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Abstract

After designing of Multi-Valued Logic Networks
(MVLNs), the resulting circuits have to be veri�ed to
guarantee functional correctness. The most promising
technique to cope with increasing device sizes are for-
mal methods. Ordered Multi-Valued Decision Diagrams
(OMDDs) have been proposed for formal veri�cation of
MVLNs. But OMDDs are very sensitive to the chosen
variable ordering and several ordering heuristics have
been proposed in the past. The most promising with
respect to OMDD size are dynamic variable ordering
techniques, but these algorithms often cannot be applied
in formal veri�cation approaches due to their long run-
times. Alternatively, static variable ordering heuristics
have been developed that determine an ordering from
the circuit topology, but these heuristics often cannot
guarantee good quality.

In this paper an evaluation technique is proposed
that uses a pool of static variable ordering heuristics.
Each heuristic is applied and the OMDD construction
is started until a node or time limit is reached. Then
the heuristic performed best so far is selected for the
complete construction. The choice of the node and time
limit allows to smoothly trade o� runtime vs. quality.
Experimental results are given to demonstrate the eÆ-
ciency of the approach. The technique allows to save
time and memory, since only promising orders are con-
sidered.

1 Introduction

Recently, there is a renewed interest in design-
ing Multi-Valued Logic Networks (MVLNs). Several
new synthesis techniques have been proposed (see
e.g. [18, 15, 9]). Existing synthesis tools, like SIS from
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Berkeley, have been extended to also cope with multi-
valued networks [12]. Like in the binary case, after the
design phase, the circuits have to be veri�ed. As one
important aspect the check of two MVLNs for func-
tional equivalence has to be carried out. One method
to do this is veri�cation based on ordered DDs as pro-
posed in [11, 17] for two-valued circuits. An extension
to OMDDs has been discussed in [6]. There several
static heuristics known from OBDDs have been shown
to be also applicable to OMDDs, since the motivation
of tree-like circuits also holds for OMDDs (see [6] for
the proof). Alternatively, clever dynamic variable or-
dering techniques have been considered (see e.g. [14]),
but in fast equivalence checking tools used in formal
veri�cation, these algorithms are too time consuming
[16].

In this paper an evaluation technique is proposed
that is based on the idea of starting OMDD construc-
tions for several static heuristics in parallel. After some
limits, i.e. number of nodes or runtime, are reached,
only the most promising heuristic applied so far is con-
tinued. The choice of the limits for nodes and run-
time allows to trade o� overall runtime and quality of
the result. By this, in the starting phase of the algo-
rithm some overhead can be observed, but the method
prevents to generate overly large OMDDs that do not
�t in the main memory or too time consuming opera-
tions. In [19] a similar approach has been considered
for OBDDs. For OMDDs it seems to be even more
diÆcult to �nd good orderings, as the results in [6]
show. In [19] the evaluation was done on a functional
level. Here, only structural properties are considered,
i.e. it is evaluated how many gates of the circuit have
been traversed. Experimental results are reported that
demonstrate the quality of the approach.

The paper is structured as follows: In Section 2
MVLNs and OMDDs are de�ned. The basics of our
veri�cation procedure are described in Section 3. Sec-



tion Section 4 addresses the evaluation procedure. In
Section 5 experimental results are described. Finally
the results are summarized.

2 Preliminaries

We provide an introduction to basic notions which
are important for the understanding of this paper.

2.1 Multi-Valued Logic Networks

In general, a Multi-Valued Logic Network (MVLN)
can be modeled as a directed acyclic graph C = (V;E)
with some additional properties: Each vertex v 2 V is
labeled with the name of a basic cell or with the name
of a Primary Input (PI) or Primary Output (PO). The
collection of basic cells available is given by a �xed li-
brary. This library contains MIN-, MAX-, INV- and
LITERAL-gates1. Of course, basic cells with arbitrary
complexity, especially with an arbitrary number of in-
puts, are possible. There is an edge (u; v) in E from
vertex u to v, i� an output pin of the cell associated to
u is connected to an input pin of the cell associated to
v, i.e. edges contain additional information to specify
the pins of the source and sink node they are connected
to. Vertices have exactly one incoming edge per input
pin. Nodes labeled as PI (PO) have no incoming (out-
coming) edges.

