MicroRV32 - A SpinalHDL based RV32I
Implementation Suitable for FPGAs

Sallar Ahmadi-Pour!

Vladimir Herdt!»?

Rolf Drechsler!2

!Group of Computer Architecture, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{sallar,vherdt,drechsler } @uni-bremen.de
Visit http://www.systemc-verification.org/risc-v to find our most recent RISC-V related approaches.

I. INTRODUCTION

We propose a demonstration of a lightweight RISC-V implementation
called MicroRV32 that is suitable for FPGAs. The entire design flow
is based on open source tools. The core itself is implemented in the
modern Scala-based SpinalHDL hardware description language. For the
FPGA flow, the IceStorm suite is utilized. On the iCE40 HX8K FPGA
the design requires about 50% of the resources and can be run at a
maximum clock frequency of 34.02 MHz. Beside the core, the design
also includes basic peripherals and software examples. MicroRV32 is
particularly suitable as a lightweight implementation for research and
education. The complete design flow can be executed on a Linux system
by means of open source tools which makes the platform very accessible.

II. MICRORV32 OVERVIEW

The demonstrator can be described in two parts: the system on a chip
(SoC) platform, written in SpinalHDL, and the hardware setup using
the platform on a FPGA development board with additional probing
and stimuli circuits. Developing the SoC platform was aligned to the
specifications our open source RISC-V Virtual Prototype (VP) (avail-
able at https://github.com/agra-uni-bremen/riscv-vp). The platform was
tested with the RISC-V Unit Tests and comes with software examples.
By utilizing the open source IceStorm suite for iCE40 FPGAs and
the modern open source SpinalHDL hardware description language the
platform is very accessible and can be used with a Linux system.

A. Architecture Overview

Fig. |l| shows a top level view of the architecture of the MicroRV32
platform. The architecture consists of the RISC-V RV32 core and periph-
erals interconnected through a memory mapped bus. A memory holds
the executed program and acts as random access memory (RAM) for the
processor. The initial program is loaded into the memory at synthesis
time. For additional peripherals a module representing LEDs and a
module to shutdown the platform were added. The shutdown peripheral
is used to terminate the processor by transitioning it into a defined end
state. To slow down the execution of the processor a clock divider is
provided. The platform outputs the internal state of the processor in order
to make the execution cycles visible and traceable.

Inital ROM
MicroRV32 Toplevel
b Clock Divider|
> RV32 Core Memory
led[7:0]
cpuFetch
cpuHalted o _ Address
cpuDbgState | SimpleBus \ Mfg;igg
> GP'Q LED Shutdown
Peripheral

Fig. 1. Architecture overview

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project Scale4Edge under contract
no. 16MEO127 and within the project VerSys under contract no. 01IW19001.

B. Demonstrator Overview

———configure FPGA with bitstreamj
. T —r 1. > [}
Arduino driving Set > . o &
clock and reset —cloct » MicroRV32 0z
yiy o L e
1 A (2}
send commands iCE40 HX8K FPGA § 2
! Devboard as
v =
— Computer
A
collect waveform cpuFetch
A2 . cpuHalt
Logic Analyzer |
Capturing clk, reset < CDUDbQState
and outputs from FPGA i

Fig. 2. Demonstrator overview

Fig. |2 shows the hardware setup of the demonstrator for the Mi-
croRV32 platform. The SoC platform runs on a iCE40 HX8K FPGA
development board (center, green) and is connected to components to
control the FPGA inputs (here clock and reset) and to show and trace the
outputs (SoC outputs). With an Arduino microcontroller (red, top left)
the FPGA inputs are driven. A logic analyzer (red, bottom left) collects
the traces of inputs and outputs as a waveform. Additional LEDs (red,
top right) are used to show the the bus address of the memory mapped
bus. Through serial commands from a computer the microcontroller
drives the reset and clock lines of the FPGA.

On the iCE40 HX8K FPGA from Lattice Semiconductor the Mi-
croRV32 Platoform achieves a maximum frequency of 34.02 MHz at
a device utilization around 50%.

C. Future Work

We plan to investigate different directions to further improve our
platform and the VP-based integration:

o Consider formal methods and comprehensive simulation-based
techniques to validate the platform and in particular the RISC-V
core.

« Investigate cross-level methodologies between the VP and RTL
descriptions for verification, simulation and modeling purposes.

« Integrate further peripherals and RISC-V instruction set extensions
into the platform to provide support for powerful operating sys-
tems.

REFERENCES

[1] V. Herdt, D. GroB3e, P. Pieper, and R. Drechsler, “RISC-V based virtual
prototype: An extensible and configurable platform for the system-level,”
JSA, 2020.

[2] S. Tempel, V. Herdt, and R. Drechsler, “An effective methodology for
integrating concolic testing with SystemC-based virtual prototypes,” in
DATE, 2021.

[3] V. Herdt, D. GroB8e, E. Jentzsch, and R. Drechsler, “Efficient cross-level
testing for processor verification: A RISC-V case-study,” in FDL, 2020.

[4] V. Herdt, D. GroBe, and R. Drechsler, Enhanced Virtual Prototyping:
Featuring RISC-V Case Studies. Springer, 2020.

http://www.systemc-verification.org/risc-v
https://github.com/agra-uni-bremen/riscv-vp

