MicroRV32: An Open Source RISC-V Cross-Level Platform
for Education and Research

Sallar Ahmadi-Pour
Institute of Computer Science,
University of Bremen
Bremen, Germany
sallar@uni-bremen.de

ABSTRACT

In this paper we propose pRV32 (MicroRV32) an open source
RISC-V platform for education and research. pRV32 integrates sev-
eral peripherals alongside a 32 bit RISC-V core interconnected with
a generic bus system. It supports bare-metal applications as well
as the FreeRTOS operating system. Beside an RTL implementation
in the modern SpinalHDL language (uRV32 RTL) we also provide
a corresponding binary compatible Virtual Prototype (VP) that is
implemented in standard compliant SystemC TLM (uRV32 VP). In
combination the VP and RTL descriptions pave the way for ad-
vanced cross-level methodologies in the RISC-V context. Moreover,
based on a readily available open source tool flow, pRV32 RTL
can be exported into a Verilog description and simulated with the
Verilator tool or synthesized onto an FPGA. The tool flow is very
accessible and fully supported under Linux. As part of our exper-
iments we provide a set of ready to use application benchmarks
and report execution performance results of uRV32 at the RTL, VP
and FPGA level together with a proof-of-concept FPGA synthesis
statistic.

KEYWORDS
RISC-V, RTL, FPGA, Virtual Prototype, Open Source

ACM Reference Format:

Sallar Ahmadi-Pour, Vladimir Herdt, and Rolf Drechsler. 2021. MicroRV32:
An Open Source RISC-V Cross-Level Platform for Education and Research.
In Design Automation for CPS and IoT (Destion °21), May 18, 2021, Nashville,
TN, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3445034.
3460508

1 INTRODUCTION

RISC-V [21, 22] is a modern Instruction Set Architecture (ISA) with
enormous potential in particular for embedded systems used in
several application areas such as IoT or edge computing. A key
factor for the success story of RISC-V is the free and open nature
of the ISA. Moreover, RISC-V is designed in a very modular and
extensible way which makes it possible to build highly application

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Destion °21, May 18, 2021, Nashville, TN, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8316-5/21/05...$15.00
https://doi.org/10.1145/3445034.3460508

Vladimir Herdt
Institute of Computer Science,
University of Bremen
Cyber-Physical Systems, DFKI GmbH Cyber-Physical Systems, DFKI GmbH
Bremen, Germany
vherdt@uni-bremen.de

Rolf Drechsler
Institute of Computer Science,
University of Bremen

Bremen, Germany
drechsler@uni-bremen.de

specific solutions. Naturally, RISC-V has been strongly adopted by
the industry and also in the academic community.

Meanwhile, RISC-V offers a very comprehensive but still grow-
ing ecosystem with a plethora of tools, simulators and Register
Transfer Level (RTL) implementations, both commercial as well
as open source. Recently, Virtual Prototypes (VPs) emerged in the
RISC-V ecosystem to support the design flow for embedded sys-
tems. A VP is essentially an abstract model of the entire Hardware
(HW) platform and predominantly created in SystemC using the
Transaction Level Modeling (TLM) style [1, 9]. VPs are an industry
proven solution to enable early SW development as well as other
system-level use-cases and thus complement a RTL implementa-
tion [10, 15, 16, 19]. We believe that the availability of a modern,
accessible and FPGA friendly RISC-V RTL implementation together
with a corresponding VP configuration would be very beneficial for
the academic community to stimulate further research and for edu-
cational purposes. Such a VP/RTL combination provides a strong
foundation for advanced cross-level methodologies.

