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Abstract

Due to the increasing complexity of today’s circuits a high degree of automation in the design process
is mandatory. The detection of faults and design errors is supported quite well using simulation or
formal verification. But locating the fault site is typically a time consuming manual task. Techniques
to automate debugging and diagnosis have been proposed. Approaches based on Boolean Satisfiability
(SAT) have been demonstrated to be very effective.

In this work debugging on the gate level is considered. Unsatisfiable cores contained in a SAT instance
for debugging are used (1) to determine all suspects, and (2) to speed-up the debugging process. In
comparison to standard SAT-based debugging, the experimental results show a significant speed-up for
debugging multiple faults.

1. Introduction

Circuit design happens under an enormous time-to-market pressure while the complexity of the de-
signs increases rapidly. Tool automation in the design process is mandatory. Verification is one of the
bottlenecks of today’s design flows, even though the detection of faulty behavior is automated by the
use of simulation, formal methods, or a combination of both. Up to now the subsequent debugging step
lacks tool support.

Several approaches to aid debugging have been proposed. Some of them rely on simulation [18] or
structural properties of the debugging problem [9], others use strong reasoning engines [5]. Due to the
drastic improvements in deciding Boolean Satisfiability (SAT) using powerful algorithms [10, 11, 2],
SAT-based debugging is quite efficient. The first approach [16] has been further improved to exploit the
hierarchy of a design [3], to debug formal properties [17] and to provide corrections [1].

In principle all SAT-based approaches rely on the same underlying model. Initially, a number of
failure traces and an expected correct output response for each trace are given. Then, the circuit is
transformed into a SAT instance, the primary inputs are constrained to the values given by a failure trace
and the outputs are restricted to the correct output value. Obviously, this SAT instance is unsatisfiable
because the failure trace implies incorrect output values. Therefore, additional logic is added to change
the values of internal signals and by this to correct the output response.
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Another approach [13] proposes to use conflicting sets, i.e. sets of assumptions that cannot be true
simultaneously. A fault candidate contains at least one assumption of each conflicting set. Given an
initial conflicting set, Reiter’s approach proceeds by enumerating all assumptions in the conflicting set
and extending them to a fault candidate. Whereas Reiter’s approach calls the proof engine for each
assumption in the conflicting set, our approach has the decisive advantage of only requiring as many
calls to the SAT solver as there are components in the fault candidate (plus one call for every further
fault candidate).

In this work debugging on the gate level is considered. We start from the initial unsatisfiable SAT
instance: the circuit is restricted to the failure trace and to correct output values [13]. A SAT solver is
applied to extract an unsatisfiable core, i.e., a part of the SAT problem that is already unsatisfiable [4,
20, 14]. Then, the injection logic is activated within this unsatisfiable core to determine fault candidates
or a next unsatisfiable core. Using an iterative procedure, multiple faults are handled. The solution
space of our method is identical to the standard approach for SAT-based debugging: all fault candidates
of minimal cardinality are returned. Experiments were carried out for sequential equivalence checking
on the gate level. The results show that multiple faults can be handled efficiently which is difficult for
previous approaches. Even though the approach is presented for the gate level, the extension to the RT
level is possible, e.g. using the techniques from [3, 17].

The paper is structured as follows: Preliminaries on SAT and SAT-based debugging are revisited
in the next section. Then, the basic idea of using unsatisfiable cores is introduced in Section 3 and
optimizations are presented. Our framework that implements the debugging procedure is explained in
Section 4. Experimental results are reported in Section 5. Finally, conclusions are presented.

2. Preliminaries

2.1. Unsatisfiable Cores

A Boolean formula in Conjunctive Normal Form (CNF) is a set of clauses, each clause is a set of
literals and a literal is a variable or its negation. A given CNF is satisfied under an assignment, if
each clause is satisfied; a clause is satisfied if at least one of its literals is satisfied; a literal is satisfied
if it evaluates to 1 under the current variable assignment. A SAT solver proves that a given CNF is
unsatisfiable or provides a satisfying assignment.

