
Formal Verification on the RT Level
Computing One-To-One Design Abstractions by Signal Width Reduction

Peer Johannsen
Corporate Technology CT–SE–4,

Siemens AG, 81730 Munich, Germany
peer:johannsen@mchp:siemens:de

Rolf Drechsler
Institute of Computer Science

University of Bremen, 283539 Bremen, Germany
drechsle@informatik:uni-bremen:de

Abstract

Digital circuit designs are usually given as Register-
Transfer-Level (RTL) specifications, but most of today’s
hardware verification tools are based on bit-level methods,
using SAT or BDD-based techniques. RTL specifications
contain more explicite structural information than bit-level
descriptions. This paper presents a new approach to scale
down design sizes before verification by exploiting word-
level information. We introduce a one-to-one abstraction
technique for RTL property checking, which computes a
scaled-down abstract model of a design, in which signal
widths are reduced with respect to a property. The prop-
erty holds for the abstract RTL if and only if it holds for the
original RTL. If the property fails, counterexamples for the
original design are computed from counterexamples found
on the reduced model. The verification task is completely
carried out on the scaled-down version of the design; false-
negatives cannot occur. Linear signal width reductions re-
sult in exponentially smaller state spaces and have a sig-
nificant impact on the runtimes of verification tools. Ex-
perimental results on large industrial circuits have demon-
strated the applicability and efficiency of our method.

1 Introduction

Verification has become one of the most important steps
in digital circuit design. Today’s circuit designs often con-
tain up to several million transistors. The test for correct
behavior before manufacturing becomes more and more im-
portant and a major economical issue. While design sizes
are ever increasing, this test grows more complex, time-
consuming, and expensive. Formal verification tasks of-
ten fail already due to design sizes. Automated abstraction
techniques (e.g. [5]) are a promising approach to enhance
capabilities of formal verification tools.

Recently,Bounded Model Checking (cf. [2]) andBoun-
ded Property Checking have gained increased significance
in Electronic Design Automation (EDA), as recently sur-
veyed in [13]. The majority of today’s industrial hardware
verification tools uses bit-level decision procedures, like
SAT or BDD-based techniques (see e.g. [3, 12]). However,
circuit designs are usually given in terms of RTL specifi-
cations, for example coded inHardware Description Lan-
guages (HDLs), like VHDL or Verilog. RTL specifica-
tions of digital circuits contain explicite structural informa-
tion which is lost in bit-level descriptions. On bit-level,

for example in Boolean formulae, all signals are of one-
bit width, and all available functional units are Boolean
gates. In contrast to that, on RTL, word-level data struc-
tures (e.g. bitvectors and busses) as well as high-level oper-
ators (e.g. adders, multipliers, and shifters) are still visible.
Several approaches to formal circuit verification have been
proposed which make use of such high-level information
and which are based on word-level verification techniques,
like for exampleWord-Level Decision Diagrams (e.g. [8]),
formal Bitvector Theories (e.g. [1, 6]),Integer Linear Pro-
gramming (e.g. [14]),Symmetry Reductions (e.g. [4, 9]) and
Term Rewriting (e.g. [7]), to survey only a few.

2 Scaling Design Sizes before Verification

This paper presents a new word-level abstraction tech-
nique which is used as a preprocess in high-level property
checking of digital circuits. The proposed method automat-
ically scales down data-path widths while preserving design
properties. We consider the property checking flow shown
in Figure 1. Circuit designs are given as HDL specifica-
tions, and properties are described in a linear time logic used
in Symbolic Trajectory Evaluation and specify the intended
behavior of the design within a finite bounded interval of
time. Typical properties are subdivided into an assump-
tion part implying a commitment part and consist of tempo-
ral operators and state expressions, involving relationships
among data words. As an example consider:

assume: (during [t, t+4]: reset = 0) and
(at t: request = 1);

prove: (at t+3: acknowledge = 1) and
(at t+4: data = 11111111);

The standard verification flow is indicated by white
boxes. Design and property are transformed (Synthesis, Un-
rolling) into an instance of propositional SAT, i.e. a bit-level
formula'. Satisfiability of' corresponds to invalidity of
the property.' is handed to a property checker, which uses
bit-level verification techniques in order to either prove that
the property holds, or to return a counterexample. The gray
shaded areas in Figure 1 illustrate how the proposed abstrac-
tion technique is incorporated into such a flow. Instead of
immediately going down to the bit-level, an RTL represen-
tationE of ' is generated, consisting of high-level primi-
tives, like word-level signals (variables) and word-level op-
erators (e.g. arithmetic units, comparators, multiplexors and
memory elements). Each signalx has a fixed widthn2N+

and takes bitvectors of respective length as values.