To simulate the circuit each PI may assume the val-
ues of a given ordered �nite set P = f0; : : : ; k � 1g
where k denotes the number of elements of the logic.
The complement (INV-gate) of a signal x is de�ned as
x = (k � 1)� x. A LITERAL-gate (a; b) (a; b 2 P; 0 �
a � b < k) has one input and one output2. For a given
input x the behavior of such a gate is de�ned by:

f(x) =

�
k � 1 : a � x � b

0 : otherwise

2.2 Multi-Valued Decision Diagrams

As well-known each Boolean function f : Bn
! B

can be represented by an Ordered Binary Decision Di-
agram (OBDD) [4], i.e. a directed acyclic graph where
a Shannon decomposition is carried out in each node.

Obviously, OBDDs can be extended to represent
functions f : Bn

! f0; ::; k � 1g and the resulting
graphs are denoted as Multi-Terminal BDDs (MTB-
DDs). The operations on MTBDDs can be carried out
as eÆciently as in the case of two terminals [5].

It is straightforward to extend MTBDDs to Multi-
Valued Decision Diagrams (MDDs) [21] representing

1In the binary case MIN- and MAX-gates correspond to AND-
and OR-gates, respectively.

2These LITERAL-gates are also called window literals.
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Figure 1. Reduced OMDD

functions f : f0; ::; k � 1gn ! f0; ::; k � 1g. For this
each internal node has k outgoing edges3. In [21] it
has been shown that the eÆcient operations known for
BDDs can also be carried out on MDDs using a case-
operator instead of the ite-operator [1].

A DD is called ordered if each variable is encountered
at most once on each path from the root to a terminal
and if the variables are encountered in the same order
on all such paths. A DD is called reduced if it does not
contain vertices either with isomorphic sub-graphs or
with all successors pointing to the same node.

In the following we only consider reduced, ordered
MDDs, i.e. reduced OMDDs.

Example 1 Figure 1 shows an OMDD of the two-
variable three-valued function f given by the following
truth-vector:

F = [000011122]

3 Veri�cation of MVLNs

For the equivalence check of two circuits based on
DDs two main problems have to be solved that are
considered in this section, i.e. the construction of an
OMDD from a given circuit description and the check
for isomorphism of the OMDDs.

3.1 Construction of OMDDs

We assume that a MVLN is given by a directed
acyclic graph as described in Subsection 2.1. First, ter-
minal nodes for the k constant functions are created.
For each PI of the MVLN a variable in the OMDD
is created, where the i-th outgoing edge points to the
terminal node labeled i (i 2 f0; ::; k � 1g).

Then the gates of the MVLN are visited in topo-
logical order and the corresponding OMDD operation
is carried out. The topological order guarantees that

3In our application we restrict ourselves w.l.o.g. to the case
that all variables are de�ned over the same set of values.



a1

0

2x

1

g

1x

x2

2

0 21

1x

f1

0 21

f

x2

2

MIN
a2

b

Figure 2. Symbolic simulation for MIN-gate

all inputs of a gate are known before it is evaluated.
By this method, at the end OMDDs for the POs are
created.

Example 2 In Figure 2 a simple example for a three-
valued simulation for a MIN-gate is shown. The input
a1 (a2) corresponds to the OMDD f1 (f2). The out-
put of the gate b corresponds to the function that is
represented by the OMDD g.

3.2 Verification of Equivalence

To verify that two MVLNs M1 and M2 realize the
same function we only have to construct the OMDDs
for both MVLNs as described above and then com-
pare the OMDDs for equivalence. Since OMDDs (with
the same ordering) are a canonical representation this
can be done eÆciently. With the methods described in
[1, 21] this can even be carried out in constant time,
since hash-tables are used for the implementation of
the package.