If a CNF is unsatisfiable, the formula is contradictory. Any subset of the clauses that is still unsatisfi-
able is called an unsatisfiable core, also called unsat core or simply core in the following. For example,
the CNF formula {{a}, {a}, {a, b}} is unsatisfiable; the subset {{a}, {a}} is an unsat core. A given
CNF may contain multiple unsat cores. An unsat core is minimal if the removal of one more clause
yields a satisfiable CNF. Determining a minimal unsat core is possible [12, 6, 8], but time consuming.
For our purposes minimality is not necessary. A SAT solver can produce such an unsat core on the fly
with a moderate overhead [14].

An unsat core may become satisfiable by modifying its clauses. For brevity we refer to this removal
of the contradiction as breaking the unsat core.

2.2. SAT-based Debugging

In the following, G denotes a circuit and X denotes a set of failure traces with corresponding correct
output responses. This is the input to create a SAT instance for the debugging problem [16]. Figure 1
shows the structure of the SAT instance. The circuit is replicated for each failure trace; the inputs are
restricted to the values provided by the failure trace x1 . . . , xm; the outputs are restricted to the correct
values. Additional logic is used to change values of internal signals: the Boolean function g of a gate
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Figure 1. SAT instance

is replaced by ag → g, i.e., if ag = 0, the gate works as usual; if ag = 1, the output value of the gate
is unrestricted. Therefore, if ag = 1 and the gate is faulty, the SAT solver can choose the correct output
for the gate. The variables ag are called abnormal predicates and alla denotes the set of all abnormal
predicates. As shown in Figure 1, the same abnormal predicate is used for a gate with respect to all
failure traces. We limit to k the total number of abnormal predicates set to 1. Each satisfying assignment
to this SAT instance yields a fault candidate containing k gates. All gates with ag set to 1 are contained
in the fault candidate.

Typically the algorithm runs in a loop that starts with k = 1 to identify single gates as fault candidates.
If no solution is found, k is incremented until the first candidate is determined. By inserting a blocking
clause for a candidate, all candidates of size k are calculated [16]. In the following we refer to this
procedure as standard SAT-based debugging.

The extension to the sequential problem is straightforward: the circuit is unrolled and the same ab-
normal predicate is used for a gate in all time steps [16]. Similarly, instead of gates more complex
components like modules or RT level expressions can be considered, by using a single abnormal pred-
icate for all gates belonging to the same component [3, 17]. In the following our extensions to the
basic algorithm are explained on the gate level for the combinational case – the extension to hierarchical
sequential problems is straightforward. Experimental results include the sequential case as well.

3. Using Unsatisfiable Cores

This section explains the basic procedure of using unsat cores for SAT based debugging:

1. Create the debugging instance and force all abnormal predicates to 0.

(a) Calculate an unsat core.
(b) Break the core by activating the abnormal predicates of gates in the core.
(c) If the problem is still unsatisfiable, go to (a), else go to 2.

2. Do standard SAT-based debugging.

3.1. Single Faults

The idea behind the procedure is the following. First consider the case of a single fault. As explained
earlier, the SAT instance for debugging is unsatisfiable when all abnormal predicates are set to 0 – the
failure trace implies erroneous values at outputs, therefore constraining the outputs to correct values
yields a contradiction. This contradiction is due to the fault that is present in the circuit: if the fault is
corrected, the correct output values are implied by the failure trace.

This argumentation applies to the CNF level as well: The initial SAT instance contains an unsat core.
Clauses derived from the actual fault site must be part of this unsat core. Therefore only those gates that
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Figure 2. Fault diagnosis

share clauses with the unsat core have to be considered during debugging. Only abnormal predicates
of such gates are activated, i.e., allowed to take the value 1 – by this the core is broken. This reduces
the search space for the SAT engine as only a small subset of the abnormal predicates is active. In the
following we refer to the set of activated abnormal predicates as the suspects S. These are considered in
the second unsat core debugging step (see above) during standard SAT-based debugging. This step finds
all fault candidates within S.

Example 1. Consider the circuit shown in Figure 2(a). Under the input assignment (1, 0, 1) the output
takes the value 1 while a 0 would be the correct value. The dashed shape encloses an unsat core.
Therefore the suspects for SAT-based debugging are S = {B, D}, and C is not a candidate. Allowing
one suspect to behave “abnormal” makes the problem satisfiable; gate D is a fault candidate. In
contrast, gate B is not a candidate.

