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Abstract

In this extended abstract we present a Virtual Prototype (VP) driven verification methodology for Hardware (HW)

peripherals.

Our verification methodology is twofold: A Coverage-Guided Fuzzing (CGF) based approach

enables comprehensive verification at the unit-level, while an application-driven co-simulation approach enables
verification at the system level. As a case-study, we utilize a RISC-V Platform Level Interrupt Controller (PLIC)
as HW peripheral and use an abstract Transaction Level Modeling (TLM) PLIC implementation from the open
source RISC-V VP as the reference model. In our experiments, we find three behavioral mismatches as well as
non-functional timing behavior mismatches. As the different approaches uncover different types of mismatches,
we conclude a synergy between the methods to aid in verification efforts.

Introduction

With the trend of modern computing systems leaning
stronger towards innovative technologies like hardware
acceleration, open instruction sets and new method-
ologies in the development and verification of chips,
further growth in complexity of System-on-Chip (SoC)
is natural [1]. Together with this trend, the need
for early and more integrated verification methods
arise, as detecting errors in later stages will become
more costly to fix. To deal with the rising complex-
ity, modern design flows for embedded systems lever-
age Virtual Prototype (VP) [2]. A VP is an abstract
executable model of the entire Hardware (HW) plat-
form commonly utilizing the Transaction Level Model-
ing (TLM) formalism [3], with the goal of being avail-
able as early as possible in the development process
(i.e., executable specification). VPs are leveraged for
early Software (SW) development and verification and
also serve as functional reference model for the subse-
quent HW development stage at the Register-Tranfer
Level (RTL). As such VPs enable to streamline and
integrate the HW and SW development and verifi-
cation flows [2]. While a strong emphasis has been
put on methods to verify the processor, as it is at
the heart of an SoC, verification of peripherals has
been comparatively neglected. However, peripherals
are essential components in modern SoC by provid-
ing core functionality in the interaction with sensors,
actuators, buses and other controllers. In this ex-
tended abstract, we propose a VP-driven verification
methodology with focus on HW peripherals, as shown
in Fig. 1. Particularly, we combine two approaches
that complement each other and use the VP as readily
available reference model: We use A a fuzzing-based
approach that enables comprehensive unit-testing of
the HW peripheral with a TLM reference and @) a
simulation-based approach that enables application-
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Figure 1: Overview of the verification methodology for
hardware peripherals.

driven testing of the HW peripheral on a system-level.
As a case-study, we designed a RISC-V Platform Level
Interrupt Controller (PLIC) [4] as a HW peripheral at
the RTL and use the open source RISC-V VP [5] [6],
which provides a TLM PLIC, as reference model. Our
experiments demonstrate the effectiveness of our veri-
fication methodology in supporting the design flow for
RTL peripherals by finding mismatches with the read-
ily available TLM reference model. While this paper
provides an overview of our work, a more extensive
presentation of our work and discussion of results can
be found in [7].

Verification Methodology

Our cross-level verification methodology utilizes
two verification techniques, namely Coverage-Guided
Fuzzing (CGF) and an application driven co-
simulation. For the CGF, the readily available TLM
reference and the RTL Design Under Verification
(DUYV) are simulated within a fuzzing testbench, which



collects coverage information in a feedback loop. As
the CGF generates TLM based transactions, the DUV
is provided with a TLM-RTL transactor, in order to
translate between TLM transaction payloads and RTL
signals over clock cycles. If a difference in the behavior
is identified, the CGF stops and the input pattern is
available for further debugging of the mismatch. Addi-
tionally, the coverage report can be utilized to assess
the quality of the verification. For the application
driven co-simulation, the RTL DUV is integrated, to-
gether with the transactor, as a drop-in replacement in
a full system VP. This allows a co-simulation with the
TLM reference as well as the DUV. Through the full
VP simulation, embedded software applications and
operating systems can be executed and the integrated
interaction of the DUV can be assessed.

Evaluation

In a case-study, using the RISC-V PLIC, we evaluate
our cross-level methodology. The RISC-V PLIC is
a suitable peripheral as it provides a combination of
handling bus transactions, timing specific behavior
and handling numerous I/Os and registers. We uti-
lized the open source RISC-V VP [6], as full system
configurations with a TLM based PLIC are available.
An in-house developed RTL PLIC, generated from a
SpinalHDL description, is compilied to SystemC RTL
with Verilator and provided with a SystemC/C++
transactor, for handling TLM transaction.

In the CGF testbench we employ LLVM libFuzzer
as a fuzzer. The fuzzer generated inputs are mapped
to the interrupt inputs, with a configuration for the
priority, as well as the configuration of the threshold
of the PLIC. Our CGF approach identified three
mismatches in the functionality, regarding the usage
of the threshold value. Further inspection showed,
that the PLIC specification allowed for ambiguity on
the interpretation of this matter. Lastly, the obtained
coverage for the TLM and the RTL DUV are shown in
Tab. 1. The table shows the line, function and branch
coverage in absolute and relative numbers, respectively.

Our application driven co-simulation uses a FreeR-
TOS based software application utilizing interrupts
from various sources, thus integrating the use of the
PLIC. Through analysis of the execution trace of
FreeRTOS with the help of the Tracalyzer tool, we can
identify mismatches in the behavior between the refer-
ence VP and the VP containing the RTL DUV. The
comparison of the traces showed timing mismatches
of the RTL DUV with the TLM PLIC, on increas-
ing clock period in the RTL domain. This drift of
the difference in internal simulation time increases
non-linearly and was measurable in the order of mi-
croseconds. Lastly, we identified that the clock period
applied to the RTL DUV impacts the overall simula-
tion time of the VP, as shown in Fig. 2. With small
clock periods, the simulation kernel requires more con-
text switches, thus progressing the simulation slower.
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Figure 2: Impact of clock period of the RTL component
on the overall host execution time.

Table 1: Obtained coverage for the TLM/RTL peripheral

Coverage Metric TLM PLIC RTL PLIC

Hit | Available | Coverage || Hit | Available | Coverage
Line coverage 119 121 98.3% || 3212 3721 86.3%
Function coverage 13 13 100% 20 24 83.3%
Branch coverage 72 118 61.0% || 1056 1432 73.7%

Depending on the peripheral this information can be
utilized to choose between fast and accurate VP co-
simulations.

Conclusion

In this extended abstract we highlighted the essential
aspects of our cross-level verification methodology for
hardware peripherals. We showed how VPs can be
used to aid in the early verification on a unit level
as well as on the system level, through our CGF and
application driven co-simulation, respectively. Our re-
sults show how VPs allow synergies between unit level
and system level to come into place and pave the road
towards early and integrated verification methods. For
future work, we plan to investigate more peripherals,
different fuzzers and the inclusion of other verification
techniques (e.g., symbolic execution).
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