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Abstract

In many application in VLSI CAD, a given netlist has to
be partitioned into smaller sub-designs which can be han-
dled much better. In this paper we present a new recur-
sive bi-partitioning algorithm that is especially applicable,
if a large number of final partitions, e.g. more than 1000,
has to be computed. The algorithm consists of two steps.
Based on recursive splits the problem is divided into several
sub-problems, but with increasing recursion depth more run
time is invested. By this an initial solution is determined
very fast. The core of the method is a second step, where a
very powerful greedy algorithm is applied to refine the par-
titions. Experimental results are given that compare the new
approach to state-of-the-art tools. The experiments show
that the new approach outperforms the standard techniques
with respect to run time and quality. Furthermore, the mem-
ory usage is very low and is reduced in comparison to other
methods by more than a factor of four.

1. Introduction

Netlist partitioning is very important in many applica-
tions in VLSI CAD. Since modern designs may contain
several million gates, it is often necessary to partition the
netlist into small parts which can be handled efficiently, for
instance to optimize the netlist or to do the routing. The
problem of partitioning also occurs is FPGA design, where
designs have to be split into parts that fit into one FPGA,
while the number of connections between these parts should
be minimal.

Another application is visualization of netlists. The
problem of drawing a netlist usually is divided into sev-
eral subproblems [17, 9], like partitioning [10, 13], crossing
minimization [11, 18, 19], and level assignment [6]. In most

cases only a small fraction of the complete design is shown
on the screen. E.g. of a multi-million gate ASIC only up to
100 gates are visible at a time.

In these cases much more than 1000 partitions of the
netlist are necessary. At a first glance, this number seems
to be too extreme, however, if an error in a design has to be
found which is either on the top level or at an unknown loca-
tion of the design, it is necessary for the drawing algorithms
to partition a multi-million gate netlist within a reasonable
amount of time. Both memory usage and run time are im-
portant here, since the user neither wants to wait for hours
before he can trace some signals in the design, nor does he
want to buy a lot of main memory for this application. Last
but not least, the quality of the partitioning is also important
to obtain an easy-to-read drawing.

1.1. Previous Work

Most partitioning algorithms use an iterative improve-
ment method, which was already introduced in 1970 [15].
In the meantime it has been improved in several ways
[8, 5, 7]. All these approaches split the netlist into two par-
titions, and therefore they are called bi-partitioning.

To obtain more than two partitions, there are two major
approaches:

1. recursive bi-partitioning. Partitions are split recur-
sively until the desired number of partitions is ob-
tained.

2. simultaneous computation of all partitions (also called
k-way partitioning).

The latter approach was proposed in [20, 21]. It can
be seen as a generalization of bi-partitioning to multiple
partitions. In a recent study several move-based multi-
way approaches have been compared [22]. All these ap-
proaches have in common that for k-way partitioning the



Table 1. Memory for k-way partitioning

k k-way | rec. bipart.
2| 16 MB 13 MB
50 | 44 MB 13 MB
100 | 106 MB 13 MB
200 | 174 MB 13 MB
300 | 222 MB 14 MB

amount of memory needed grows quadratic with k. There-
fore, these techniques cannot be applied, if & becomes large.
Instead of giving a detailed analysis, we give an impression
of the memory explosion reporting some numbers derived
by the k-way partitioning approach of METIS [13, 14], a
state-of-the-art partitioning algorithm. In Table 1 the mem-
ory needed for k-way partitioning and for recursive bi-
partitioning using benchmark ibm06 from ISPD98 [1] is
given for growing k. As can easily be seen, if k gets larger
these approaches cannot be used any longer. But this choice
of k is not unrealistic when netlists of one million gates
have to be partitioned in parts of 100 gates each. This is
the reason why we restrict ourselves to the approach based
on recursive bi-partitioning.

The most successful approaches have been obtained so
far using multi-level techniques [12, 2, 14] and these are
also applicable for larger k. However, we only consider
these techniques for comparison in the following, using the
implementation of hMETIS.

For an excellent overview on different graph partitioning
algorithms and their applications see [3].

1.2. New Algorithm

In this paper we present an algorithm that is dedicated to
large number of partitions!. The algorithm consists of two
main steps. Firstly, an initial solution is computed based
on an improved move-based method. Instead of spending
the same “effort” by using the same number of runs at each
recursive level, our algorithm starts with a very simple so-
lution and with increasing recursion depth, more and more
starting solutions are considered. This has the effect that
less effort is spent on the complete netlist, but more and
more computation time is invested on smaller graphs. This
results in a very fast algorithm. At each level a KLFM-
like [15, 8, 16] approach is applied. In a second step a
very powerful greedy algorithm is started that moves nodes
across partitions, but in contrast to the “classical” k-way
approaches only local gain values are computed and by this
the memory consumption remains linear in the number of

LA similar technique has been applied to graphs instead of netlists in

(41

partitions. Another benefit of this technique is that it can
easily be integrated in existing recursive bi-partitioning al-
gorithms based on KLFM.