Shrunken Signals

Signals

Property
Design Specification

(VHDL , Verilog)

Frontend

Result Counterexample for Original RTL

Bit−Level Representation

Representation
Reduced RTL

RTL
Representation

Information
Reduction

Counterexample for Reduced RTL

Signal−Width Enhancement

NO
Property holds?

Verification Engine (SAT, BDD, ATPG, ...)

YES

Property Checker

Preprocessing

Postprocessing

Signal−Width Reduction
Abstraction

x [n]

y[s]

x
0

[m]

y
0

[t]

Figure 1. Property Checking Flow

In a preprocessing step, our method takes the RTL repre-
sentation and computes a second, scaled down RTL model
E
0 by replacing each word-level signalx of E by a cor-

responding shrunken signal of widthm x � n (whereby
n denotes the original width ofx). Original and abstract
model differ from each other only as far as signal widths
are concerned. All other data-flow aspects are preserved.
The width of each signal in the abstract RTL is the min-
imum width which is necessary and sufficient in order to
establish a one-to-one abstraction with respect to design,
property, and the reduction technique we propose (i.e. by
solely changing signal widths):

The property holds
for the reduced RTL ()

The property holds
for the original RTL

The reduced RTL is transformed into a bit-level formula'
0

which is given to the property checker instead of'. Thus,
the proposed abstraction technique can be used in combina-
tion with a variety of existing (powerful) property checking
tools. The bit-level representations' and' 0 contain bit-
level variables for each bit of each word-level signal ofE

andE 0. Depending on the degree of reduction of signal
widths,'0 can contain significantly less variables than'.
A linear reduction of a signal’s width fromn bits down to
m bits,m < n, causes an exponential reduction of the size
of the induced state space from2n down to2m, which can
cause a significant speed-up of verification runtimes. If the
property does not hold, the property checker returns a coun-
terexample for'0, i.e. for thereduced RTL. Our method
provides a postprocessing technique which takes such a
counterexample and computes values for all inputs of the
original design, for which the property fails.

3 Bitvector Equations

Circuit designs can be represented on RTL by systems
of bitvector equations such that validity of design proper-
ties corresponds to satisfiability of the equations. We define
an equational theoryL(Bv) of fixed-size bitvectors, which
is an extension of the core theory of bitvectors presented in
[6]. Let B := f0; 1g. A bitvector of width n 2 N+ is
a finite vector elementv = hvn�1; : : : ; v1; v0i 2 B

n , con-
sisting ofn individual bits, which are indexed from right
to left, starting with index0. The setB n of bitvectors of
width n is denoted byB [n] . A bitvector variable of width
n 2 N+ is a typed variablex [n], representing fixed-size
bitvectorsv 2 B [n] of widthn. We use bold face characters
for bitvector variables, and the width (i.e. the type) is al-
ways explicitely denoted. We writex [n][i] to refer to theith

bit of the value ofx [n]. The set of well-formedL(Bv) terms
is defined inductively over a finite set of bitvector variables
and the set of bitvector operators shown in Table 1.

