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Abstract—The emergence of Machine Learning (ML) as a
powerful technique has been helping nearly all fields of business
to increase operational efficiency or to develop new value propo-
sitions. Besides the challenges of deploying and maintaining ML
models, picking the right edge device (e.g., GPGPUs) to run these
models (e.g., CNN with the massive computational process) is one
of the most pressing challenges faced by organizations today. As
the cost of renting (on Cloud) or purchasing an edge device
is directly connected to the cost of final products or services,
choosing the most efficient device is essential. However, this
decision making requires deep knowledge about performance and
power consumption of the ML models running on edge devices
that must be identified at the early stage of ML workflow.

In this paper, we present a novel ML-based approach that
provides ML engineers with the early estimation of both power
consumption and performance of CUDA-based CNNs on GPG-
PUs. The proposed approach empowers ML engineers to pick
the most efficient GPGPU for a given CNN model at the early
stage of development.

Index Terms—power consumption, performance estimation,
GPGPU, CUDA, machine learning, neural networks

I. INTRODUCTION

Nowadays, Machine Learning (ML) has become very im-
portant for all types of industries, ranging from manufacturing
to scientific-, health- and security-related applications [1]—
[3]. This increasing deployment of ML is not only for big
companies such as Google, Amazon, or Facebook but also
for small and medium-sized enterprises (SME). For example,
about 35% of the SME in Germany have already used ML for
their applications [4].

One of the most important use cases of ML (e.g., in
the German industry) is automatization and smart sensors
[5]. Among the existing ML algorithm, Convolutional Neural
Networks (CNNs) is the most popular ML algorithm for image
recognition in automated manufacturing process control [6].
The convolutional layers, made up of 4-dimensional convolu-
tions, are responsible for over 90% of the computation and
require processing massive amounts of data with potentially
trillions of computations per second [7]. Due to this massive
computation, ML engineers take advantage of edge devices
such as GPGPUs to gain performance and meet the time-to-
market constraints. However, edge devices such as GPGPUs
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come with a wide variety of series, some of them can be very
expensive and consume too much power. Therefore, for ML
engineers or companies that want to run their ML algorithms
such as CNNs on a GPGPU, the selection of an underlying
edge device is very essential.

According to [4], statistics illustrate that 69% of the small
to medium businesses face some initial issues when adopting
ML for their applications. The statistics illustrate that lacking
knowledge about finding the proper underlying edge device
which most fit to given ML algorithms is the main challenge
of such business.

For example, consider a scenario that company AA rents
a GPGPU from company BB to run its CNN algorithm. To
achieve the maximum performance, AA chooses the most
expensive GPGPU of the BB company. This selection directly
affects the cost of the final product of AA for which this CNN
is used. However, there could be another alternative that AA
could choose to gain the same performance at a lower cost.

In the case of using CNN, the fundamental concern
that should overcome first is to find the most power- and
performance-efficient edge device that fits it most. This is
considered a critical step in using such ML models as under
approximation of the proper device causes performance loss
and increases the time-to-market constraints. On the other
hand, over-approximation of the required edge devices is
directly connected to paying more money to either purchase
or rent them in a Cloud. Moreover, in the case of online
applications such as smartphones, this over-approximation of
GPGPU selection can reduce the battery lifetime (as the power
consumption increases) and increase the area overhead.

In this paper, we focus on this scenario. We propose a
novel approach to estimate the power consumption and perfor-
mance of a given CUDA-based CNN model on GPGPUs. Our
proposed approach statically analyzes the CNN instructions
and GPGPU architectural information and take advantage of
machine learning techniques for its estimation process. By this,
ML engineers are able to choose the most efficient GPGPU
for their CNN model at the early stage of development.

The structure of this paper is as follows: Section II presents
the related work in this domain. The proposed methodology
is described in Section III. The benchmarks and evaluation
methods are specified in Section IV. The paper is concluded
in Section V.