Therefore, in this paper we propose pRV32 (MicroRV32) an open
source RISC-V platform for education and research. uRV32 inte-
grates several peripherals alongside a 32 bit RISC-V core intercon-
nected with a generic bus system. The core supports the base integer
instruction set and provides trap and interrupt handling facilities.
This allows pRV32 to run bare-metal applications as well as operat-
ing systems tailored for the embedded domain such as FreeRTOS.
uRV32 is available as RTL description (URV32 RTL) and imple-
mented in the modern Scala-based SpinalHDL language. Based on a
readily available open source tool flow, uRV32 RTL can be exported
into a Verilog description and simulated with the Verilator tool or
synthesized onto an FPGA. The tool flow is very accessible and fully
supported under Linux. In addition to u32RV RTL we also provide a
corresponding VP configuration, called pRV32 VP, which is imple-
mented in standard compliant SystemC TLM and binary compatible
with pRV32 RTL. We built uRV32 VP on top of the open source
RISC-V VP [18] available at GitHub [5]. The VP enables early and
fast Software (SW) simulations while the RTL description enables
cycle-accurate simulations. In combination the VP and RTL descrip-
tions pave the way for advanced cross-level methodologies. As part
of our experiments we provide a set of ready to use application
benchmarks and report execution performance results of pRV32 at
the RTL, VP and FPGA level together with a proof-of-concept FPGA
synthesis statistic. Visit http://systemc-verification.org/risc-v for
a GitHub link to obtain uRV32 RTL/VP together with the bench-
marks as well as information on our most recent RISC-V related
approaches.

https://doi.org/10.1145/3445034.3460508
https://doi.org/10.1145/3445034.3460508
https://doi.org/10.1145/3445034.3460508
http://systemc-verification.org/risc-v

Destion "21, May 18, 2021, Nashville, TN, USA

2 RELATED WORK

RISC-V already comes with an extensive ecosystem that includes
several simulators as well as RTL implementations that can also be
used for FPGA prototyping purposes.

With respect to simulators, they are predominantly designed
to enable high-speed simulations such as SPIKE [7] or QEMU [6].
Another direction are full platform simulators such as gem5 [4].
Recently, also VP-based solutions that leverage SystemC TLM such
as RISC-V VP [5] or DBT-Rise [3] have been introduced into the
ecosystem to lay the foundation for advanced SystemC-based sys-
tem level use-cases for RISC-V. In this work we built upon RISC-V
VP to design our pRV32 VP to complement our cross-level platform.

Similarly, there exist various RTL implementations for RISC-V
ready to use on FPGAs. Many of the cores rely on commercial FPGA
tool flows which makes them not very accessible. Thus, in the fol-
lowing we exemplarily review cores that also rely on open source
tools but follow different goals than our uRV32 cross-level platform.
For example, the PicoRV32/PicoSoC [13] is a Verilog HDL imple-
mentation of the RISC-V ISA which is optimized for size. An exam-
platory System-on-Chip (SoC) with a small amount of periphrals and
firmware is available. However, while Verilog provides very good
tool support, it is missing many features of the modern emerging
Hardware Description Languages (HDLs) such as SpinalHDL [11] or
Chisel [2]. RocketChip [8] is a RISC-V SoC generator that leverages
the Chisel HDL to provide a highly configurable general purpose
solution. VexRiscV [12] is a SpinalHDL-based implementation of
the RISC-V ISA. VexRiscV makes use of a SW oriented approach
by leveraging SpinalHDL to offer a broad range of parametric and
customizable RISC-V platforms. Thus, making VexRiscV a pow-
erful family of RISC-V implementations that can even support a
Linux operating system. However, the complexity of VexRiscV and
RocketChip makes them significantly less accessible.

Moreover, with pRV32 we propose a combined RTL and VP-
based implementation which provides the foundation for advanced
cross-level methodologies tailored for RISC-V.

3 PRELIMINARIES

In this section we provide relevant background information on the
RISC-VISA (Section 3.1), the open source RISC-V VP which we used
as foundation to build pRV32 VP (Section 3.2), and the open source
tool flow that covers the VP, RTL and FPGA level (Section 3.3).