Operator Syntax Example

bitvector variables x [n] x [8]; y[16]; z [4]; : : :

bitvector constants vn�1:::v1v0 0000; 1111; 00101011; : : :

concatenation
 x [16] = y [12]
 z [4]

extraction [j; i] x [4] = y [32][5; 2]

bitwise negation neg x [8] = neg(y [8])

bitwise Boolean and; or; xor x [16] = y [16] and z [16]

connectives nand; nor; xnor x [16] = y [16] or z [16]

if-then-else ite x [8] = ite(a [4] = b[4]; y [8]; z [8])

x [8] = ite(a [4]<b[4]; y [8]; z [8])

arithmetic �;�;� x [32] = y [32] � z [32]

memory read read c[4] = read(m[1024]; i [8])

memory write write m
0

[64] = write(m [64]; i [4]; v [2])

Table 1. Bitvector Operators and Equations

Well-formedness of terms implies that variable widths
have to comply with operator demands (e.g. index expres-
sions must not exceed the widths of argument terms). Note
that additional high-level operators, e.g. shifts and rotations,
can already be expressed with the shown set of operators.
Within our framework, RTL models consist of a systemE
of equations of bitvector terms overL(Bv) such that:

E is satisfiable ()
The property does not
hold for the design (1)

A systemE is satisfiable if there exists a valuation of the
variables ofE such that all equations are satisfied. Multi-
bit circuit signals directly correspond to bitvector variables
of E. A satisfying solution – if existent – yields a coun-
terexample indicating values for all circuit signals such that
the property does not hold for these assignments (falsifi-
cation, bug hunting). The proposed abstraction technique
generates a second systemE 0 of bitvector equations, which
differs fromE solely in the manner that variable widths are
reduced. The width of each bitvector variable is shrunken to
the smallest possible number of bits (with respect toE

0 dif-
fering fromE only by reduced variable widths), such that:

E
0 is satisfiable () E is satisfiable (2)

E
0 represents a scaled down version of the original design,

and property checking can be done entirely onE
0.

4 Signal Width Reduction

Bitvector equations describe data dependencies on word-
level. The equations explicitely contain the high-level infor-
mation, which individual bits belong to the same word-level
signal, and how single bits are ordered within multi-bit sig-
nals. In the following we show how this information can
be used to reduce computational complexity of satisfiability
checks of bitvector equations.

If neighboring bits of bitvector variables are computed
uniformly according to the same bit-level data flow, then
such data dependencies are called auniform data flow.

Example 1 (Uniform Data Dependencies) Let x [8];y [8]

and z [8] be 8-bit signals, and consider the following bit-
vector equation:

x [8] and y [8] = z [8] (3)

Equation (3) specifies functional data dependencies be-
tween x [8];y [8] and z [8]. Satisfiability of (3) corresponds
to satisfiability of the following bit-level representation

(x0 and y0 = z0) ^ : : : ^ (x7 and y7 = z7) ; (4)

involving 24 Boolean variables and 8 equations. Obviously
it is not necessary to solve all 8 equations of (4) separately,
because the data flow for bit-positions 0–7 is computed uni-
formly. Let x 0

[1],y 0

[1],z
0

[1] denote new signals of width 1,
derived from the variables of (3). It is sufficient to check
satisfiability of

x
0

[1] and y
0

[1] = z
0

[1] ; (5)

because (3) is satisfiable if and only if (5) is satisfiable. A
satisfying solution of (3) can be obtained from a solution of
(5) by signed extension. For example, x 0

[1] = 0, y 0

[1] = 1,
z

0

[1] = 0 yields x [8] = 00000000, y [8] = 11111111 and
z [8] = 00000000. 2

Uniform data flow is formally characterized bybitwise
bitvector functions.

Definition 1 (Bitwise Bitvector Functions) Let n; k 2N+

and F[n] : B [n] � : : : � B [n] �! B [n] be a k-ary bitvec-
tor function of width n on bitvectors of width n. F[n] is a
bitwise bitvector function if there exists a k-ary Boolean
function B[1] : B [1] � : : : � B [1] �! B [1] such that
F[n](x

1
[n]
; : : : ;x

k

[n]
)[i] = B[1](x

1
[n]

[i]; : : : ;xk

[n]
[i]) for all

i 2 f0; : : : ; n� 1g and all x 1
[n]
; : : : ;x

k

[n]
2 B [n] . �

B[1] is called thecharacteristic Boolean function of
F[n]. Satisfying solutions of bitvector equations with uni-
form data dependencies can be characterized by zeros of
bitwise bitvector functions.