4 Evaluation of Variable Ordering Can-

didates

From [6] it especially follows that depth-�rst-search
orders (that �rst consider the larger circuit) create
good OMDDs for tree-like circuits, i.e. the size of the
OMDD remains polynomial for constant k.

The fact that DDs remain small for tree-like circuits
was also the motivation for many OBDD heuristics that

have been developed in the past (see e.g. [17, 10]). We
implemented these heuristics that were originally de-
signed for the binary case and saw that they work also
well for MVLNs (see also [6]).

It is assumed that a set of static variable ordering
heuristics is available. In the following six heuristics
are used:

Initial (INI): Initial ordering as given in the bench-
mark description

Inverse Initial (INV): Inverse ordering

Topological (TOP): A topological sorting of the cir-
cuit

Dependent Count (DEP): Counting the number of
outputs this input in
uences

Fanin (FAN): Similar to [17]

Interleaving (INT): Similar to [10]

Usually, INT gives the best results on average, but
sometimes the heuristic totally fails. This can be
seen by the following small examples for OBDDs,
i.e. OMDDs with k = 2:

Example 3 For benchmark cs01423 INT needs more
than 80.000 nodes, while DEP needs less than 30.000
for the complete construction. On the contrary, for
benchmark cs05378 INT can build the graph within
50.000 nodes, while DEP does not terminate within a
250.000 node limit.



For this, it makes sense to also consider alternatives
when selecting the variable ordering. When the user
relies on one heuristic only, a lot of time and memory
might be wasted.

First, the algorithms starts to build OMDDs for all
orderings until a given limit is reached. In the following
we consider two types of limits:

1. number of nodes and

2. runtime

These limits can be chosen �xed, or dependent on
the problem size. For our experiments a dynamic mea-
sure dependent on the number of inputs of the circuit
has been used:

c � number of inputs

Here, c is a problem speci�c constant that can be cho-
sen by the user. The constant allows to trade o� run-
time vs. quality. If c is chosen very small, the heuris-
tic is chosen very early, what saves runtime. But, if
it is chosen too early, the \wrong" heuristic might be
selected. Experimentally, the following numbers have
been determined that are used in our experiments in
the next section:

time limit = number of inputs * 0.05 CPU seconds

node limit = number of inputs * 500

5 Experimental Results

For the experiments the OMDD package from [6]
has been used. It is parameterized in k and has been
implemented in C++. The methods discussed in this
paper have been applied. For the experimental results
the benchmarks from [3] and [2] have been used anal-
ogously to [8, 6]4.

Remark 1 The numbers of nodes used during the
OMDD construction might slightly vary compared to
[6], since improved traversal techniques from [7] are
used.

4Since in case of multi-valued applications no standard bench-
mark set of large circuits is available we used some of the IS-
CAS85 [3] and the combinational parts of the ISCAS89 [2] bench-
marks. We interpreted the benchmarks as k-valued circuits
by transforming AND-gates into MIN-gates and OR-gates into
MAX-gates. XOR-gates contained in these circuits are inter-
preted as AND/OR-realizations. (Notice that this interpretation
di�ers from the interpretation if each XOR-gate is substituted by
the 4-NAND-equivalence.) In doing so the resulting circuits do
not contain LITERAL-gates. Therefore the strength of our re-
sults is limited. But we expect that they describe a trend which
is also valid for multi-valued circuits containing LITERAL-gates.

Table 1. Benchmarks

name in out signals gates

c0017 5 3 11 13

c0095 5 7 32 39

s00027 7 4 17 21

s00208 18 9 122 131

s00298 17 20 136 156

s00344 24 26 184 210

s00400 24 27 186 213

s00444 24 27 205 232

s00510 25 13 236 249

s00641 54 43 433 476

s00713 54 42 447 489

s00820 23 24 312 336

s00832 23 24 310 334

s00838 66 33 512 545

s00953 45 52 440 492

s01238 32 32 540 572

s01423 91 79 748 829

s01488 14 25 667 692

s01494 14 25 661 686

s05378 214 228 2993 3221

To give an impression of the size of the considered cir-
cuits some information on the benchmarks is provided
in Table 1. name is the name of the benchmark. in
(out, signals, gates) denotes the number of PIs (POs,
signals, gates) of the corresponding benchmark. All
measurements were performed on a SUN ULTRA 10.