3.1 RISC-VISA

RISC-V is an open, free and modular Instruction Set Architecture
(ISA). For this work we consider the RISC-V base RV32I ISA. It pro-
vides a set of basic mandatory instructions that cover arithmetic,
branch and jump, as well as load and store instructions. RV32I
defines 32 general purpose registers x0 to x31 (with x0 being hard-
wired to zero) with 32 bit width each. The RISC-V ISA also defines
Control and Status Registers (CSRs) which are special purpose regis-
ters for extended HW/SW interactions such as trap handling and
interrupt processing capabilities. For example, the MTVEC CSR
stores the trap handler address which is configured by the SW and
used by the HW. For a comprehensive description of the RISC-V
instruction set please refer to the official specifications. You can find
more information on the instruction set specifications in volume

Sallar Ahmadi-Pour, Vladimir Herdt, and Rolf Drechsler

Software
| HRV32 | Testbench inC/ASM
v v L
. Verilator] RISC-V RISC-V
‘S"'"a'HDL Simulation é ‘GCC Tools | vp |
3 v =y ;
HDL Code Results 2 ELF VP
(Verilog) (Waveform + Log) | T Simulator

Synthesis Results
(Yosys) (Report + Log)

Initial Memory
Netlist
Pin Constraint Place and Route D User Artifact
File (PCF) (nextpnr)
D Application
FPGA Programmer iCE40 Generated
Bitstream (IceProg) HX8K Devboard Artifact

Figure 1: Overview of the open source HW/SW co-
simulation and co-design tool flow

1 [21] and details on the privileged architecture which in particular
covers CSRs and their behavior in volume 2 [22].

3.2 RISC-VVP

The RISC-V VP is an open source VP tailored for RISC-V and im-
plemented in SystemC TLM. It is designed as a configurable and
extensible platform around a generic TLM bus system. The VP sup-
ports ELF loading (as generated by the GCC or LLVM toolchain)
and provides coverage tracking (via GCOV) and debugging (via
GDB) support of the SW applications running on the VP. Through
these characteristics the VP enables fast SW development iterations.
The TLM-based description also allows for quick explorations of
new extensions of the ISA or HW platform. For the pRV32 cross-
level platform we added a configuration to the VP which represent
puRV32 RTL. The RISC-V VP has already been used in several re-
search studies that cover modeling, verification and simulation
aspects e.g. [17, 18, 20].

The RISC-V VP also supports the Direct Memory Interface (DMI)
and Time Quantum (TQ) optimizations commonly used to speed-up
SystemC TLM simulations. Essentially, DMI boosts the performance
of memory access operations by using a direct memory pointer
instead of TLM transcations to access the main memory, while
TQ avoids costly context switches in the Instruction Set Simulator
(ISS)! by postponing synchronizations with the SystemC simulation
kernel.

3.3 Open Source Cross-Level Toolflow

Fig. 1 shows the co-design and co-simulation toolflow. The diagram
contains user artifcats (green), applications (yellow) and generated
artifacts (red). The user artifacts can be divided into three parts:

(1) The SpinalHDL HW description and the respective testbench
and Pin Constraint File (PCF) for the use of the HW descrip-
tion on the FPGA

(2) The RISC-V VP used for TLM simulations

(3) The RISC-V SW written in C and assembly

The HW description available in SpinalHDL can be exported
to a Verilog description and then used in two ways: 1) simulated
with SpinalHDL and Verilator according to the testbench?, or 2)

! The ISS is essentially an abstract model of the CPU core and thus fetches, decodes
and executes intructions one after another.

2SpinalHDL provides a foreign function interface to interact from the SpinalHDL
testbench with the C++ HW description generated by Verilator.

MicroRV32: An Open Source RISC-V Cross-Level Platform
for Education and Research

RV32

| Control Path FSM
Counter

A)

SimpleBus

A,
Decode j L N leiraTimer
. | fetchSync
Register /0
"l Flle AU — hatt
haltErr
halted

—
dbgState[2:0]

I

CSR

Extension]

Figure 2: Architecture of the RISC-V core of the pRV32 SoC

Datapath
Logic

synthesized to an FPGA. Therefore, a set of open source tools is
provided in particular Yosys to generate a netlist, nextpnr to generate
the FPGA bitstream, and IceProg to program the FPGA. These tools
are part of the open source toolchain IceStorm [14] which supports
Lattice Semiconductor iCE40 FPGAs.