Definition 2 (Bitwise Bitvector Equations) Let e be a bit-
vector equation over L(Bv), and let V = fx 1

[n]
; : : : ;x

k

[n]
g

be the set of bitvector variables occurring in e. Then e

is called a bitwise bitvector equation if there exists a bit-
wise bitvector function F[n] such that the set of satisfying
solutions of e is exactly the set of satisfying solutions of
F[n](x

1
[n]
; : : : ;x

k

[n]
) = 0[n]. �

Satisfiability of bitwise bitvector equations for bitvectors
of widthn can be mapped onto satisfiability of equations for
bitvectors of width1 by simply reducing variable widths, as
seen in Example 1 and formalized as follows.

Corollary 1 (Bitwise Bitvector Functions) Let n; k 2 N+

and F[n] : B [n] � : : : � B [n] �! B [n] be a k-ary bitwise
bitvector function with characteristic Boolean functionB [1].
Then F[n](x

1
[n]
; : : : ;x

k

[n]
) = 0[n] is satisfiable if and only

if B[1](x 01
[1]; : : : ;x

0k

[1]) = 0[1] is satisfiable. �

In general, data flow must be analyzed for all equations
of a given system. Reduction depends on structural and dy-
namical data dependencies imposed by the conjunction of
all equations. Thus, even if uniform data flow exists for a
specific equation, other equations can be the reason that re-
duction to only1-bit width might not preserve satisfiability.

Example 2 (Dynamical Data Dependencies) Let x [8], y [8]

and z [8] be signals of width 8, for which uniform data de-
pendencies exist. Consider a system of bitvector equations,
which additionally contains the following expressions:

: : : = : : : ite(x [8]=y [8]; : : : ; : : :) : : :

: : : = : : : ite(y [8]=z [8]; : : : ; : : :) : : :

: : : = : : : ite(z [8]=x [8]; : : : ; : : :) : : :

(6)

A satisfying solution of (6) might require that the values of
x [8];y [8], z [8] have to be mutually different, i.e.

x [8] 6= y [8] ^ y [8] 6= z [8] ^ z [8] 6= x [8] : (7)

Then, reduction to only one bit width is not possible, be-
cause x 0

[1] 6= y
0

[1] ^ y
0

[1] 6= z
0

[1] ^ z
0

[1] 6= x
0

[1] is not
satisfiable, while (7) is. Instead the following holds:

x [m] 6= y [m] ^ y [m] 6= z [m] ^ z [m] 6= x [m] (8)

is satisfiable for all m � 2, and at the same time 2 is the
minimum value for m, for which

(7) satisfiable () (8) satisfiable

holds. Therefore, satisfiability of (6) can be preserved by
choosing reduced bitvectors of width 2. But, even if a solu-
tion of (6) maybe only requires x [8] 6= y [8] ^ y [8] 6= z [8] ,
a reduction to one bit widths still might not be sufficient, al-
though x 0

[1] 6= y
0

[1] ^ y
0

[1] 6= z
0

[1] is satisfiable, because
the uniform data dependencies between x [8];y [8]; z [8], as
imposed by further equations of (6), could be the following:

11111111 = (x [8] and y [8] and neg(z [8])) or

(neg(x [8]) and y [8] and z [8])

Such conditions are satisfiable for bitvectors of width 8, but
the corresponding problem, where variables are reduced to
1-bit width, is unsatisfiable. Instead, satisfiability again is
preserved when reduced bitvectors of width 2 are chosen. 2

Data dependencies can exist between complete bitvec-
tors or only between certain bits. Typically, different data
dependencies exist for different chunks of a variable. Vari-
ables can be partitioned into contiguous parts in which all
bits are treated uniformly with respect to data dependencies.