Note that multiple unsat cores may be present even in case of a single fault, a single failure trace
and a single output that is considered. Calculating all of these cores and intersecting them would help
to further reduce the suspects [13]. On the other hand, all of these cores are broken if the abnormal
predicate of the fault site is set to 1. Thus, determining a single core per fault is sufficient to apply
standard SAT-based debugging. Calculating multiple unsat cores may be expensive.

The first unsat core can be derived very efficiently. The SAT solver only performs implications (using
Boolean constraint propagation [10]) which yields the contradiction. Thus, no decisions are necessary
to retrieve the core.

3.2. Multiple Faults

Now, consider multiple faults. Even after determining the first unsat core and activating abnormal
predicates, the SAT instance may remain unsatisfiable due to another fault. Thus, the next unsat core is
calculated and the abnormal predicates of the corresponding gates are activated, i.e., the set of suspects
S is extended. This process is iterated until no unsat cores remain.

Example 2. Consider the circuit shown in Figure 2(b). The circuit is similar to the one used in the
previous example, but it has one more output, which is also incorrect. With respect to the first output, the
same unsat core is extracted as previously, i.e., S = {B, D}. After allowing up to one suspect to behave
abnormally, the formula is still unsatisfiable: the new output cannot be corrected. The unsat core of
this call is {C} and the new set of suspects is S = {B, C, D}. Now, we allow two of these subjects to
behave abnormally. This time, all unsat cores can be broken. The pairs {D, C} and {B, C} are fault
candidates.

This leads to the generalization of the constraints to limit the abnormal predicates. Assume that
altogether k cores were iteratively determined. The set corei contains all abnormal predicates of gates in
core i, i.e., there are k such sets {core1, . . . , corek}. Formally, the suspects are given by S = ∪k

i=1corei.
The following constraints are embedded in the debugging instance:
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1. At least one abnormal predicate within each unsat core must be 1 in order to break the core:

|{a ∈ corei | a = 1}| ≥ 1, for 1 ≤ i ≤ k (1)

2. The total number of abnormal predicates with value 1 must equal the number of cores k to retrieve
the fault candidate of smallest cardinality:

|{a ∈ S | a = 1}| = k (2)

3.3. Optimizations

The search space grows exponentially in presence of multiple faults [13, 18]. But using unsat cores
helps to analyze the dependencies between the faults and as a consequence to prune the search space.

Example 3. Again consider the circuit shown in Figure 2(b). Two non-overlapping unsat cores are
calculated leading to two sets of abnormal predicates core1 and core2. Applying the constraints as
defined in Equations (1) and (2) yields

(|S|
2

)
possibilities to choose the values of abnormal predicates.

Knowing that the cores are non-overlapping and that one abnormal predicate per core must be 1, only
|core1| · |core2|/2 of these possibilities have to be considered. While irrelevant for the example, this
observation becomes important for large values of the number of faults k and suspects |S|.

Thus, multiple non-overlapping cores can be treated independently. As a first refinement, Equa-
tions (1) and (2) are replaced by the following constraints for non-overlapping unsat cores {core1, . . . , corek}
— exactly one abnormal predicate per core must be 1:

|{a ∈ corei|a = 1}| = 1, 1 ≤ i ≤ k (3)

For overlapping cores these constraints would be too tight and prune candidates as the following
example shows.

Example 4. The same circuit is considered again, but different unsat cores are used as shown in Figure
3. The first unsat core contains a contradiction with respect to the expected value of the upper output
(see Figure 3(a)). Activating the abnormal predicates in this core and allowing at most one of them to
become 1 does not yield a correction for both outputs: if gate D is changed, only the upper output is
corrected; if gate C is changed, only the lower output is corrected. Thus, a next unsat core is returned
as shown in Figure 3(b). This core completely contains the first core due to the following contradiction:
Repairing the lower output requires aC = 1 which implies aD = 0 (so far only one unsat core has been
found, therefore

∑
a∈S a is restricted to be less or equal 1); thus the upper output cannot be corrected

due to the controlling value 1 at D coming from B.
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Figure 4. Multiple fault debugging

Obviously, the process depends on the order in which the unsat cores are found, e.g., this determines
how many abnormal predicates have to be considered during the standard SAT based debugging process.
A heuristic could be used to guide this process. But in practice, it is expensive to determine multiple
unsat cores while producing a first one is a side effect of the solving process. Therefore, we use the first
core determined during a run of the SAT solver.