The embedded RISC-V SW is compiled using the normal GCC
toolchain into an ELF file. The ELF file can either be loaded on the
uRV32 VP or transformed by a simple script into a raw binary file
that can be loaded into the RTL simulation or the FPGA memory.
The pRV32 VP enables co-design and co-simulation workflow with
puRV32 RTL. New additions like HW extensions or ISA extensions
can be planned and prototyped on the VP. The VP enables quick
design space exploration with viable prototypes for the SW devel-
opment. When an extension (either a platform or ISA extension) is
planned out, the VP can serve as an executable specification for the
use in the RTL description. Thus, allowing iterations of HW/SW
development and debugging to be shorter. The refinement of the
SW is not dependent on the RTL description and thus can take
place in parallel with the RTL refinement. After the extension is
realized in RTL it can be validated on an FPGA.

The complete tool flow covering the VP, RTL and FPGA level is
available open source and fully supported under Linux, making it
very accessible for education and research.

4 MICRORV32

In this section we present implementation details on pRV32. It is a
modern, accessible and FPGA friendly RISC-V platform designed
around a 32 bit RISC-V core. It consists of two parts:

(1) pRV32 RTL: a modern, accessible and FPGA friendly RISC-V
RTL implementation in SpinalHDL designed to be used
with the open source FPGA toolchain IceStorm[14] (cf. Sec-
tion 3.3).

(2) pRV32 VP: a corresponding binary compatible RISC-V VP
(cf. Section 3.2) configuration representing pRV32 RTL at a
high level of abstraction.

In combination pRV32 provides a strong foundation for investi-
gating advanced cross-level methodologies and design flow tech-
niques. pRV32 RTL/VP and the complete tool flow is available open
source and fully supported under Linux, thus making it very acces-
sible for education and research.

Destion ’21, May 18, 2021, Nashville, TN, USA

valid interrupt
pending

memory response

all other RV32I
instructions

halt through
external signal

load
instruction

ecall or

csr instruction
decoded but illegal

undecoded, illegal instruction

Figure 3: Finite State Machine of the Control Path

Fig. 4 shows an overview of the SoC platform architecture with
its components and the inputs/outputs. In the following, we present
more details on the overall platform, in particular on the RISC-V
core (Section 4.1), the memory bus interface (Section 4.2) and the
peripherals of the SoC platform (Section 4.3). In our description we
focus on the RTL part of the platform.

4.1 RISC-V Core

The core implements the RV32I instruction set together with the
CSR instruction set extension of the RISC-V ISA. Fig. 2 shows the
multiple components of the core. Through the CSR extension the
core supports SW traps and environment calls and interrupts. There-
fore, a set of elementary CSR registers is implemented. The data path
contains the necessary operations to execute all instructions. The
control path is a finite state machine which follows a lightweight
fetch-decode-execute-writeback scheme. The main components are
the control path, the instruction decoder, the datapath, an arith-
metic logic unit, a program counter, a register file and the CSR
extension. Inputs and outputs of the core consist of the memory
bus interface, the timer interrupt input, the halt signal inputs to
transition the core into the defined halt state and additional signals
used for debugging. Fig. 3 shows the finite state machine of the
control path. In the init state all registers are initialized to their
reset values. This includes the program counter, which is set to
the starting address of the main memory. This state is suceeded
by the fetch state. If an interrupt is pending, the FSM transitions
into the interrupt state. The interrupt enables are saved, the in-
terrupts are disabled, the mcause register gets set and the program
counter is set to the trap handler address. The program counter, at
which the interrupt occurs, is saved for restoration after interrupt
handling. After the interrupt state the program execution of the
traphandler follows the regular instruction execution. On return
from the trap handler the instruction preempted by the interrupt
will be executed starting from the fetch state. The current program
counter value is used as the address to read the next instruction
from memory. A fetched instruction is decoded in the decode state.
If the fetched instruction is invalid, the next state is halt, other-
wise the decoded instruction is executed in the execute state. On