Example 3 (Structural Data Dependencies) Let x [8];y [8]

and z [8] be bitvector variables of width 8, and let a [2]; b [2]

be bitvector variables of width 2. Consider the following
system E of bitvector equations:

E

�
x [8] and y [8] = z [8]

x [8] = a [2]
 b [6]
(9)

The first equation specifies uniform data dependencies for
x [8];y [8]; z [8], but the second one imposes different struc-
tural dependencies for the upper two and the lower six bits
of x [8]. E can be decomposed into two disjoint independent
systems E1 and E2 of bitvector equations,

E1

�
x [8][7; 6] and y [8][7; 6] = z [8][7; 6]

x [8][7; 6] = a [2]

E2

�
x [8][5; 0] and y [8][5; 0] = z [8][5; 0]

x [8][5; 0] = b [6]

(10)

such that the set of satisfying solutions of E is the same as
the set of satisfying solutions of the conjunction of E1 and
E2, i.e. E is satisfiable if and only if E1 ^ E2 is satisfi-
able. Furthermore, all data dependencies in E1 and in E2

are uniform. Satisfiability of (10) then can be reduced to
satisfiability of:

E
0
1

�
x

0

[1] and y
0

[1] = z
0

[1]

x
0

[1] = a
0

[1]

E
0
2

�
x

00

[1] and y
00

[1] = z
00

[1]

x
00

[1] = b
00

[1]

(11)

and from (11) we can recompose

E
0

�
x

000

[2] and y
000

[2] = z
000

[2]

x
000

[2] = a
000

[1]
 b
000

[1]
(12)

with (12) is satisfiable if and only if (9) is satisfiable. a 000

[1]

relates to a [2], b 000

[1] relates to b [6], x 000

[2][1; 1] relates
to x [8][7; 6], and x

000

[2][0; 0] to x [8][5; 0], and so on. To
obtain a solution of (9), signed extension is done sepa-
rately for related chunks according to the prior decompo-
sition, for example a

000

[1] = 0, b 000

[1] = 1, x 000

[2] = 01,
y

000

[2] = 11, z 000

[2] = 01, yields a [2] = 00, b [6] = 111111,
x [8]=00111111, y [8]=11111111, z [8]=00111111. 2

5 Granularity Decomposition

According to Definition 2 and Corollary 1, satisfiability
of bitwise bitvector equations can be mapped to satisfiabil-
ity of corresponding equations over bitvectors of reduced
width. This technique can be generalized to scale down
signal widths for whole systems of bitvector equations as
shown in Example 3.

A chunk of a bitvector variablex [n] is a triple(x [n]; j; i)
with 0 � i � j < n, representing the contiguous part
of x [n] which is described by the bitvector termx [n][j; i].
Two chunksx [n][j1; i1] andx [n][j2; i2] aredisjoint if either

i1 > j2 or j1 < i2. A finite number ofmutually disjoint
setsC1; : : : ; Cq of chunks of bitvector variables is called a
granularity, if

S
Ci is a set ofdisjoint chunks.

Definition 3 (Granularity Decomposition) Let V be a set
of bitvector variables and let E be a system of bitvector
equations over variables of V . A granularity decompo-
sition of E is a decomposition of E into a finite number
E1; : : : ; Eq of independentsystems ofL(Bv) equations and
into sets of chunks C1; : : : ; Cq and sets I1; : : : ; Iq � V �V

such that
� C1; : : : ; Cq is a granularity of V ,

� each Ci is exactly the set of chunks (variables)
occurring in Ei,

� all equations of each Ei are bitwise bitvector
equations, and

� the set of satisfying solutions of E consists exactly
of all compositions of satisfying solutions of
E1; : : : ; Eq , which additionally satisfy the
inequalities specified by I1; : : : ; Iq . �

The process of scaling the widths of bitvector variables
for a systemE of bitvector equations is separated into two
subsequent phases. Section 6 describes how first a gran-
ularity decomposition ofE is computed, which, for each
bitvector variablex [n] of E, describes a splitting ofx [n] ac-
cording to uniform data flow, as imposed by structural data
dependencies. Then, for each chunk ofx [n], the necessary
minimum width is computed, which preserves satisfiability
as required by dynamical data dependencies (cf. Example
2). This is further explained in Section 7. According to
these computed minimum chunk widths, the reduced width
for the corresponding shrunken variable ofE

0 is reassem-
bled, as illustrated in Figure 2.