A node limit of 250.000 nodes and a limit of 3.600
CPU seconds was used.

In a �rst series of experiments we compare the num-
ber of nodes needed for the representation of the out-
puts of small MVLN for di�erent values k, i.e. k =
2; 3; 4; 5. The results are given in Table 2. For each
benchmark the results in the �rst and second row are
determined using the initial variable ordering (INI) and
interleaving (INT) [10], respectively. The third row is
determined by the evaluation technique (EVAL) de-
scribed above. PO denotes the number of nodes that
is used for the representation of the POs and max de-
notes the total number of di�erent nodes needed during
the whole construction (also called the peak size). As
has already been observed in [6] for many MVLNs the
initial variable ordering gives very good results, but
this mainly holds for the smaller examples, where the
MDD can be constructed independent of the chosen
method. But there also exist cases, where the new
technique clearly outperforms the initial ordering. In
case of k = 5 and benchmark s00344 the maximal num-
ber of nodes needed is reduced by more than a factor



Table 2. Smaller benchmarks

name method k = 2 k = 3 k = 4 k = 5
PO max PO max PO max PO max

c0017 INI 11 23 24 57 42 106 65 164
INT 9 28 19 64 32 110 48 166

EVAL 15 7 17 34 28 53 48 89

c0095 INI 22 78 43 190 67 305 99 460
INT 20 84 55 204 81 312 126 469

EVAL 22 78 43 190 67 305 99 460

s00027 INI 27 41 62 102 112 194 177 323
INT 16 33 36 84 63 157 97 254

EVAL 19 25 43 61 76 112 118 180

s00208 INI 77 346 864 1580 3729 5161 19803 22778
INT 78 360 1077 1920 4467 6557 30310 35813

EVAL 77 346 864 1580 3729 5161 19803 22778

s00298 INI 126 388 327 1099 642 2180 1147 3944
INT 111 367 299 980 659 2085 1183 3739

EVAL 126 358 299 980 659 2085 1183 3739

s00344 INI 258 1340 712 5350 1705 14847 3461 35408
INT 162 708 324 2004 625 4222 955 7618

EVAL 265 577 732 1938 631 4218 965 7610

s00400 INI 235 1213 622 3465 1243 7006 2302 12624
INT 174 916 474 2465 873 4607 1683 8045

EVAL 195 563 577 1507 1188 2952 2366 5614

s00444 INI 187 718 462 1836 884 3395 1660 6171
INT 181 1116 491 3038 916 5892 1764 10399

EVAL 194 635 532 1720 1070 3367 1660 6171

s00510 INI 183 967 830 3630 2749 10368 7697 26442
INT 204 1077 904 4149 2957 12078 8060 30868

EVAL 183 967 830 3630 2749 10368 7697 26442P
INI 1126 5114 3946 17309 11173 43462 36411 108314P
INT 955 4689 3679 14908 10673 36020 44226 97371P

EVAL 1096 3556 3937 11640 10197 28621 33939 73083

of four5. Even though the limits were often reached
for larger k, the choice of the heuristic was never worse
than interleaving. In the last three rows the sums for
all three approaches are given. The best sum for each
choice of k is given in bold. As can be seen, the peak
size is reduced in all cases. For larger k the maximal
number of nodes and the nodes for the POs can be re-
duced signi�cantly, i.e. the peak size is 25% on average.