We give comparisons on benchmarks versus the state-of-
the-art techniques that are based on multi-level structures
[12, 2, 14]. It is shown that the new approach outperforms
these algorithms for large numbers of partitions with respect
to run time and quality.

The paper is structured as follows: In Section 2 the de-
tailed problem formulation is given and a small example is
presented. The new algorithm is described in Section 3. In
Section 4 experiments are given and finally the main results
are summarized.

2. Problem Formulation

Before we discuss the new algorithm, we formally de-
scribe the problem.

Min-Cut k-Way Partitioning: Let G be a graph that
has to be partitioned in some clusters C;. For the size of
a cluster a lower bound L and an upper bound R is given.
Then

k
cost({Ch,...,Ci}) = > |B(Cy)|
i=1
has to be minimized such that

L<w(Cy) KU foralli=1,...,k,

where the cut E(C) of a cluster C' is given by the set of
edges that have at least one, but not all pins in C, and w(C')
is the weight of a cluster C, given by the sum of the sizes of
its elements.

Example 1 Consider the two graphs given in Figure 1.
They are split into 2 partitions. The first cut has size
cost = 2, while the second one has cut size cost = 6.

3. Partitioning Algorithm
3.1. Basic Idea

The main components of the algorithm are briefly de-
scribed before the details are given.

1. First the set of nodes is divided into two bal-
anced partitions, using a KLFM-like algorithm (“bi-
partitioning”). Then, this algorithm is called recur-
sively for both partitions, until the desired number of
partitions is reached.



@ (b)

Figure 1. Graph with two possible partitions

A. Bi-partitioning is based on the following two
steps. First, an initial balanced partition is gen-
erated using a BFS oriented heuristic: a node is
selected at random, and some neighboring nodes
are added until the partition is balanced. Then,
a KLFM-like algorithm is used to iteratively im-
prove this first partition.

B. It has already been observed by several authors
(see e.g. [14]) that several runs have to be car-
ried out to determine a good (and robust) solu-
tion. Thus, step A. is repeated and the best cut
is taken. Here it should be noted that especially
during the first few partitions computed in the re-
cursion, this can become very expensive, since
the whole graph has to be traversed several times.
For this, we start with only one or two runs, but
during the recursion this number is increased (see
Section 3.3).

2. If k partitions have been obtained, a greedy algorithms
starts to “move nodes around” to guarantee that the fi-
nal solution is a (local) minima.

The first step is used to find a “reasonable good” starting
point, while the quality of the overall algorithm mainly re-
sults from the second part?. In the following these main
components are described in more detail.

3.2. KLFM-like Algorithm

The basic bi-partitioning algorithm is a KLFM-like [15,
8] iterative improvement algorithm that is based on a greedy
strategy: nodes are selected iteratively and moved to the
best partition.

21f the greedy algorithm is used as a post-processing to the solution
determined by hMETIS, significant improvements can be observed, too.

To improve the quality, we use a look-ahead level of 2,
i.e. to evaluate the gain of a move, the best gain of any fol-
lowing move is also considered [16]. It turned out in our
experiments that this approach improves the result without
being much slower.

3.3. Dynamic Parameter Selection

For one bi-partitioning step, several starting partitions
can be chosen. Then KLFM is used to improve each of
them, and the best cut is chosen. When using several start-
ing partitions, the resulting cuts are usually much better and
the algorithm becomes more robust. We will refer to the
number of starting partitions as #start in the following.

The choice of the parameter #start has a direct impact on
the run time, since KLFM has to be carried out #start times
more often. Instead of fixing the parameter globally to a
constant value (as it has been done in previous approaches),
the choice of this number is based on the recursion number
in our algorithm. This is due to the following reasons:

e The first bi-partitioning step is the most expensive one,
because the full set of nodes has to be considered. Fur-
ther bi-partitioning steps have to deal with a rapidly
decreasing number of nodes.

e The quality of the first cut does not have too much in-
fluence on the final result, while the latest cuts directly
have an impact.

Therefore, in the first step, only one or two starting parti-
tions are used. Whenever the recursion level is increased,
also one or two additional starting partitions are used. (The
choice whether one or two are considered influences the run
time and the quality of the results. This will be further dis-
cussed in the description of the experimental results in the
next section.)

3.4. Greedy Post-Processing

After an initial partitioning has been computed by the
algorithm described above, we start the second step that
can be described best as a greedy approach. The algorithm
moves nodes across the k partitions based on a gain value
that is computed analogously to the k-way approach in [20].
But to avoid the memory explosion described in Section 1.1
the gain value is only computed for each node separately.