Recomposition

Shrunken Bitvector Variable

Granularity Decomposition

Bitvector Variable

Minimum Width Reduction

Figure 2. Basic Abstraction Technique

A granularity decomposition of a given systemE always
exists, because bitvector variables can always be decom-
posed into single bits and the data dependencies ofE can
always be described on bit-level. Usually, there exists a
variety of possible decompositions. If, for example, uni-
form data dependencies exist for a chunkx [8][5; 0], then
a finer splitting, e.g. intox [8][5; 4] andx [8][3; 0], is also a
valid decomposition. The highest amount of reduction can
be achieved for bitwise decompositions with chunks of the
largest possible width. Finding the coarsest possible de-
composition for an arbitraryE, is a problem of detecting
uniform data flow. Hence, it is a problem of deciding equal-
ity of Boolean functions, and thus is NP-complete.

01

01234567

01234567

0123

01

23

0123

4567

014567

0123

01234567

01

0123

01234567

Dependency Classes of Bitvector ChunksBitvector Variables

Bitvector Equations

a [2]

x [8]

y [8]

z [4]

x [8] = z [4]
 x [8][3; 2]
 a[2]

z [4] = x [8][7; 4] and y [8][7; 4]

Granularities

a [2][1; 0]

x [8][7; 4][3; 2][1; 0]

y [8][7; 4][3; 0]

z [4][3; 0]

a[2][1; 0]

x [8][7; 4]

x [8][3; 2]

x [8][1; 0]
y[8][7; 4]

y [8][3; 0]

z [4][3; 0]

Figure 3. Granularity Decomposition

6 Uniform Data Flow Analysis

Our methods computes a granularity decomposition of
a given systemE by syntactical analysis of the bitvector
equations ofE. According to the high-level information
about operators and multi-bit signals, which is available
within theL(Bv) formalism, chunks of neighboring bits of
bitvector variables are determined, for which uniform data
dependencies exist. The granularity decomposition is de-
termined by means of an equivalence class structure, which
groups chunks of bitvector variables between which func-
tional dependencies can be described by a bitwise bitvector
function.

The equivalence class computation can efficiently be
done by employing a union-find algorithm, which, besides
the knownunion() and�nd() operations, defines a new pro-
cedureslice(). Initially, one complete chunk for each bit-

Algorithm 1 Granularity Analysis of Bitvector Equations

gran(e) f

switch (e);

case e � 0

s[n] = t[q]
 u[r]
0 :

gran(0s[n][n� 1; r] = t[q]
0); gran(0s[n][r � 1; 0] = u[r]

0);

case e � 0

s[n] = neg(t[n])
0 :

gran(0s[n] = t[n]
0);

case e � 0

s[n] = ite(a[q] = b[q]; t[n]; u[n])
0 :

gran(
0

a[q] = b[q]
0

); gran(0s[n] = t[n]
0

); gran(0s[n] = u[n]
0

);

case e � 0

s[n] = t[n] and u[n]
0 :

gran(0s[n] = t[n]
0); gran(0s[n] = u[n]

0);

: : :

case e � 0

s[n] = (t[q]
 u[r])[j; i]
0 :

if (j < r) f

gran(0s[n] = u[r][j; i]
0);

g else if (i � r) f

gran(0s[n] = t[q][j � r; i � r] 0);

g else f
gran(0s[n] = t[q][j � r; 0]
 u[r][r � 1; i] 0);

g

case e � 0

s[n] = (t[q][l; k])[j; i]
0 :

gran(0s[n] = t[q][k + j; k + i] 0);

case e � 0

s[n] = ite(a[q] = b[q]; t[r]; u[r])[j; i]
0 :

gran(0s[n] = ite(a[q] = b[q]; t[r][j; i]; u[r][j; i])
0);

case e � 0

s[n] = (t[q] and u[q])[j; i]
0 :

gran(0s[n] = t[q][j; i] and u[q][j; i]
0);

: : :

case e � 0

x [n][j; i] = y [q][l; k]
0 :

slice(x [n]; j; i); slice(y [q]; l; k); union(x [n]hj; ii; y [q]hl; ki);

g

vector variablex [n] resides in its own singleton equivalence
classfx [n][n�1; 0]g. A call of�nd(x [n]; i) yields the (non-
ambiguous) equivalence class which includes a chunk of
x [n] which contains bit positioni; union() performs the
usual set union of two classes; andslice(x [n]; j; i) calls
�nd(x [n]; i) and�nd(x [n]; j) and splits all chunks of the
respective classes at the bit positions corresponding toi and
j. The originating parts are grouped in two new classes.