Destion *21, May 18, 2021, Nashville, TN, USA

Sallar Ahmadi-Pour, Vladimir Herdt, and Rolf Drechsler

Inital ROM

URV32 Toplevel
Clock Divider
v
> Core Memory
led[7:0]
cpuFetch
_ CpuHalted o « Address
cpuDbgState[2:0] < SimpleBus \ Mapping
< ‘ Logic
uart_rxd, uart_txd <
»| GPIOLED UART Shutdown
Peripheral

Figure 4: Block Diagram of the top level architecture of the pRV32 SoC platform

1 case class SimpleBus(dataWidth:Int, addressWidth:Int)
extends Bundle with IMasterSlave {

2 val SBaddress = UInt(addressWidth bits)

3 val SBvalid = Bool

4 val SBwdata = Bits(dataWidth bits)

5 val SBwrite = Bool

6 val SBsize = UInt(4 bits)

7 val SBready = Bool

8 val SBrdata = Bits(dataWidth bits)

10 override def asMaster(): Unit = {

11 out (SBvalid, SBaddress, SBwdata, SBwrite, SBsize)
12 in(SBready, SBrdata)

13 3

14 3}

Listing 1: Memory Bus Interface definition in Spinal HDL

a load or store instruction, the state machine will transition to the
writeback state. A CSR instruction causes the FSM to transition
into the csr state. This additional state is used to the access the
CSR logic. An instruction with the SYSTEM opcode or an otherwise
undefined instruction that passed the decode state causes a tran-
sition to the trap state. The states writeback, csr and trap are
succeeded by the state fetch. Any other instruction will cause a
transition from the execute state back to the fetch state.

4.2 Memory Bus Interface

The core interacts with peripherals and its environment through
an interface defined by an address, a command and data. For this
purpose a lightweight bus interface with a valid-ready handshake
is chosen. It is used to interconnect the core and the surrounding
peripherals. In this context the core is the bus master while pe-
ripherals and other modules act as bus slaves. With the core as the
only bus master in place there is no need to consider bus master
arbitration. Listing 1 shows the memory bus interface definition
in SpinalHDL. The bus master asserts the valid signal to notify
the bus slaves on a valid command and payload on the bus. On the
top level module the address space is mapped onto the peripherals.
The transaction then is routed to the respective peripheral. For

1.7/ ...

2 // Instantiate components of SoC

3 val cpu = new RV32Core()

4 val ram = new Memory(Bits(32 bits),4104,initHexfile)
5 val gpio_led = new GPIOLED()

6 val shutdown_periph = new Shutdown()

7 val uartPeriph = new SBUart()

8 val rvCLIC = new RVCLIC()

9 // ...

10 // Interconnect components via memory bus interface
11 cpu.io.sb <> ram.io.sb

12 cpu.io.sb <> gpio_led.io.sb

13 cpu.io.sb <> shutdown_periph.io.sb

14 cpu.io.sb <> uartPeriph.io.sbh

15 cpu.io.sb <> rvCLIC.io.sb

16 // ...

Listing 2: Interconnecting pRV32 SoC components in
SpinalHDL

lightweight design it is defined that peripherals respond one clock
cycle after the transaction request. A peripheral should finish its
tasks within one clock cycle, otherwise the CPU is stalled. Addition-
ally the identification of incorrectly behaving peripherals becomes
easier. Listing 2 shows how the components are interconnected
and wired in SpinalHDL. This feature of SpinalHDL allows for less
errors in the interconnection of modules.

4.3 SoC Platform

The core is embedded in a SoC platform composed around the Sim-
pleBus. Fig. 4 shows the top-level view of the pRV32 architecture.
The memory and the peripherals are mapped on the top level of the
SoC, in the address mapping logic. First, the core-local interrupt
controller (CLINT) peripheral provides the timer interrupts based
on the 64 bit registers mtime and mtimecmp. mtime is a read-only
register that increments with the platforms clock frequency. If the
value of mtime is greater or equal than mtimecmp then the timer
interrupt is triggered until cleared by the core. In the Shutdown pe-
ripheral a defined transition into a halting state can be triggered for
the core. The halting state will end program execution and halts the

MicroRV32: An Open Source RISC-V Cross-Level Platform
for Education and Research

Destion ’21, May 18, 2021, Nashville, TN, USA

Benchmarks RISC-V TLM Simulation
» VP
(MRV32 SoC)

\ 4 Logs,

RTL Simulation Reports,
SpinalHDL N . . | Wavetraces,

RTL Description g| VeilLer Sl ey Outputs,
Statistics,

etc.

