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Abstract

In this extended abstract, we present a methodology that combines a Large Language Model (LLM) with a
traditional Machine Learning (ML) technique to estimate the performance of embedded software on RISC-V
processors across different microarchitectures. In particular, we leverage a Retrieval-Augmented Genera-
tion (RAG)-based LLM to extract performance-related information from processor specifications and source code,
while utilizing the predictive capabilities of ML models to create Predictive Models (PMs) for RISC-V processors.
To demonstrate the effectiveness of our hybrid approach, we present results on the performance estimation of
open-source benchmarks using the generated PMs, with open-source RISC-V-based Register Transfer Level (RTL)
implementations as reference models. Our results demonstrate that our proposed LLM-assisted methodology
provides highly accurate predictions in comparison with the state-of-the-art methodology.

Introduction

Embedded systems are becoming increasingly impor-
tant in automation and the Internet of Things (IoT) as
silicon technology advances. RISC-V has gained pop-
ularity due to its open-source architecture, enabling
customization while reducing costs. Its comprehen-
sive ecosystem, including functional simulators and
Register Transfer Level (RTL) implementations, fa-
cilitates both high-level customization and low-level
optimization.

Accurate cycle-count estimation is essential but chal-
lenging due to increasing system complexity. Tradi-
tional RTL simulations, while precise, are slow, creat-
ing trade-offs between accuracy and speed.

Recent advances in Large Language Models (LLMs),
like OpenAI’s GPT series and DeepSeek, enable ap-
plications in natural language processing and code
generation. Retrieval-Augmented Generation (RAG)
improves LLMs by leveraging external data for per-
formance analysis, facilitating the creation of Predic-
tive Models (PMs) and accelerating workflows. How-
ever, LLMs have limitations when handling tasks
that require precise calculations or numerical reason-
ing [1], which can be addressed by integrating Machine
Learning (ML) techniques like Artificial Neural Net-
works (ANNs) to improve accuracy for complex tasks.

In this abstract, we propose an LLM-assisted
methodology to extract performance information for
RISC-V processors and ML models to train PMs. We
evaluated the PMs on 10 benchmarks, measuring error
percentages and calculating the overall Mean Absolute
Percentage Error (MAPE) across tests.

∗This work was supported in part by the German Federal
Ministry of Education and Research (BMBF) within projects
Scale4Edge under grant no. 16ME0127, and EXCL under grant
no. 01IW22002.

Methodologies

Our performance estimation methodology, illustrated
in Fig. 1, integrates an LLM and an ANN in four
phases: text generation, data preprocessing and RAG,
model training, and model testing.

1. Text Generation: An LLM identi-
fies performance-related parameters like
divider_latency based on a prompt, generating a
list for the next phase.

2. Data Preprocessing & RAG: Documentation
and source code are stored in an SQL database,
split into chunks, and embedded into vectors.
Queries retrieve and rank relevant chunks, ex-
tracting parameter values to generate separate
lists for documentation and source code.

3. Model Training: Programs are executed on a
functional simulator and RTL implementation to
obtain dynamic instruction counts and reference
clock cycles. A conflict-resolution solver addresses
discrepancies between values extracted from docu-
mentation and source code, prioritizing the source
code as more reliable. Using these inputs, an
ANN is trained to model the relationship between
parameters, instruction counts, and clock cycles,
enabling accurate performance predictions.

4. Model Testing: The trained PM is tested
on standard benchmarks. Dynamic instruc-
tion counts from the simulator and performance-
related parameters from the LLM serve as inputs
to the PM. Predicted clock cycles are compared
to actual execution cycles from the reference to
assess accuracy and effectiveness.

Evaluation

This work leverages gpt-3.5-turbo-0125 [2] via Ope-
nAI’s API. Text was split using CharacterTextSplitter,
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Figure 1: Overview of the proposed LLM-assisted methodology for performance estimation of embedded software.

Table 1: Experimental Results of all Benchmarks used for
Validation of PMs on RV32I

benchmark # instr-exec. SweRV PM1 RSD PM2
# Cycle APE # Cycle APE

adpcm_dec 2 880 766 3 644 041 0.21% 5 260 228 0.87%
adpcm_enc 2 898 909 3 224 628 13.59% 5 232 514 0.24%
cubic 28 338 773 34 071 398 1.34% 64221227 23.68%
deg2rad 510 731 573 745 2.51% 872 615 1.12%
fft 3 678 522 5 420 220 1.15% 4 010 734 43.26%
gsm_dec 9 168 156 14 387 983 2.50% 12 076 100 30.08%
isqrt 1 002 078 3 125 021 1.30% 1 220 580 0.72%
lms 5 814 943 7 063 929 0.79% 10 253 500 1.04%
rad2deg 420 103 482 789 0.51% 627 494 10.17%
st 3 684 066 4 445 458 1.05% 5 842 673 7.88%
MAPE 2.50% 11.90%

embedded as vectors via all-MiniLM-L6-v2, and stored
in a Chroma database for efficient retrieval. Relevant
chunks were identified through a retriever and reranked
using FlashrankRerank, enabling precise parameter ex-
traction. These tools were accessed using LangChain
framework’s APIs [3].

For model training, around 700 programs were gen-
erated using custom samples and TACLeBench bench-
marks. Programs were compiled with the RISC-V
GNU toolchain [4] and executed on SweRV [5] and
RSD [6] RTL implementations to collect reference
cycles and on Whisper [7] simulator to collect the dy-
namic instruction counts. An ANN, implemented in
TensorFlow, trained on the collected data with hy-
perparameters tuned via random search. For model
testing, 10 benchmarks distinct from the training set
from TACLeBench were selected.

Table 1 shows the results, including the number of
executed instructions, cycles, and APE for each bench-
mark. PM1 achieved a MAPE of 2.50%, outperform-
ing PM2 (11.90%). Compared to the state-of-the-art
method in [8], which reported higher MAPE for SweRV
(6.5%) and RSD (18.6%), our methodology reduced
MAPE by 61.54% for SweRV and 36.02% for RSD,
demonstrating significant improvements in accuracy.

Conclusion and Future Work

This abstract presents a methodology for estimating
the performance of embedded software on RISC-V
processors by combining an LLM and an ANN. LLM
extracts performance parameters from source code
and documentation, while ANN predicts performance
based on these parameters and dynamic instruction
counts.

The approach demonstrates improved accuracy and
efficiency over existing methods, showcasing its po-
tential for hardware-software co-design. Future work
will address challenges like handling large codebases,
extend the method to more complex architectures, and
explore alternative models to further enhance scalabil-
ity and applicability.
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