II. RELATED WORK

The methods in [8], [9] focus on estimating the power
consumption of CUDA-based applications at run-time. [8] cre-
ates a neural network that receives the CUDA instructions
and the global, local, shared, and texture memories as inputs.
The output of the neural network is power consumption. In
contrast to [8], [9] uses more GPGPU architecture information
to calculate power consumption. The power consumption
estimation algorithm is based on twelve different GPGPU
components (e.g. FP32-ADD/MUL/FMA, INT, SF, and CF
units). However, the main limitation of these methods is their
dependency on the run time information for measuring power
consumption. It means that they cannot predict for a given
application (e.g. CNN), the amount of power consumption
without executing the model. Our approach extends the list of
GPGPU components that affects performance and power con-
sumption. Moreover, we focus on the power and performance
estimation of a given CNN in order to help ML engineers to
pick the most appropriate GPGPUs.

The method in [10] introduces a statistical power model
based on the CUDA performance counters. The method in [11]
takes advantage of machine learning techniques and the CUDA
performance counters to predict the performance and power
consumption of GPGPUs across a range of hardware con-
figurations. However, using the CUDA performance counters
limits the model to only predict based on run-time data. For
example, while [11] can be used to find the best configuration
for a specific device, it cannot be used to choose the most
efficient device in the early design stage before running the
application.

The method in [12] uses tree-based regression to predict the
power consumption of CUDA based applications on GPGPUs.
It analyzes the GPGPU architecture and measures the power
consumption of the PTX instructions. As the method takes
advantage of GPGPUSim for the simulation and modeling of
GPUGP power consumption, the amount of PTX instructions
is limited. Moreover, the power measurements are not of real
hardware as they use a simulator instead of real GPGPUs.

The method in [13] considers scaling frequencies for core
and memory frequency of GPGPUs. In [14], a machine learn-
ing model is introduced that estimates the performance of CPU
code before porting to GPGPU code, so it is possible to decide
if executing on GPGPU gives a performance boost before
writing the GPGPU code. In [15], a similar goal is pursued
but the speedup prediction of the code can be performed on
GPGPU.

Our approach focuses on machine learning-based estimation
in the early design stage before running the application (i.e., a
given CNN) on any target edge systems.

III. POWER AND PERFORMANCE PREDICTION
METHODOLOGY

In order to predict the power consumption and the per-
formance of a given CNN before executing it on the target
GPGPU, it is important to focus on features that are known at
the early stages of system design. These features are related to
the GPGPU architectural components that affect performance
and power consumption. In contrast to [8], [9] we focus on
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Fig. 1. Overview of the proposed methodology.

the hardware components and not on performance counter or
events. Similar to [8], we also consider the instructions that are
executed by the GPGPU. By this, it is possible to estimate the
power consumption of executing CNNs on different GPGPUs.

A. Methodology Overview

The proposed methodology is divided into three main steps
shown in Fig. 1. In the first step, we perform an analysis to
extract those GPGPU components that have an impact on the
overall power consumption and performance of the GPGPU
if they are loaded by the running (e.g. CNN) application
instructions.

In the second step, we translate CNN models into a set
of PTX instructions and analyze the generated PTX file to
extract the instructions that are loaded in GPGPU components
to run the CNN. By this, we only consider those GPGPU
components that directly affect the overall performance and
power consumption when CNN is run.

In the third step, we build a training dataset based on the
CNN instructions, the amount of power consumption for each
instruction and the GPGPU components that are loaded by
the CNN instructions. In the case of performance estimation,
the training data set includes the number of CNN instructions,
GPGPU components that are loaded by the CNN instructions,
and the number of instructions that can be rendered by the
GPGPU per second. Once the training dataset is created, we
take advantage of ML algorithms (i.e. neural networks) to
train the data set and create a predictive model. The CNN
instructions and the GPGPU components that are loaded by
them are the inputs while the overall performance and power
consumption of the GPGPU are the outputs. Finally, the
generated predictive model is used to estimate the performance
and power consumption of a given CNN at the development
process when GPGPU is the target device.