\A 4

Stimulus Generation

HX8K FPGA
(URV32 SoC)

FPGA Emulation

Figure 5: Setup to compare the VP, RTL simulation and FPGA-based emulation

platform in the defined state until reset. In the Memory peripheral
the instruction memory and the data memory are contained. The
LED peripheral is used to map up to eight LEDs of a development
board into the address space of the SoC platform. The Universal
Asynchronous Receive and Transmit (UART) peripheral provides the
platform with external communication abilities. UART is commonly
used as serial communication between platforms and devices. For
the SW running on the SoC platform, the print statements can be
redirected to the UART peripheral.

The SoC platform memory is initialized with a SW program
binary at synthesis time.

5 EXPERIMENTS

In this section we present a comparison of the performance of our
pRV32 with the RISC-V VP. Our comparison includes the execution
of pRV32 in an RTL simulator (SpinalHDL with Verilator) and on an
FPGA development board. These modes of execution are compared
to the pRV32 VP. The FPGA-based emulation runs on a Lattice
Semiconductor HX8K Development Board with the board frequency
of 12 MHz. The VP and the RTL simulation are executed on an Intel
i7 10510U CPU @ 1.80 GHz on Ubuntu 20.04 LTS. Additionally, we
collect the statistics on the FPGA design process, that is the time
for synthesis, place & route, the area utilization on the targeted
FPGA and the maximum clock frequency at which the design can
be used.

In the following, we provide the evaluation setup (Section 5.1),
the obtained results (Section 5.2) and the FPGA synthesis statistics
(Section 5.3).

5.1 Performance Evaluation Setup

Fig. 5 shows the setup of the experiments. The benchmarks are used
to initialize the SoC as well as the VP. For the VP the runtime gets
traced with the time command from Linux. On the RTL simulation
the testbench is instrumented to output the real processing time
needed for the simulation. The RTL simulation is executed through
the SpinalHDL Verilator backend. At the level of the FPGA-based
emulation, the time start of the execution (falling edge of the reset
signal) and the end of execution (rising edge of the halt signal) are
measured with a logic analyzer. For the experiments we use five
benchmarks:

(1) Fibonacci calculates the numbers of the Fibonacci sequence
up to a defined sequence length of 6000 numbers.

(2) Greatest Common Divisor (GCD) calculates the greates com-
mon divisor gcd(a, b) of two numbers a and b (for our ex-
pierments we calculate ged (50000, 1))

(3) Bubblesort sorts an array with 300 elements.

(4) FreeRTOS-queues is a FreeRTOS example of two senders
putting data into a queue and a receiver pulling the data
from the queue. The example is setup to terminate after 10
iterations.

(5) FreeRTOS-tasks is a FreeRTOS example of two scheduled
tasks sending data via the UART interface. The example is
setup to terminate after 20 iterations.

5.2 Performance Evaluation Results

Table 1 shows the results of the benchmarks. The table is divided
double columns into three parts: The left part shows each executed
benchmark. The middle part shows the number of instructions
executed (column: #instr-exec.) for a benchmark, the lines of code
in C (column: LoC C) of the application and the lines of code for
the assembly file (column: LoC ASM) respectively. The right part
shows the execution times of each benchmark in seconds. The
fourth column (column: FPGA) shows the execution time of the
FPGA emulation of the uRV32 platform. The character ’-’ denotes
that the benchmark could not have been executed on the FPGA
due to the SW binary being too large for the memory on the de-
velopment board. The third column (column: RTL-Sim) shows the
execution time of the RTL simulation with SpinalHDL and Verilator.
In the sixth and seventh column the execution times of the VP
simulation are shown without optimizations (column: VP normal)
and with optimizations (column: VP opt), namely DMI and TQ (cf.
Section 3.2).

