
SYNTHESIZING CHECKERS FOR ON-LINE
VERIFICATION OF

SYSTEM-ON-CHIP DESIGNS
Rolf Drechsler

Institute of Computer Science

University of Bremen
28359 Bremen, Germany

email: drechsle@informatik.uni-bremen.de

ABSTRACT
In modern System-on-Chip (SoC) designs verification
becomes the major bottleneck. Since by using state-of-the-
art techniques complete designs cannot be fully formally
verified, it becomes more and more important to check the
correct behaviour during operation. This becomes even
more significant in systems that are changed during life-
time, like re-configurable systems.
In this paper we present a hardware extension that allows
to efficiently synthesize checkers and properties that have
been used in the verification process. This allows for an
on-line verification of SoC designs. For the verification
hardware a regular layout is discussed that can easily be
synthesized and has a very low area overhead. The on-line
check has (nearly) no effect on the delay of the considered
chip.

1. INTRODUCTION

Modern circuits contain up to several million transistors. In
the meantime it has been observed that verification
becomes the major bottleneck, i.e. up to 80% of the overall
design costs are due to verification. This is one of the
reasons why recently several methods have been proposed
as alternatives to classical simulation, since it cannot
guarantee sufficient coverage of the design. E.g. in [2] it
has been reported that for the verification of the Pentium IV
more than 200 billion cycles have been simulated, but this
only corresponds to 2 CPU minutes, if the chip is run with 1
GHz.
As alternatives, formal verification or symbolic simulation
have been proposed and in the meantime these have been
successfully applied in many projects [6]. But so far, all
approaches are based on software solutions and cannot be
applied after the chip is fabricated. On-line verification
approaches have not been considered. But there is a need
for these techniques in at least two problem domains:

• If the properties specified by the designer or
verification engineer cannot be proven by the
verification tool. This might result from too complex
properties or from the difficulty of the circuit
considered (e.g. for multipliers).

• If the circuit is re-configured during operation [14,4].

The new programmed hardware has to be checked for
correct functional behaviour.

In this paper, we present an approach to synthesize
hardware that can check properties that have been applied
during the verification process. Often these properties are
also available directly from the specification [13]. The
approach of adding extra hardware has been very
successfully applied in the testing domain for many years
(see e.g. [15,9]), while hardware verification is mainly
applied on the software level. With new emerging
technologies this has to be extended. The synthesized
circuits are called verification hardware in this paper.
Verification hardware allows to check the correct behaviour
also later, after the chip production. These techniques
become very important in SoC designs that allow parts to
be re-configured during operation.
After explaining the underlying principle of our approach, a
regular hardware layout is discussed that allows to map
properties defined in the verification process directly on
the circuit with very low hardware overhead. The extra
delay resulting from the verification hardware is small, i.e.
only one extra fanout per checked signal.

2. CHECKER STRUCTURES
Even though the formalism to describe properties in
verification languages varies a lot (see e.g. [10]), the
underlying mechanisms are very similar. In the following
we use the notation from the property checker used at
Infineon Technologies AG (see e.g. [7,8] for more details).

Notice that it is straightforward to generalize the results to
also work for other verification languages.

A property consists of an assume part and a proof part. If
all assumptions hold, the property specified in the proof
part must hold.

Example 1: We want to prove a property test. The
property says that whenever signal x becomes 1, two
clock cycles later signal y has value 0. More formally:

theorem test is
assume:
 at t: x = 1 ;

prove:
 at t+2: y = 0 ;
end theorem ;

In general, each property is of the form that whenever some
signals have given values (eventually over several time
frames), other – or the same – signals assume specified
values. Notice that property languages also allow to argue
over time intervals, e.g. a requirement can be that a signal
assumes a value within a given time interval, while the
concrete time point is not given. It is obvious that each of
the properties can easily be transferred to hardware
realization based on shift registers and some additional
logic (see below).

