
RISC-V Processor Verification with Coverage-guided Aging*

Niklas Bruns1, Vladimir Herdt1,2, Eyck Jentzsch3, Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
3MINRES Technologies GmbH, 85579 Neubiberg, Germany
nbruns@uni-bremen.de, vherdt@uni-bremen.de, eyck@minres.com, drechsler@uni-bremen.de

Abstract

In this extended abstract we present an efficient approach for processor verification at the Register-Transfer Level (RTL),
using a cross-level setting with an Instruction Set Simulator (ISS) as a reference model. We leverage a custom instruction
stream generator tailored for RISC-V, which produces one endless instruction stream at runtime. Moreover, we employ a
coverage-guided aging concept which ensures a more uniform distribution of the generated instructions by tracking and
updating coverage information in the ISS and dynamically providing feedback to the instruction stream generator. Our
case study with an industrial pipelined 32 bit RISC-V processor demonstrates the effectiveness of our approach.

1 Extended Abstract

RISC-V [10, 11] is a free and open-source ISA that en-
ables a royalty-free processor design and implementation.
It is designed in a very modular way with optional standard
instruction set extensions around a mandatory base integer
instruction set and the ability to integrate additional custom
instruction sets to build highly application-specific proces-
sors. These properties made RISC-V very popular in in-
dustry and academia. From the verification perspective,
however, the extensive modularity adds additional com-
plexity. Besides the modern features provided by RISC-V
and any micro-architectural specific optimizations of the
processor, such as pipelining and branch prediction, the
verification tools also need to be able to deal with the large
configuration space offered by RISC-V.
Recently, approaches specifically tailored for RISC-V ver-
ification have emerged. The baseline is provided by the
official RISC-V unit and compliance tests [2, 1], which are
directed test suites. More comprehensive simulation-based
testing is enabled by approaches that rely on continuous as-
sembly test generation. Different approaches have been de-
vised that generate tests by integrating randomized instruc-
tion templates [3], leverage constraint-based specification
mechanism to define coverage requirements [6], utilize
coverage-guided fuzzing techniques to generate tests [8, 5],
and use symbolic execution techniques to find specific in-
puts [9]. A particularly promising approach in this con-
text is pursued by Google’s open-source RISC-V Design
Verification (DV) framework. It leverages a method based
on co-simulation, i.e. it employs an Instruction Set Sim-
ulator (ISS) as a functional reference model for the RTL
processor under test. As a backbone it applies constraint-
based specification techniques in SystemVerilog to gener-
ate RISC-V assembly tests one after another. Different

*This work was supported in part by the German Federal Ministry
of Education and Research (BMBF) within the project Scale4Edge under
contract no. 16ME0127 and no. 16ME0135, and within the project VerSys
under contract no. 01IW19001.

RISC-V instruction sets are supported by selecting and
combining the respective constraint-based specifications.
Execution results between the ISS and RTL processor core
are compared through execution log files. While this fea-
ture set makes RISC-V DV very powerful in general, it also
has some major weaknesses. In order to keep the frame-
work generic, the generated tests use a restricted instruc-
tion set to avoid problems with infinite loops and platform-
dependent memory access operations. Moreover, by gener-
ating tests one by one, only comparatively short instruction
sequences are considered, and the state of the processor un-
der test is regularly reset for each new test execution. Fur-
thermore, the co-simulation has an inherent performance
overhead due to the extensive filesystem communication,
since each RISC-V assembly test needs to be compiled,
loaded onto the respective simulator, and produce a log
file for comparison. Finally, the test generator is not de-
signed to be dynamically guided by coverage information
obtained from the test execution progress. Many of these
issues have been addressed by a recent academic work [7].
It generates endless instruction streams and integrates the
ISS with the RTL core in a very efficient co-simulation
compiled into a single binary with in-memory communi-
cation. The setup allows to generate instructions without
any restrictions, i.e., arbitrary combinations of load/store
and Control and Status Registers (CSRs)1 instructions, as
well as infinite loops, are supported, which enables a very
comprehensive test approach. However, the approach is
still limited as it does not collect or employ runtime cover-
age information to assess and guide the test generation pro-
cess. Instead, the instruction stream generators are based
on a simple randomized test strategy which makes it very
difficult to continuously achieve a broad and deep test cov-
erage in endless instruction streams.
In this extended abstract, we summarize our work from [4],
where we proposed a novel approach for cross-level ver-

1In the CSRs, the processor stores additional instruction results to en-
able sophisticated hardware/software interactions.



ification that conceptually builds upon the previous aca-
demic work [7] and addresses the aforementioned limita-
tions. The foundation is a randomized coverage-guided
instruction stream generator that produces an endless and
unrestricted instruction stream that evolves dynamically
at runtime based on observed coverage information. We
also leverage an ISS as a reference model in a tight co-
simulation setting. Coverage information is continuously
updated based on the execution state of the ISS and we em-
ploy the novel concept of coverage-guided aging to smooth
out the coverage distribution of the randomized instruc-
tion stream over time. Our experiments with the 32-bit
pipelined RISC-V core of the MINRES The Good Core
(TGC) series demonstrate the effectiveness of our approach
in achieving a much more regular coverage distribution of
the randomized instruction stream via coverage-guided ag-
ing. For more details please refer to [4].

2 References

[1] RISC-V compliance task group. https://
github.com/riscv/riscv-compliance.

[2] RISC-V ISA tests. https://github.com/riscv/
riscv-tests.

[3] RISC-V torture test generator. https:
//github.com/ucb-bar/riscv-torture.

[4] N. Bruns, V. Herdt, E. Jentzsch, and R. Drech-
sler. Cross-level processor verification via end-
less randomized instruction stream generation with
coverage-guided aging. In DATE, 2022. accepted.

[5] V. Herdt, D. Große, and R. Drechsler. Closing the
RISC-V compliance gap: Looking from the negative
testing side. In DAC, 2020.

[6] V. Herdt, D. Große, and R. Drechsler. Towards spec-
ification and testing of RISC-V ISA compliance. In
DATE, pages 995–998, 2020.

[7] V. Herdt, D. Große, E. Jentzsch, and R. Drechsler.
Efficient cross-level testing for processor verification:
A RISC-V case-study. In FDL, 2020.

[8] V. Herdt, D. Große, H. M. Le, and R. Drechsler.
Verifying instruction set simulators using coverage-
guided fuzzing. In DATE, pages 360–365, 2019.

[9] V. Herdt, S. Tempel, D. Große, and R. Drechsler.
Mutation-based compliance testing for RISC-V. In
ASP-DAC, 2021.

[10] A. Waterman and K. Asanović, editors. The RISC-V
Instruction Set Manual; Volume I: Unprivileged ISA.
2019.

[11] A. Waterman and K. Asanović, editors. The RISC-V
Instruction Set Manual; Volume II: Privileged Archi-
tecture. 2019.

https://github.com/riscv/riscv-compliance
https://github.com/riscv/riscv-compliance
https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-tests
https://github.com/ucb-bar/riscv-torture
https://github.com/ucb-bar/riscv-torture

	Extended Abstract
	References