The previous example also shows that the knowledge about the intersections of the unsat cores can be
utilized to further prune the search space in presence of multiple faults.

One abnormal predicate per core must assume the value 1 to resolve the contradiction. If multiple
cores intersect, both faults may be contained in the intersection. Therefore more abnormal predicates
are allowed to take the value 1 in the intersections of cores. This is illustrated in Figure 4. At first,
core core1 is retrieved. The 1 in this set denotes that only one abnormal predicate in corei may be
1. Then, a next core is core2 is retrieved (see Figure 4(b)). At least one gate per core must behave
“abnormal” and both of these may be contained in the intersection core1 ∩ core2. Therefore the number
of abnormal predicates with value 1 is limited to 2 in core1 ∩ core2 and to 1 in the remainder of both
cores. Additionally, an overall limit as defined in Equation 2 is applied. The next unsat core core3 may
intersect with all previous cores. This leads to the limits indicated in Figure 4(c). Thus, the limits can
be tightened for all intersections leading to a partitioning of S. Moreover, all of these limitations can be
calculated efficiently incrementally during the first stage of the diagnosis procedure. On the other hand
for k cores, the number of sets in the partition may be 2k.

The different types of constraints have been implemented and experimentally evaluated. Applying
individual limitations for each intersection did not yield a speed-up in general. Only for some instances
with large k, speed-ups were achieved. Results are reported for the limitations provided in Equations (1),
(2) and (3).

In the next section the debugging framework is introduced in more detail.

4. Debugging Framework

In the following, our implementation is presented without the optimizations of Section 3.3 for sim-
plicity. The framework proceeds in the two stages introduced in the previous section:

1. Reduce the suspects and determine their limitations by using unsat cores (Figure 5).

2. Extract all candidate fault sites (Figure 6).

The first stage starts with the generation of the CNF formulation of the debugging problem according
to Section 2.2 (line 2). The CNF formula cnf and the set of all abnormal predicates alla are returned.
The number of fault sites (k) and the suspects (S) are initialized (lines 4–5). Initially the number of
abnormal predicates set to 1 is forced to 0 (line 6). Therefore the instance is unsatisfiable. Next, unsat
cores are iteratively calculated (lines 7–21).



1 f u n c t i o n u n s a t C o r e P r o c e s s i n g (G , X ) {
2 ( cnf , alla ) = c r e a t e D e b u g I n s t a n c e (G , X )
3
4 k=0;
5 S = ∅ ;
6 c n f . addClause "∀a ∈ alla : a = 0 " ;
7 do {
8 r e s u l t = c n f . s o l v e ( ) ;
9 i f ( r e s u l t == s a t ) break ;

10
11 k++;
12 core = {a | a ∈ c n f . u n s a t C o r e ( ) and a ∈ alla} ;
13 c n f . addClause " |{a ∈ core|a = 1}| >= 1 " ;
14
15 c n f . removeClause " |{a ∈ S|a = 1}| = k − 1 " ;
16 c n f . removeClause "∀a ∈ (alla \ S) : a = 0 " ;
17
18 S = S ∪ core ;
19 c n f . addClause " |{a ∈ S|a = 1}| = k "
20 c n f . addClause "∀a ∈ (alla \ S) : a = 0 " ;
21 } whi le ( t rue )
22
23 re turn ( cnf , S ) ;
24 }

Figure 5. First stage

If the formula is satisfiable, the loop stops and the framework proceeds to the second stage (lines 8–9).
Otherwise, there is another fault site and k is incremented (line 11).

The abnormal predicates in the current unsat core are extracted and limited according to Equation (1)
(lines 12–13). As explained in Section 2.1 the core can be determined with an acceptable overhead
during the SAT run. Afterwards the new abnormal predicates are added to S (line 18).