B. GPGPUs Architecture Analysis

The performance and power consumption of the GPGPUs
are affected by many factors. Nvidia lists all the components of
the GPGPU’s architecture in their white paper [16], [17]. We
focus on components that are available over the various Nvidia
architectures, e.g. amount of streaming multiprocessors, clock
frequency for compute units and memory, L2 Cache size.
This enables our approach to estimate the power consumption



1d .param.u64 %rdl, [copy_5_param_0];

1

2 1d.param.u64 %rd2, [copy_S_param_1];
3 cvta.to.global.u64 %rd3, %rd2;

4 cvta.to.global.u64 %rd4, %rdl;

5 mov.u32 %rl, %ctaid.x;

6 mov.u32 %r2, %tid.x;

7 shl.b32 %r3, %rl, 8;

8 or.b32 Yord , %r3 , %r2;

9 shl.b32 %r5, %rd4, 2;

10 or.b32 Yor6 , %r5, 1;

11 or.b32 Yo7, %r5, 2;

12 or.b32 %r8 , %r5, 3;

13 cvt.ul6.u32 %rsl, %r4;

14  mul.wide.ul6 %r9, %rsl, -7281;

15 shr.u32 %rl0, %r9, 22;

16 mul.wide.u32 %rd5, %r8, 954437177,
17 shr.u64 %rd6, %rd5, 33;

18 cvt.u32.u64 %rll, %rd6;

19 and.b32  %rl2, %rll, 31;

20 mul.wide.u32 %rd7, %r8, -1431655765;

Fig. 2. Part of a PTX file of a CNN model.

through different GPGPU models. For example, we do not
consider the FP64 Cores of the Nvidia V100 [16] as there is
no information in [17] for other GPGPU architecture related
to these components. Moreover, to know those GPGPUs’
components that directly affect the Performance and Power
consumption (PP) of GPGPUs, we run the compiled PTX
files of various CNN algorithms on different GPGPUs. Then
for each PTX instruction type (which is loaded to a specific
GPGPU component), we measured the share of those com-
ponents in comparison to the total performance and power
consumption of the GPGPU. By this, GPGPU components
that directly are related to the performance and power factors
are extracted, and results can even be reduced more to cover
only the most important components.

C. PTX Instructions Analysis

Nvidia offers the CUDA Library to run applications on
their GPGPUs. However, frameworks like Tensorflow already
including the CUDA Library so that the user can easily run
their application on GPGPUs [18]. To run the CUDA code on
GPGPU, the code is compiled to the Parallel Thread Execu-
tion (PTX) which contains the machine language instructions.
These low-level instructions include every memory access
(read and write) as well as computational instructions such
as ADD, MUL, FMA and etc. [19].

This detailed low-level information enables us to perform
an analysis on the generated PTX files (obtained from the
CNNs compilation results) to categorize the instructions and
create several unique classes based on how they load GPGPUs
components. Some classes are: Comparisons and selection
instructions, Floating-Point instructions, Arithmetic instruc-
tions and more. We use this classification of PTX instructions
and count the number of instructions for each class. We only
consider these types which are needed over different CNNs.

For example, Fig. 2 shows part of a simple PTX file. This
PTX file includes eight data movement and conversion (i.e., ld,
cvta, mov, and cvt), three floating-point instructions (i.e., mul),
nine logic and shift instructions (i.e., and, or, shl, and shr).
Therefore, for this example, the CNNs Instructs Profile (Fig. 1,
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step 2) includes three instruction classes where for each class
the number of instructions is included.

As illustrated in Fig. 1, step 2, this analysis is performed
for various PTX files from different CNN algorithms. The
results of this analysis are used to create a training dataset
and predictive model in the next step.

D. Creating Training Dataset and Predictive Model

In order to create a predictive model for the power and
performance estimation, it is necessary to have a robust
training dataset. To do this, the generated CNNs instructs
Profile and Components Affected PP (Fig. 1, step 1 and 2) are
used to create a training dataset w.r.t performance and power
consumption. The performance of the GPGPU is measured
based on the number of PTX instructions that can be run per
second. The power consumption is measured in Watt with the
Nvidia-smi Tool [20].