Remark: This is exactly the method by which efficient
property checkers formulate the problem by translating the
property to a Boolean network and running Boolean
provers, like e.g. SAT and BDD [11]. (For more details on
SAT-based property checking see [3].) In contrast to shift
registers the solvers “un-roll” the circuit for the maximal
number of time frames specified in the property. For our
approach shift registers are more adequate, since for
simulation only the value at an earlier time frame has to be
stored, while the surrounding logic can be ignored.

While property checkers “un-roll” the circuit, we now show
by a motivating example a hardware realization:

Example 2: Consider the property from Example 1.
Whenever signal x is 1 it has to be checked that y is 0 two
time frames later. This can be easily done by storing the
value of x for two clock cycles and then computing the
result by performing an AND operation of the x-signal with
the negated value of y (y has to be negated, since it
should have the value 0). The corresponding circuit is

shown in Figure 1. If the output of the AND gate is 0, the
property is violated.

Figure 1. Shift register and logic for Example 1

In this way, it becomes very easy to generate monitors in
hardware from given properties. The hardware can be used
to check the correct circuit behaviour during operation, i.e.
it is applicable for on-line test. This finds application in
several scenarios, e.g.:

• “Hard” to proven properties: Some properties turn out

to be too difficult to be formally verified. This depends
on the property itself and the circuit under
consideration. If the design e.g. contains large
multipliers, formal verification cannot prove the
property. In these cases, simulation is not sufficient
(see [2] and the discussion in Section 1).

• In re-configurable computing hardware components

are exchanged during normal operation. An “external”
verification method based on software cannot be
applied in this case. Here verification hardware is a
promising alternative. (Similar concepts have been
studied in the area of testing for a longer time [15],
while verification is so far mainly “software-oriented”.)

It is straightforward to also include more complex
operations, like reasoning over several time intervals, by
simply adding the corresponding signals, i.e. OR-ing the
signals.

2.1 Algorithmic Solution Using String Matching

Summing up the observations above, the problem to be
solved is a specific type of string matching, i.e. during
circuit operation it has to be determined whether a pattern
occurred that is defined over a number of signals for the
assume and proof part. While exact string matching is a
very well studied problem (see [5] for a list of more than 30
algorithms), in our case some further constraints or
properties have to be considered:

• Since the realization has to be included in the circuit,
we need an efficient hardware description.

• We can make use of parallelism, while “classical”
string matching is used in software.

• The signals only assume binary values.

• The layout of the circuit should be regular and
scalable.

Due to these reasons, the technique described in the
following differs to the software approaches presented
earlier, but has some similarities to the Shift-Or-Algorithm
[1].

We first describe the main idea following Example 2. The
signals that are used in the property to be checked are fed
into chains of shift registers. The outputs of the flipflops of
the chain give the signal values in the corresponding time
frame. Then the property can easily be mapped by AND-
and OR-gates resulting in the required behaviour.

If several properties are defined over the same set of
variables, of course these signals only have to be stored
once allowing for an efficient reuse methodology.

3. REGULAR LAYOUT

In this section we show a block diagram, how to realize the
concept above using a regular layout. The overall flow is
given in Figure 2. Here, the method described in Section 2
is generalized to save hardware (see below).

The core block mainly consists of shift registers, that allow
to “remember” the signal value of previous time frames.
The length of this chains is determined by the maximal time
interval a property uses. The block logic implements the
checks according to the properties specified.

Remark: In a typical application, the maximal time interval
of properties is less than 20. Thus, the hardware required is
moderate.

The number of scan chains – this determines the height of
the block – is given by the number of signals that are used
in the properties to be checked. If this number becomes too
large, a bus system can be used including the
corresponding control logic (blocks bus and control in
Figure 2). For the designs of these blocks standard
methods can be applied. By this approach, the number of
shift registers can be reduced to the maximal number of
signals used in one single property. The control block also
has to select the correct property that has to be checked
for the signals fed in the shift registers.
The decision, which of the solutions to chose (i.e. with or
without a bus and control block), has to be made
dependent on the design and the application. In cases
where high quality has to be assured the “bus-less”
solution should be preferred, since in that case all
properties are checked in parallel, while the bus concept is

more efficient if the number of properties becomes very
large.

The logic block is directly derived from the properties
along the lines described in the previous section. To
further optimise the hardware, some of the scan chains can
be cut, if the corresponding signal is not needed.

