of QPE
simulations on hardware lacking support for DQCs.

4. Experimental Evaluation

For evaluation of the proposed DQC transformation, we
have conducted two set of experiments: (i) analyze the re-
source requirements in terms of qubit count, circuit depth
and gate count, and (ii) assess the operational fidelity for
execution on a coupling restricted noisy quantum processor
without support for classical control gate operations. We have
considered the following quantum circuits as benchmarks re-
alizing BV [11], QPE [12] and DJ [13] algorithms:

1) BV _asajag denotes the benchmark realizing BV algo-
rithm for the 3-bit secret binary string asa;ao.

2) QPE_pypo indicates the benchmarks realizing QPE al-
gorithm to determine the 2-bit phase of the operator
P(E5) for k=1,2,3,4.

3) DJ_F represents the benchmarks realizing DJ algorithm
to determine the constant-balance property of 2-bit func-
tions of the form F(a,b) that require at least one Toffoli
operation for implementation.

The two-qubit dynamic realization of these benchmarks are
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Figure 9: The qubits selected for the experiment and the noise model
of the IBM Lagos quantum processor.

derived from the prior works [3], [9]. Due to the operational
accuracy, the unrolled version of dynamic Toffoli operation
proposed in [9] is considered for dynamic realization of the
DJ algorithm. In order to make a uniform comparison, the
same basis gate set {H, X, P(6), CNOT} is used to describe
all the benchmarks. Finally, for verifying the correctness and
evaluating the corresponding fidelity of these benchmarks, the
Qiskit SDK [18] version 0.43.3 and a Falcon family 7-qubit
IBM Lagos quantum processor are used in the experiments.

4.1. Assessment of Resources

Table 1 compares traditional and dynamic implementations
(optimized for minimal qubits and minimal depth) of the BV,
QPE, and DJ benchmarks. The first column lists benchmark
names, followed by gate counts—single-qubit (U), two-qubit
(CX)—-and overall depth for traditional implementations.
These use 4 qubits for BV and 3 for QPE and DJ.

The next five columns show DQC transformation results
for minimal qubits (based on [3], [9]), along with improve-
ments in gate count (Ag) and depth (Ap). The final five
columns present depth-optimized dynamic results. It can be
verified from the table that:

a) Minimal qubit designs (using only 2 qubits) can increase
depth significantly (up to ~ 160%).

b) Depth-optimized designs require more qubits (e.g., 6 for
4-qubit BV) but reduce depth by up to ~ 53%.

These results illustrate a trade-off between qubit count
and circuit depth, relevant for execution on noisy quantum
hardware with limited resources. The next section evaluates
this trade-off in more detail.

4.2. Evaluation of Design Effectiveness

To evaluate the effectiveness of the proposed dynamic
design extension, we utilize the Qiskit Aer Simulator [18&]
along with the noise model of the IBM Lagos device, as
illustrated in Fig. 9. Based on minimal gate and measurement
error rates, the following qubit configurations were selected
for mapping the three benchmark classes:

BV: (QO»Q17Q27‘13) (052737 1 }Trad
QPE, DI:  (qo, 1, qz) (2,3,1) '
FOR ALL: (go,q1) — (2,1) Dyn. Area
FOR ALL: (qo, ¢1, qg,q3) — (2,1,3,5) Dyn. Depth

Due to the lack of three disjoint pairs of coupled qubits in
IBM Lagos (see Fig. 9), the 4-qubit depth-minimized dynamic
version was used for this experiment. Notably, under the

1.5 T 1.5
—o— Swap
00 Depth g
| 1.03 1.06 5
fm— =
g 1F o [ o |1 %
Z [=)
g k=]
: g
z >
< 0.5 0.5 &
o] o] g
<
0—= 0
BV QPE DJ
Algorithms

Figure 10: Average SWAP requirements and depth increase in
mapping traditional BV, QPE and DJ benchmarks on IBM Lagos
quantum processor.
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Figure 11: Fidelity analysis of running traditional, and area and
depth minimal BV, QPE and DJ benchmarks on IBM Lagos quantum
processor.

chosen mapping (¢; +— k), only the traditional benchmarks
require additional SWAP gates, leading to increased circuit
depth, as illustrated in Fig. 10.

