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Abstract

Tailoring hardware to applications significantly increases their performance, which is required to meet the rising
demand for resource-limited devices in the area of embedded systems. While RISC-V facilitates application-
specific solutions due to its extensibility, Virtual Prototypes (VPs) enable early software development before
the actual hardware is built shortening the time-to-market. Although the RISC-V VP ecosystem already offers
many useful tools to aid development there is still room for improvement, especially in analyzing applications for
hardware optimization. To address the aforementioned issue and expand the mentioned ecosystem with a tool,
this work presents RISC-V Opt-VP, which generates bounded execution trees in order to analyze applications.
An embedded application analysis case study illustrates that promising instruction sequences are found which
can also be merged to further improve their execution coverage, enabling efficient hardware designs.

Introduction
With the ever-increasing demand for high-performance
applications in areas such as embedded systems, it is
becoming increasingly important to optimize hardware
in order to meet time-to-market constraints [1].

RISC-V is an instruction set architecture that is
characterized by its modularity and extensibility [2].
It facilitates efficient and application-specific solutions,
which is particularly ideal for resource-limited devices
in areas such as embedded systems and IoT.

Virtual Prototypes (VPs) such as RISC-V VP1 [3]
enable early software development and testing by pro-
viding an executable hardware platform implemented
using SystemC transaction-level modeling [4].

The RISC-V VP ecosystem offers some efficient tools
to aid development. These include a co-simulator [5]
and 3D visualizations of symbolic execution for debug-
ging purposes [6]. However, there is still a need to
analyze applications for hardware optimization.

To address this issue and expand tool diversity, in
this extended abstract we propose RISC-V Opt-VP,
which constructs bounded execution trees based on
applications for tailoring hardware. Using an embed-
ded application analysis case study, we illustrate that
promising instruction sequences are found which can
be merged to increase execution coverage, enabling effi-
cient hardware designs. To stimulate further research,
our tool is provided as open-source software2 [7, 8].

∗Corresponding author: Jan.Zielasko@DFKI.de. This work was
supported in part by the German Federal Ministry of Education
and Research (BMBF) within projects Scale4Edge under grant
no. 16ME0127, ECXL under grant no. 01IW22002 and VE-HEP
under grant no. 16KIS1342.
1 https://github.com/agra-uni-bremen/riscv-vp
2 https://github.com/agra-uni-bremen/opt-vp
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Figure 1: □ Default, ■ Subsequence, ■ Variant

RISC-V Opt-VP
RISC-V Opt-VP extends RISC-V VP [3] for tailoring
hardware to application requirements. It traces the
execution of applications by creating a k-tree with a
predetermined maximum depth k for each encountered
instruction: Figure 1 shows a simplified 6-tree for ADD.
All trees are analyzed using a scoring function that
evaluates a set of defined metrics such as affected in-
structions (length) and execution coverage so that the
most promising instruction sequence with the highest
score (here: ADD, SUB, SUB, ADD) can be identified. SRA
and LUI (highlighted by dotted rectangles) are missing
as the score for these instructions was not sufficient.

As applications can consist of instruction sequences
that only cover a small fraction of the total execution,
it is worthwhile to improve execution coverage through
merging sequences. In order to offer more opportuni-
ties for merges, there is a ■ Subsequence and ■ Variant
mode in addition to the □ Default optimization. While
the subsequence mode extends promising instruction
sequences past its end, the variant mode iterates over
each branch to generate additional sequences.
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Table 1: Embedded application analysis case study

Best sequence Merged sequence

Application Length Score Mode Merges Score

aha-mont64 11 1,786,752 Default 9 2,969,930
crc32 12 2,101,248 Default 6 4,027,420
edn 5 2,956,800 Subseq. 16 3,980,830
huffbench 1 661,439 Default 10 1,754,030
matmult-int 5 3,732,740 Subseq. 7 3,839,160
md5sum 24 958,464 Variant 12 4,473,090
minver 5 500,570 Default 6 954,229
nettle-aes 31 1,018,784 Full 11 8,016,290
nettle-sha 1 670,684 Subseq. 14 1,161,800
nsichneu 1 1,227,108 Variant 4 1,286,260
picojpeg 1 814,212 Full 14 2,494,210
primecount 2 1,399,464 Default 7 3,047,680
qrduino 1 619,974 Default 11 3,152,640
slre 7 749,049 Default 8 1,565,790
ud 2 298,888 Full 14 1,223,260

Average 7 1,299,745 Default 10 2,929,775

Case Study
In this section, we summarize an embedded application
analysis case study created using RISC-V Opt-VP.

Embedded applications were taken from the de facto
standard EmbenchTM suite3 and compiled using the
-O3 level. Every application was traced to generate
an execution k-tree for each encountered instruction,
where k = 50 was determined experimentally. In the
first experiment, our tool iterated over each tree and
computed the most promising instruction sequence
with the score described in the last section, subtracting
a correction value to adjust its suitability for targeted
hardware optimizations. The best sequence was then
selected from all the trees. To compare this result,
in the second experiment, we sorted all promising
sequences w. r. t. the number of instruction mappings
and merged them while respecting data dependencies.
In addition to the used single modes, Subseqence and
Variant were combined, which is called Full below.

The experimental results are shown in Table 1. Suit-
able sequences for hardware optimization could be
identified for all applications and merging more than
doubles their coverage with an average of 10 merges.
For matmult-int, the best sequence with the highest
score corresponds to an effective coverage of around
40 % resulting in merges hardly improving this score.
However, there are many sequences of length 1 where
merges are worthwhile: The coverage for nettle-sha
can be almost doubled by using the subsequence mode.
Modes like Full are also useful, e. g. for nettle-aes,
where the score of the merged sequence is about 8 times
higher compared to the best discovered sequence.4

3 https://embench.org
4 As sequences were sorted, using the full mode does not auto-

matically lead to the highest score due to different mappings.

Discussion and Future Work
In this extended abstract we presented a VP-driven
tool called RISC-V Opt-VP to analyze applications
for hardware optimization. Using an embedded ap-
plication analysis case study, we found that the gen-
eration of bounded execution trees can be used to
identify promising instruction sequences that cover
a large fraction of the total execution. Additionally,
merging instructions more than doubles the achieved
coverage, which together enables efficient hardware de-
signs. Based on these high-level results, hardware can
be tailored to applications by accelerating analyzed
sequences that require a high execution time. By iden-
tifying similarities in different sequences and merging
them, the design of a single hardware accelerator or
new instruction that covers a large fraction of the to-
tal execution is possible, while the performance loss is
negligible compared to building multiple accelerators,
thus saving expensive hardware costs.

Future work will be directed towards further inves-
tigation of hardware design and construction of actual
hardware. On the one hand, further metrics used
by our scoring function, such as input and output of
instruction sequences, are to be studied in order to
fine-tune the identified sequences to a specific opti-
mization. On the other hand, it is planned to design
coarse-grained reconfigurable architectures to accu-
rately measure possible hardware acceleration for the
covered sequences.
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