In a second series of experiments larger benchmarks
are studied. For some of these, the OMDDs cannot be
constructed for larger k. Again, in almost all cases the
evaluation approach gives better results than interleav-
ing alone. In several cases the memory consumption
can be reduced signi�cantly, i.e. up to a factor of two
(see cs01238). Notice that for the larger benchmarks

5All tie-breaking was done to optimize the maximal number
of nodes and not the output size.

not all heuristics succeed in building the OMDD: the
initial variable ordering fails for cs05378 for k = 2.

Finally, we brie
y show the in
uence of the con-
stant to determine time limit and node limit. Consider
the smallest circuit in the benchmark set, i.e. c0017.
The results for all variable ordering heuristics used are
given in Table 4. If the constant for node limit is cho-
sen as 5, the heuristic selected is FAN, while a value
greater or equal to 10 returns the optimal choice DEP.
Similar observations hold for time limit. The choice of
the constants showed a good trade-o� between runtime
and memory needed for the evaluation phase.

6 Conclusions

A method has been proposed to select one heuristic
out of a pool of candidates based on some informa-



tion derived during the construction phase. Limits on
the runtime and the number of nodes allow to trade o�
runtime vs. quality of the construction process. Experi-
ments have shown that this technique gives very robust
results while keeping the number of nodes needed dur-
ing OMDD construction small. Signi�cant reductions
in the peak size can be observed, i.e. in some cases more
than a factor of four.

It is focus of current work to improve the netlist
traversal algorithms to further reduce the memory peak
size. As has been observed in [7] in the case of larger k
the decision procedures become more complex than in
the binary case. More studies are needed to get a better
understanding of the relation between the technique
proposed in this paper and the ordering of network
traversal.

As pointed out by one of the reviewers, this work
can also be seen in the context of sampling [20, 13].
Future work, can study the relation between the two
approaches and how sampling can be integrated in the
technique presented in this paper.
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Table 3. Larger examples

name method k = 2 k = 3 k = 4 k = 5
PO max PO max PO max PO max

s00641 INI 1992 4918 22566 57562 - - - -
INT 830 2847 4040 14051 - - - -

EVAL 703 1689 4040 14051 - - - -

s00713 INI 1992 5026 22491 85299 - - - -
INT 830 2965 4050 17936 - - - -

EVAL 683 1663 4050 17936 - - - -

s00820 INI 321 1457 1238 5042 3420 12470 7782 26540
INT 319 1594 1217 5759 3390 15324 7981 35279

EVAL 321 1457 1238 5042 3390 15324 7981 35279

s00832 INI 321 1486 1226 5145 3400 12703 7711 26980
INT 319 1624 1226 5887 3381 15487 7969 35653

EVAL 321 1486 1226 5145 3381 15487 7969 35653

s00838 INI 707 2746 - - - - - -
INT 666 5315 - - - - - -

EVAL 707 2746 - - - - - -

s00953 INI 538 2627 2688 10495 8925 29761 - -
INT 526 2853 2545 10727 8127 29097 - -

EVAL 538 2627 2688 10495 8127 29097 - -

s01238 INI 2913 5913 30481 52475 - - - -
INT 4011 10268 46521 99528 - - - -

EVAL 2353 5458 27420 45566 - - - -

s01423 INI 52825 199694 - - - - - -
INT 14516 88038 - - - - - -

EVAL 14516 87987 - - - - - -

s01488 INI 490 2163 1716 7641 4246 18618 8510 37688
INT 516 2833 2085 10881 5837 29058 13318 64932

EVAL 490 2163 1716 7641 4246 18618 8510 37688

s01494 INI 490 2155 1710 7580 4236 18456 8481 37312
INT 516 2836 2044 10658 5733 28348 12911 62410

EVAL 490 2155 1710 7580 4236 18456 8481 37312

s05378 INI - - - - - - - -
INT 10079 47145 - - - - - -

EVAL 10079 47145 - - - - - -

Table 4. Results for c0017

method k = 5
PO max

INI 65 164
INV 69 144
TOP 65 164
DEP 48 89
FAN 48 166
INT 48 166