Each bitvector equatione of E is sequentially (but in an
arbitrary order) analyzed, and the next state of the equiv-
alence class structure is computed by means of the proce-
duregran(e), which is outlined in Algorithm 1. The proce-
dure recursively performs a case split according to the top-
level operators occurring in the bitvector terms and com-
putes a coarsest-possible1 granularity decomposition of all
variables occurring ine. When all bitvector equations have
been processed, the granularity decomposition ofE is given
by the sets of chunks residing in each equivalence class. An
example is illustrated in Figure 3.

7 Minimum Width Abstraction

The initial satisfiability problem forE is decomposed
into a number of independent satisfiability problemsE i as
described in Definition 3, which are associated with the
computed equivalence classes. The specialty of our method
is that these instancesEi donot have to be computed or rep-
resented explicitely. For the reduction technique, which we
propose, it is sufficient to know, that the solutions of these
problems can be characterized by satisfiability problems for
bitwise bitvector functions and sets of inequalities.

Definition 4 (BvSat) Let k; n 2 N+ and V = f1; : : : ; kg.
Let F[n] : B [n] � : : : � B [n] �! B [n] be a k-ary bitvector
function of width n on bitvectors of width n. Let I � V �V .
Then BvSat(F[n]; I) denotes the problem whether there ex-
ist x1

[n]
;:::;x

k

[n]
2 B [n] , such that F[n](x

1
[n]
;:::;x

k

[n]
)=0[n]

and x i

[n]
6= x

j

[n]
for all fi; jg 2 I . �

BvSat is an NP-complete Problem, and is in detail in-
vestigated in [11], where the following fundamental theo-
rem on width reductions for bitwise bitvector functions and
inequalities is presented.

1Coarsest, in the sense of: as coarse as can be concluded by purely
syntactical analysis. Yet in fact, for many practical applications in digital
circuit design our technique yields the optimum decomposition.

If two k-ary bitwise Bitvector functionsF 1
[n]

andF2
[m]

on bitvectors of widthn andm operate according to the
same characteristic Boolean function, then let this corre-
spondence be denoted byF 1

[n]
' F2

[m]
.

Theorem 1 (Minimum Width Reduction) Let k; n 2 N+

and V = f1; : : : ; kg. Let I � V � V and let p 2 N+

be the number of connected components of the undirec-
ted graph G(V; I) with vertices V and edges I . Let
m := min

�
n; max(1; k � p)

�
. Then m is the minimum

value for which the following holds:

for all k-ary
bitwise F[n]

:
BvSat(F[n]; I)

satisfiable ()
BvSat(F[m]; I)

satisfiable .

whereby for each F[n], F[m] denotes the corresponding bit-
wise bitvector function of width m width F[n] ' F[m]. �

Note that the reduced widthm, which is computed in
Theorem 1, depends only on the arityk of the bitwise func-
tions and on the setI of inequalities. Thus, for each equiv-
alence classCi a reduced width'(Ci) can be computed,
which preserves satisfiability of the associated bitwise bit-
vector equationsEi in a one-to-one fashion.'(Ci) only
depends on the size of the equivalence class (i.e. on the
number of chunks contained inC i) and on the number of
connected graph components as induced by the inequalities,
which are derived from guard expressions ofif-then-
else terms which involve variables ofCi.

The computation of the number of connected graph com-
ponents for each class can efficiently be done by using
a union-find algorithm, and moreover, can be embedded
within the computation of the equivalence classes during
the granularity decomposition.

x [8]

y [8]

z [8]

Ci

'(Ci) = 5� 3

= 2

Figure 4. Minimum Width Abstraction

Fig. 4 reconsiders Example 2, showing a sample equiva-
lence class; inequalities are drawn as edges between chunks.