During each iteration the abnormal predicates are limited according to Equation (2). The limitation
is removed after each iteration (line 15) to be replaced by an updated one (line 19). Additionally, the
abnormal predicates not in S have to be forced to 0 (line 20) and to be removed during each iteration
(line 16). This prevents the "faulty" behavior and can be implemented by using unit clauses, too. By
using groups of clauses, parts of the CNF are reused and some learned information can be kept for
subsequent runs [15, 19].

The loop starts again with new limitations on the fault site and the next unsat core is calculated.
When the first satisfying solution is found (line 9), the second stage starts. At this point the limits on

the number of abnormal predicates are contained in the CNF formula. Therefore all candidate fault sites
can be determined as proposed in [16] (Figure 6).

5. Experimental Results

This section reports experimental results for our framework. Debugging multiple faults is much harder
than debugging single faults due to the exponentially increasing search space [18]. For single faults only
minor improvements are expected, due to the extra overhead of the unsat core extraction. Therefore we
concentrate our analysis on multiple faults.

All experiments were carried out on a Intel Core 2 Duo (2.33 GHz, MacOS 10.4, 2GB) within a
run time limit of 5 hours and a memory limit of 1GB. Combinational and sequential circuits from the
LGSynth93 and the ITC-99 benchmark sets were considered.



1 f u n c t i o n g e t C a n d i a t e F a u l t S i t e s ( cnf , S ) {
2 /∗ Dete rmine a l l c a n d i d a t e s ∗ /
3 c a n d i d a t e s = ∅ ;
4 whi le ( r e s u l t == s a t ) {
5 newCandida te = {a | c n f . a s s i g n m e n t (a ) =1 } ;
6 c n f . a d d B l o c k i n g C l a u s e ( newCandida te ) ;
7 c a n d i d a t e s = c a n d i d a t e s ∪ { newCandida te } ;
8 r e s u l t = c n f . s o l v e ( ) ;
9 }

10 re turn c a n d i d a t e s ;
11 }

Figure 6. Second stage

The debugging framework does not require any assumption on the fault model. For the experiments
gate replacement faults were considered. Injecting n faults of this type guarantees that there exists a
fault candidate of cardinality n. Note that fault masking may occur: n faults are present but a fault
candidate containing k < n gates is determined. This typically happens in other diagnosis frameworks
as well because fault candidates of minimal cardinality are of interest. The failure traces were created
by checking equivalence between the faulty circuit and the original, correct circuit. Each faulty output
was covered by at least one counterexample to achieve a good resolution during debugging.

In the first two series of experiments we compare standard SAT-based debugging [16] to our frame-
work. In [16] improvements were achieved by using structural dominators and incrementally considering
more and more counterexamples. We do not exploit the presence of structural dominators. Furthermore,
incrementally using more and more counterexamples is not possible when there are multiple faults:
using only a few counterexamples to rule out suspects from the consideration may prune fault candi-
dates that can only be detected by using all of the counterexamples. Therefore all counterexamples
were considered simultaneously for the standard approach. Both algorithms are implemented within our
framework.

The framework of Section 4 was extended by the optimization with respect to pairwise non-overlapping
unsat cores (Section 3.2, Equation (3)). The additional optimization using intersections between cores
is considered later. The framework was implemented on the base of Zchaff [11], which also handles
groups of clauses. MiniSat [2] was not considered due to the leak of incremental SAT processing and
unsat core extraction in the downloadable version. After the first stage, we have re-created the debug
SAT instance for the second stage that includes the abnormal predicates for the given suspects only1.
Afterwards, the during the first stage determined unsat core limitations were added.

Table 1 and Table 2 report results for combinational and sequential circuits, respectively. The columns
circuit, #g and #c give the name of the circuit, number of gates and the number of counterexamples
simultaneously considered, respectively. Column k shows the minimal number of abnormal predicates
set to 1 needed to correct the behavior of the circuit, regarding the given counterexamples. The number
of fault candidates with cardinality k is reported in column #s. The additional column l in Table 2 gives
the length of the counterexamples. The run time of the standard debugging approach [16] is given in
column Standard Dbg. The next three columns show the run time for our framework: the unsat core
processing (proc), the percentage of suspects removed from the consideration (sred.), and the run time
to determine all solutions (Dbg.). The last column (Total impr.) shows the quotient between the total
run time to determine all fault candidates of size k using standard debugging versus our framework.