Example 3: Consider again Figure 1, where the scan chain
of signal y has only length 1, while the one of x has length
3.

Finally, we briefly comment on the extra delay resulting
from the proposed approach. For each signal that occurs in
a property, the corresponding wire has to be made
available. But these signals are directly available in the
circuit to be verified and for this only one extra fanout is
needed. An extra delay caused by this is usually negligible.

4. RELATED WORK

Independent of this work, in [12] a technique has been
proposed to synthesize checkers, but these are declared on
a very high level of abstraction and are included in the
synthesis process. This makes them difficult to use in re-
configurable systems. Furthermore, the layout of the
verification hardware is not considered and by this a reuse
of hardware components becomes very difficult.

5. CONCLUSIONS

A new approach has been presented for on-line verification
based on synthesizing checkers in hardware. Properties
originally specified for (formal) verification on a software
level can be directly mapped.

A regular layout has been described that allows the
implementation with small hardware overhead. The size of
the hardware grows linear with the maximal time interval of
the longest property.

It is focus of current work to apply the techniques
described in this paper to systems containing re-
configurable components.

6. REFERENCES

[1] R.A. Baeza-Yates, G.H. Gonnet, A new approach to
text searching, Communications of the ACM.
35(10):74-82, 1992

[2] B. Bentley. Validating the Intel Pentium 4

microprocessor. In Design Automation Conf., pp. 244-
248, 2001.

[3] A. Biere, A. Cimatti, E. Clarke, M. Fujita, Y. Zhu,
Symbolic Model Checking using SAT procedures
instead of BDDs, In Design Automation Conference,
pp. 317-320, 1999

[4] K. Compton, S. Hauck, Reconfigureable Computing: A

Survey of Systems and Software, ACM Computing
Surveys, Vol. 34, No. 2, pp. 171-210, 2002

[5] C. Charras, T. Lecroq, Handbook of Exact String-

Matching Algorithms, http://www-igm.univ-
mlv.fr/~lecroq/string/string.pdf, 2002

[6] R. Drechsler, S. Höreth, Gatecomp: Equivalence

Checking of Digital Circuits in an Industrial
Environment, International Workshop on Boolean
Problems, pp. 195-200, 2002

[7] P. Johannsen, R. Drechsler, Formal Verification on the

RTL – Computing One-To-One Design Abstractions
by Signal Width Reduction, In 11th IFIP International
Conference on Very Large Scale Integration, pp. 127-
132, 2001

[8] P. Johannsen, R. Drechsler, Utilizing High-Level

Information for Formal Hardware Verification,
Advanced Computer Systems, J. Soldek, J. Pejaz (Ed.),
Kluwer Academic Publishers, pp. 419-431, 2002

[9] M. Gericota, G. Alves, M. Silva, J. Ferreira, DRAFT :
An On-Line Fault Detection Method for Dynamic and
Partially Reconfigurable FPGAs, IEEE International
On-Line Testing Workshop, 2001

[10] R. Goering, Assertion's Babel tower?,

http://www.eedesign.com/columns/tool_talk/OEG2001
0828S0054, 2001

[11] A. Kuehlmann, M. Ganai and V. Paruthi, Circuit-Based

Boolean Reasoning, In Design Automation
Conference, pp. 232-237, 2001

[12] M. Oliveira, A. Hu High-Level Specification and

Automatic Generation of IP Interface Monitors, In
Design Automation Conference, pp. 129-134, 2002

[13] K. Shimuzu, D. Dill, A. Hu, Monitor-based formal

specification of PCI, International Conference on
Formal Methods in Computer-Aided Design
(FMCAD), 2000

[14] R. Tessier, W. Burleson, Reconfigurable Computing

and Digital Signal Processing: A Survey, Journal of
VLSI Signal Processing, Kluwer, 28, pp. 7-27,
May/June 2001

[15] T.W. Williams, K.P. Parker. Design for testability - a

survey. IEEE Trans. on Comp., 31(1):2-15, 1982

Figure 2. Regular layout for verification hardware