8 Experience and Summary

Reduction of data path widths has always been a classi-
cal attempt of minimizing state place explosion for formal
model checking methods. Many EDA companies today per-
form such reductions manually to reduce verification run-
times, often without having the guarantee that the chosen
amount of scaling does not falsify verification results.

In this paper we have presented a fully automated one-to-
one RTL abstraction technique, which efficiently analyzes
word-level data-flow in RTL descriptions with respect to a
specified property. Designs are scaled down by reducing

signal widths before property checking, while guaranteeing
that the property holds for the scaled model if and only if it
holds for the original design.

The proposed abstraction technique has been imple-
mented inC++ in a tool called BOOSTER (Boolean String
Length Reduction) and can easily be integrated into exist-
ing verification flows. BOOSTER was tested in several case
studies at the EDA departments of Siemens Corporation in
Munich and Infineon Technologies in San Jose, CA. Experi-
ments on large industrial circuits have demonstrated the ap-
plicability and efficiency of the presented technique (for de-
tails see [10]). Good results have been achieved for specific
types of digital designs, which provide a high degree of uni-
form data-flow, as for example memories, queues, stacks,
bridges and interface protocols. In an experiment we con-
sidered a design of roughly 3.000 lines of Verilog code with
a synthesized netlist of 24.000 gates and 35.000 RAM cells.
The width of the data-path could be reduced from 10 bits
down to 3 bits. The size of the bit-level model was shrunken
to 30% of the original size, and property checker runtimes
dropped down to only 5% of the former runtimes.

The proposed technique can furthermore be applied in
high-level equivalence checking and high-level simulation.

References

[1] C. W. Barrett, D. L. Dill, and J. R. Levitt. ”A Decision Pro-
cedure for Bitvector Arithmetic”. InProc. DAC, pages 522–
527, 1998.

[2] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu.
”Symbolic Model Checking Using SAT Procedures instead
of BDDs”. In Proc. DAC, pages 317–320, 1999.

[3] R. E. Bryant. ”Graph-Based Algorithms for Boolean Func-
tion Manipulation”. IEEE Transactions on Computers,
35(8):677–691, 1986.

[4] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. ”Sym-
metry Reductions in Model Checking”. InProc. CAV, pages
147–158, 1998.

[5] E. M. Clarke, O. Grumberg, and D. E. Long. ”Model Check-
ing and Abstraction”. InProc. POPL, pages 342–354, 1992.

[6] D. Cyrluk, M. O. M�oller, and H. Rueß. ”An Efficient Deci-
sion Procedure for the Theory of Fixed-Sized Bit-Vectors”.
In Proc. CAV, pages 60–71, 1997.

[7] N. Dershowitz and J. P. Jouannaud.”Handbook of Theo-
retical Computer Science, Formal Models and Semantics”,
chapter ”Rewrite Systems”, pages 243–320. J.v. Leeuwen,
Elsevier, 1990.

[8] R. Drechsler.Formal Verification of Circuits. Kluwer Aca-
demic Publishers, 2000.

[9] E. A. Emerson and R. J. Trefler. ”From Asymmetry to Full
Symmetry: New Techniques for Symmetry Reduction in
Model Checking”. InProc. CHARME, pages 142–156, 1999.

[10] P. Johannsen. ”BOOSTER : Speeding Up RTL Property
Checking of Digital Designs by Word-Level Abstraction”.
In Proc. CAV’01, pages 373–377, 2001.

[11] P. Johannsen. ”Reducing Bitvector Satisfiability Problems
to Scale Down Design Sizes for RTL Property Checking”.
In IEEE Proc. HLDVT’01, 2001.

[12] J. P. M. Silva. ”Search Algorithms for Satisfiability Prob-
lems in Combinational Switching Circuits”. PhD thesis,
University of Michigan, 1995.

[13] J. P. M. Silva and K. A. Sakallah. ”Boolean satisfiability in
electronic design automation”. InProc. DAC, pages 675–
680, 2000.

[14] Z. Zeng, P. Kalla, and M. Ciesielski. ”LPSAT: A Unified
Approach to RTL Satisfiability”. InProc. DATE, pages 398–
402, 2001.