For combinational circuits the number of suspects was reduced by up to 99% (see Table 1). This led
to a speed-up of up to 10 times. The extraction of unsat cores is quite efficient. For instance, for misex3

1When abnormal predicates were inserted for all gates instead of suspects only, the run time of the second stage increased
by a factor up to three.



Table 1. Combinational circuits
Std. Unsat. core diag.

Settings Dbg. proc sred. Dbg. Total
circuit #g #c k #s (sec.) (sec.) (%) (sec.) impr.

i7 993 3 2 11 3.73 0.98 96.72 0.44 2.63
i8 1932 3 3 395 157.31 3.11 97.19 27.54 5.13
i9 771 5 2 12 5.27 1.52 89.38 0.93 2.15
k2 630 18 1 2 12.68 5.45 99.11 1.41 1.85
misex3 6249 6 2 684 2195.24 13.61 64.56 795.94 2.71
pair 2848 9 5 4480 M.O. 10.81 95.60 1354.32 a> 5.28
rot 1133 2 2 30 5.23 0.74 97.71 0.73 3.56
t481 1631 1 1 15 2.47 0.33 98.85 0.21 4.57
table5 1229 11 3 291 200.85 6.36 69.42 76.72 2.42
too_large 2152 3 2 6 94.31 7.62 75.25 3.42 8.54
x1 725 2 2 273 25.36 0.82 93.94 4.98 4.37
x3 1974 5 4 480 525.84 4.08 95.49 48.02 10.09
x4 959 3 3 225 34.18 1.13 96.10 6.03 4.77

aThe memory out occurred approximately after two hours
run time.

Table 2. Sequential circuits
Std. Unsat. core diag.

Settings Dbg. proc sred. Dbg. Total
circuit #g #c l k #s (sec.) (sec.) (%) (sec.) impr.

b03 195 3 9 2 564 54.30 0.82 20.71 48.94 1.09
b04 821 7 10 1 14 41.81 8.51 79.30 15.38 1.75
b09 197 1 18 1 60 5.12 0.48 48.48 3.38 1.33
b12 1297 4 2 1 15 8.02 1.49 97.23 1.49 2.69
phase-dec 1834 9 10 2 37 583.88 64.46 76.82 210.35 2.12
s1196 818 3 4 1 37 11.13 1.17 93.14 2.76 2.83
s1238 833 14 3 1 2 4.44 2.93 97.64 0.87 1.17

the 2 cores were obtained by the SAT solver using propagation only, in less than 1% of the run time of
the standard debugging method. The cores are disjoint, therefore small sets of suspects with an exact
limit of 1 are created. Debugging directly starts with fewer suspects in separately constrained sets.

For small fault candidates (k ≤ 2) and circuits with less than 1000 abnormal predicates, the standard
debugging approach often needs less than one second. In such a case unsat core extraction causes an
overhead. In contrast, for the more interesting case of multiple faults with k > 2, the run time is
significantly reduced by using our framework. For instance, for x3 all fault sites were extracted within
one minute, whereas the standard debugging approach needs more than eight minutes.

The results in Table 2 show that the sequential circuits were corrected quite easily; k ranges between
1 and 2 only. Often, modifying a few gates is sufficient to control the faulty outputs. In most sequential
cases, the SAT solver finds the suspects by using fast propagation only. For instance, it takes around 1
second for the circuit s1196 to reduce the number of suspects to less than 7%. Due to this reduction
speed-ups of up to 2.83 of the total diagnosis run time were achieved.

In summary, the suspects and as a result the debugging time are reduced by using unsat cores in
presence of multiple faults. Especially, in case of fault candidates with large cardinality significant
speed-ups could be achieved.



6. Conclusions

The proposed debugging framework exploits the knowledge of unsatisfiable cores. The solutions were
proven to be identical to that of standard SAT-based debugging. Especially for the computationally hard
case of multiple faults the run time was significantly reduced.

It remains future work to consider the sequential case more thoroughly, for instance by considering
the distance in time between a fault candidate and the observation of a fault [7]. Moreover, exploiting
incremental SAT within our framework more efficiently by keeping detailed information about learned
clauses [14] may further improve the performance.
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