Table I shows the overall structure of the training dataset.
Column CNN and GPGPU shows the name of the CNN
algorithm and the GPGPU model (please see Section IV for
detailed description). The Classes column lists the name of
instruction classes and for each class the number of each
instruction. Column GPGPU Components indicates the rel-
evant GPGPUs’ architectural information. The Output column
presents the total performance and power consumption for
each benchmark (CNNs and GPGPUs combination). Thus,
each row of the table indicates an observation in the training
dataset where the first three columns are the inputs (or
features) while the total power consumption and performance
(column Output) are the outputs. The training dataset is split
into 70% for the training phase and 30% for the validation
phase.

To predict total power consumption and performance
(i.e., Watt and instruction per cycle) of a given CNN, a set
of Neural Networks (NNs) are designed with different layers.
NN take as input the features shown in table I and predict the
outputs (power and performance). Fig. 3 illustrates an abstract
view of the neural network. The exact amount of neurons in
each layer depends on the number of PTX instruction classes
and GPGPU components. To evaluate the predictive models,
we consider the CNNs and GPGPUs which are not in the
training dataset.



TABLE 1
EXAMPLE OF TRAINING DATASET STRUCTURE USED TO CREATE THE PREDICTIVE MODELS

Classes GPGPU Component: Output
CNN and GPGPU Data movement and conversion | Floating-Point | ... | Class N | L2 Cache | FP32 C(l),res ... | SM | Power Consumptiorllj Performance
CNN (Fig. 2) + V100 8 3 6144KB 5120 80 Power; Performance;
CNN (Fig. 2) + 2080Ti 8 3 5632KB 4352 68 Power, Performance,
CNN (Fig. 2) + 1080Ti 8 3 2816KB 3584 28 Powers Performances
CNN, + GPGPU,, Powerysm Performance,«y,

IV. BENCHMARKS AND METHODOLOGY EVALUATION

In order to evaluate the proposed methodology, a set of
benchmarks is considered including three different types of
GPGPUs as well as different pre-trained well-known CNN
algorithms. The GPGPUs that we considered in our benchmark
are based on different architectures. This enables us to develop
the proposed methodology more generic in the prediction of
performance and power consumption of running applications
on GPGPUs. The evaluation of the proposed methodology is
performed by estimating the performance and power consump-
tion of a given CNN (which is not in the training dataset) using
the predictive models. The CNN is run on the GPGPU while
the Nvidia-smi Tool is used to measure the power consumption
of the GPGPU. Nvidia-smi reports the power consumption in
a csv file. For this, a measurement interval of one second is
considered (i.e., every second a measurement is written to the
csv file). The power consumption is averaged over the entire
run and compared to the ML model estimation.

V. CONCLUSION AND FUTURE WORKS

We propose a novel ML-based approach to predict power
consumption and performance of CUDA-based CNNs on
GPGPUs. This enables ML engineers to pick the GPGPU that
suits best their CNN in terms of performance and power con-
sumption. The results of this analysis help ML engineers create
their systems more efficiently and avoid high productions cost.

The proposed approach is based on analyzing the PTX
instructions obtain from various standard CNN models and
the GPGPUs’ architectural information. We take advantage of
this information to build a set of training data and use them to
generate a predictive model to estimate the performance and
power consumption of a given CNN. The proposed methodol-
ogy is under development and is in the early evaluation phase.
We believe this new line of research can truly help designers
to make better decisions in the early stage of selecting edge
devices. Moreover, to help them in optimizing their ML
algorithm to fulfill the constraints of a given edge device.

As future works, we plan to consider more benchmarks
(i.e., GPGPUs series and CNN algorithms) to make our predic-
tive models more accurate. The other direction is to consider
not only the CNN algorithms but also expand our method for
other ML methods such as Neural Networks (NNs). Moreover,
it is also interesting to consider other edge devices such as
Tensor Processing Units (TPUs) to provides ML engineers
with more choosing options to run their ML algorithms.
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