From Table 1 it can be observed that the VP simulation and the
FPGA emulation is significantly faster than the RTL simulation.
When comparing the FPGA emulation with the RTL simulation a
factor of improvement between x134 and X217 is observed. Com-
paring the VP simulations with the RTL simulation the unopti-
mized VP is X25 to x96 faster the optimized VP is X75 to X325.
The unoptimized VP shows slightly bigger execution times than
the FPGA-based emulation (between X1.5 to X2.3). In all cases the
optimized VP simulation has the fastest execution time.

Destion *21, May 18, 2021, Nashville, TN, USA

Sallar Ahmadi-Pour, Vladimir Herdt, and Rolf Drechsler

Table 1: Results of the benchmark experiments

Benchmark H #instr-exec. LoCin C | LoC in ASM H FPGA RTL-Sim. | VP normal ‘ VP opt
Fibonacci 240,118 24 122 0.09 s 12.07 s 0.16 s 0.08 s
GCD 500,075 31 105 0.19s 32.24s 0.43 s 0.14 s
Bubblesort 1,518,041 45 194 0.36 s 78.18 s 0.81s 0.24s
FreeRTOS-queues 416,897 220 11,048 - 31.67 s 0.64's 0.22s
FreeRTOS-tasks 3,078,543 93 10,988 - 40.55 s 1.63s 0.54s

Table 2: FPGA timing and area statistics, Synthesis, Place &
Route statistics

Description ‘ ‘ Value
frnax 28.61 MHz
Logic Cells 4297 / 7680 (55%)
BRAM Cells 25 /32 (78%)
10 Cells 33 /256 (12%)
Synthesis time 11.6 s
Place & Route time 18.96 s

5.3 FPGA Synthesis Statistics

Table 2 shows the various statistics of the FPGA design flow. The
uRV32 SoC can be operated at a maximum clock frequency fiax
of 28.61 MHz with a device utilization of 55%. The use of 78% of
BRAM Cells of the FPGA vary with the program used to initialize
the memory. To synthesize the design into a netlist Yosys took 11.6 s.
The place & route of the netlist took NextPNR 18.96 s. This sums
to circa 30 seconds for the FPGA toolchain to generate a bitstream
that can be configured onto the FPGA.

6 DISCUSSION AND FUTURE WORK

The combination of RTL and VP implementation provided by pRV32
delivers a strong foundation for investigating advanced cross-level
methodologies and design flow techniques. While the VP allows
for fast and early SW development and HW prototyping through
its TLM simulations, the RTL simulation provides cycle-accurate
results and FPGA realization. At the same time, pRV32 is very acces-
sible for education and research as the platform and complete tool
flow is available open source and fully supported under Linux. To
further extend and boost the capabilities of this cross-level platform
we plan to:

o Investigate cross-level methodologies between the VP and
the RTL descriptions for verification, simulation and model-
ing purposes. One direction is the integration of RTL periph-
erals into the SystemC TLM simulation using the C++ RTL
models obtained through the Verilator tool to selectively
obtain fast and cycle-accurate simulation results.

e Extend the uRV32 SoC platform to integrate additional pe-
ripherals at the RTL/VP level and extend the core to include
support for more standard RISC-V instruction set extensions.
Further, investigate a Domain Specific Language (DSL) to
integrate custom instruction set extensions at the RTL and
VP level.

o Consider formal methods and comprehensive simulation-
based techniques to validate the platform and in particu-
lar the RISC-V core. A cross-level co-simulation setting in

combination with advanced test generation techniques such
as fuzzing and constrained random approaches seem very
promising to pursue this direction.

ACKNOWLEDGMENTS

This work was supported in part by the German Federal Ministry
of Education and Research (BMBF) within the project Scale4Edge
under contract no. 16ME0127 and within the project VerSys under
contract no. 01IW19001.