Fidelity analysis for all three benchmark classes is pre-
sented in Fig. 11. For the BV and QPE benchmarks, the results
clearly demonstrate improved fidelity with dynamic configu-
rations. However, this distinction is not observed in the DJ
benchmarks due to the specific functions used, none of which
are truly balanced or constant. Even in an ideal environment,
these functions evaluate to a constant with ~ 25% probability,
consistent with findings in [9].

Additionally, the dynamic area-minimized versions of BV
and QPE benchmarks show superior fidelity compared to both
their depth-minimized dynamic and traditional counterparts.
This outcome is attributed to the qubit selection: the area-
minimized versions use qubits (2, 1), which have lower gate
and measurement error rates than those used in the depth-
minimized (2, 1, 3, 5) and traditional (0, 2, 3, 1)/(2, 3, 1)
configurations (see Fig. 9).



TABLE 1: Comparison of traditional and resource-optimized (i.e, area (qubits) and depth minimal) realizations of BV, QPE, and DJ algorithms.

Benchmark ‘ Trad. (n = 4/3%) ‘

Dyn. Area (n = 2) [3], [9] \

Dyn. Depth (n = 6/4*)

| U ¢X D | U CX D Ag%® Ap@% | U CX D Ag%  Ap(%)
BV_001 8 1 5 8 113 0 160 |12 1 5 -44.44 0
BV_010 8 1 5 8 112 0 140 | 12 1 5 -44.44 0
BV_011 8 2 6 8 2 14 0 -13333 | 12 2 5 -40 16.67
BV_100 8 1 5 8 112 0 140 | 12 1 5 -44.44 0
BV_101 8 2 6 8 2 14 0 -13333 | 12 2 5 -40 16.67
BV_110 8 2 6 8 2 13 0 -11667 | 12 2 5 -40 16.67
BV_I11 8 3 7 8 30015 0 -11429 | 12 3 5 -36.36 28.57
QPE_01 13 5 14 | 11 300 14 22.22 0| 18 5 8 -27.78 42.86
QPE_10 13 515 | 1 313 22.22 1333 | 17 4 7 -16.67 53.33
QPE_I1 14 6 16 | 12 4 16 20 0| 19 6 8 -25 50
QPE_00 14 6 16 | 12 4 16 20 0| 19 6 8 -25 50
DJ_AND 15 6 15 | 16 4 17 476 1333 | 18 4 9 -4.76 40
DJ_NAND 16 6 16 | 17 4 18 454 125 | 19 410 -4.55 375
DJ_OR 15 8 17 | 16 6 20 435 -17.65 | 18 6 10 -4.35 4118
DJ_NOR 16 8 18 | 17 6 21 4.17 1667 | 19 6 11 -4.17 38.89
DI_IMPLY_I | 16 717 | 17 5 20 435 1764 | 19 5 10 -4.35 4118
DI_IMPLY_2 | 16 717 | 17 519 435 1176 |19 51 -4.35 35.29
DJ_INHIB_1 15 716 | 16 5 18 454 125 | 18 5 10 -4.54 375
DJ_INHIB_2 15 716 | 16 5 19 454 1875 | 18 510 -4.54 375

n — Number of qubits; 4/3* — For BV n = 4 while for QPE and DJ n = 3; U — Number of 1-qubit gates; CX — Number of 2-qubit gates;
D — Depth; Ag / Ap — Improvement in gate count / depth of dynamic over traditional; 6/4* — For BV and QPE n = 6 while for DJ n = 4.

5. Conclusion

This work investigates DQC-based transformation
schemes, analyzing their dependence on qubit count and
circuit depth, and their effect on reliability in NISQ
processors. Traditional circuits face hardware constraints
such as limited qubit counts and restrictive coupling maps.
DQC-based designs offer a flexible alternative often at the
cost of increased depth and reduced fidelity. To mitigate this
issue, we explored depth-optimized DQC-based designs and
demonstrated their effectiveness using benchmark circuits
such as BV, QPE, and DJ. Our results show that this approach
enhances reliability by reducing circuit depth, even on devices
that do not natively support DQC—though at the expense of
increased design complexity. Future work will aim to extend
this methodology to support higher-order quantum gates
and more complex algorithms, paving the way for broader
applicability in practical quantum computing scenarios.
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