REFERENCES

(1]
[2]
[3]
[4]
[5]
[6]
[7]
(8]

=
&

(14]

[15

[16]

(18]

[19

[20

[21

~
£,

2011. IEEE Standard SystemC Language Reference Manual.

2021. Chisel HDL. https://www.chisel-lang.org/. Accessed on 2021-02-20.
2021. DBT-RISE-RISCV. https://github.com/Minres/DBT-RISE-RISCV.

2021. gem5. https://www.gemb5.org/.

2021. RISC-V Virtual Prototype. https://github.com/agra-uni-bremen/riscv-vp.
2021. RISCV-QEMU. https://github.com/riscv/riscv-gemu.

2021. Spike. https://github.com/riscv/riscv-isa-sim.

Krste Asanovi¢, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

J. Aynsley. 2009. OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL. Open SystemC
Initiative (OSCI).

Amir Charif, Gabriel Busnot, Rania Mameesh, Tanguy Sassolas, and Nicolas
Ventroux. 2019. Fast Virtual Prototyping for Embedded Computing Systems
Design and Exploration. In RAPIDO Workshop. 3:1-3:8.

C.Papon. 2021. SpinalHDL. https://github.com/SpinalHDL/SpinalHDL. Accessed
on 2021-02-20.

C.Papon. 2021. VexRiscV. https://github.com/SpinalHDL/VexRiscv. Accessed on
2021-02-20.

CWolf. 2021. PicoRV32, PicoSoC. https://github.com/cliffordwolf/picorv32.
Accessed on 2021-02-20.

C.Wolf and M.Lasser. 2021. Project IceStorm. http://www.clifford.at/icestorm/.
Accessed on 2021-02-20.

Tom De Schutter. 2014. Better Software. Faster!: Best Practices in Virtual Prototyping.
Synopsys Press.

Vladimir Herdt, Daniel Grof3e, and Rolf Drechsler. 2020. Enhanced Virtual Proto-
typing: Featuring RISC-V Case Studies. Springer.

Vladimir Herdt, Daniel Grofie, Eyck Jentzsch, and Rolf Drechsler. 2020. Efficient
Cross-Level Testing for Processor Verification: A RISC-V Case-Study. In Forum
on Specification and Design Languages.

Vladimir Herdt, Daniel Grofie, Pascal Pieper, and Rolf Drechsler. 2020. RISC-
V based Virtual Prototype: An Extensible and Configurable Platform for the
System-level. Journal of Systems Architecture - Embedded Software Design (2020).
G. Onnebrink, R. Leupers, G. Ascheid, and S. Schiirmans. 2016. Black box ESL
power estimation for loosely-timed TLM models. In International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS).
366-371. https://doi.org/10.1109/SAMOS.2016.7818374

Séren Tempel, Vladimir Herdt, and Rolf Drechsler. 2021. An Effective Methodol-
ogy for Integrating Concolic Testing with SystemC-based Virtual Prototypes. In
Design, Automation and Test in Europe.

Andrew Waterman and Krste Asanovi¢ (Eds.). 2019. The RISC-V Instruction Set
Manual; Volume I: Unprivileged ISA.

Andrew Waterman and Krste Asanovi¢ (Eds.). 2019. The RISC-V Instruction Set
Manual; Volume II: Privileged Architecture.

https://www.chisel-lang.org/
https://github.com/Minres/DBT-RISE-RISCV
https://www.gem5.org/
https://github.com/agra-uni-bremen/riscv-vp
https://github.com/riscv/riscv-qemu
https://github.com/riscv/riscv-isa-sim
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016- 17.html
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/VexRiscv
https://github.com/cliffordwolf/picorv32
http://www.clifford.at/icestorm/
https://doi.org/10.1109/SAMOS.2016.7818374

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 RISC-V ISA
	3.2 RISC-V VP
	3.3 Open Source Cross-Level Toolflow

	4 MicroRV32
	4.1 RISC-V Core
	4.2 Memory Bus Interface
	4.3 SoC Platform

	5 Experiments
	5.1 Performance Evaluation Setup
	5.2 Performance Evaluation Results
	5.3 FPGA Synthesis Statistics

	6 Discussion and Future Work
	Acknowledgments
	References