A sketch of the algorithm is given in Figure 2. This al-
gorithm is iterated several times using different choices for
parameter mingain. This parameter controls the minimum
improvement of each modification.



refine(starting partition P, number of partitions &, int mingain) {

for each node n {
let C; be the partition to which n belongs
if (|Ci —{n}| > L) {
for all partitions C; (j # 4) {
if (1C; U {n}] < R) {

/I L is lower bound on partition size

/I R is upper bound on partition size

set P’ to partition after moving n from C; to C;
set gain(C;) to (cutset size(P)—cutset size(P"'))

}else {

set gain(C;) to —oo

}
} /1 end for
if (max(gain(C;)) > mingain)
move n from C; to C;
} I end if
} I/ end if
} 11 end for
return P

Figure 2. Sketch of GRE algorithm

Table 2. Benchmark statistics

benchmark edges nodes
ibm01 14111 12752
ibm02 19584 19601
ibm03 27401 23136
ibm04 31970 27507
ibm06 34826 32498
ibm08 50513 51309
ibm10 75196 69429
ibm12 77240 71076
ibm14 152772 147605
ibm16 190048 183484
ibm18 201920 210613

4. Experimental Results

The algorithm described above has been implemented in
C. All experiments have been carried out on a 550 MHz
Pentiumll PC running Linux. All run times are given in
CPU seconds. The experiments are run on the same ma-
chine and in the same software environment. Some statis-
tics about the ISPD98 benchmarks [1] are given in Table 2.

In a first series of experiments we compare the results
of our algorithm to hMETIS [14, 13]. Each benchmark is
partitioned in such a way that each final partition has 100
nodes. Thus up to 2000 partitions have to be computed.

The final results and the corresponding run times are given
in Table 3 and Table 4, respectively. In the first three rows
the results for \METIS using 4, 5, and 10 runs per recursive
split are reported. In the last three rows the results obtained
by the new algorithm are shown. In row N10 we give (for
comparison reasons) the results obtained by our algorithm,
if at each level 10 runs are carried out. In rows N+1 and
N+2 starting with only 1 or 2 runs, the number is increased
in each recursive split by 1 or 2, respectively. As can be
seen all variants of our new algorithm constantly outper-
form hMETIS with respect to quality of the results (see Ta-
ble 3). N+1 is the fastest algorithm of the ones proposed
and even though it has better run time behavior than M4,
it still outperforms M10 regarding quality. This mainly re-
sults from the powerful greedy algorithm as will be shown
below. The KLFM-based first step is mainly used to avoid
that the starting point is too bad, since this would increase
run time. But also the hMETIS results can be further im-
proved, by our greedy algorithm resulting in cuts of similar
quality as our approach.

Next, we show that the memory consumption can be fur-
ther reduced, if we simplify the algorithm in the follow-
ing way: We determine a starting point using a BFS algo-
rithm and then directly apply the greedy refinement tech-
nique, i.e. we do not use the KLFM approach any more.
The results for the final cut, the run times and the memory
consumption (in MByte) for the greedy algorithm (denoted
as GRE) in comparison to M4 and N+2 are given in Table
5. As can be seen the memory needed is reduced signifi-
cantly. Furthermore, the quality can often be improved, but



Table 3. Min cut

ibm01 ibm02 ibm03 ibm04 ibm06 ibm08 ibm10 ibml12 ibm14 ibm16 ibmil8
M4 7947 23358 20490 26144 31157 46294 68476 80460 134977 177328 187538
M5 7982 23309 20429 25957 31040 46118 68630 81429 134237 177418 187947
M10 | 7980 23219 20417 26128 31157 46174 67791 81219 134144 176510 186883
N10 | 7855 22720 20479 25661 30548 45269 67395 80828 132726 175126 184134
N+1 | 7964 22557 20347 25792 30459 45406 67216 80369 133860 175810 184935
N+2 | 7945 22577 20476 25563 30732 44835 66771 80415 133082 173969 183905
Table 4. Run times
ibm01 ibm02 ibm03 ibm04 ibm06 ibm08 ibm10 ibml12 ibm14 ibm16 ibm18
M4 22 54 58 71 104 192 289 295 732 997 1135
M5 28 67 68 77 115 214 320 396 796 1138 1308
M10 54 124 127 151 209 399 570 633 1403 1974 2230
N10 40 93 107 119 170 346 460 471 1231 1529 2123
N+1 26 61 67 75 100 198 257 270 580 839 1054
N+2 34 83 87 99 138 291 364 380 896 1278 1580

the run time is also larger, since the starting point is very bad
and for this convergence takes longer. The run time can be
further improved if the number of iterations is reduced, but
then also the quality decreases. Here it is up to the designer
to chose what is more important, run time or quality of the
final result. But the choice of the number of runs allows for
a “smooth” trade-off.

The experiments shown above give the impression that
it was the best strategy to use GRE only, since it produces
the best results using the smallest amount of memory. In
the following we show that when using a small number of
partitions only, it does make sense to use a KLFM-like al-
gorithm first. In Figure 3, for benchmark ibm18 and a va-
riety of partition numbers a comparison of M10, N+2, and
GRE is given. Relative numbers compared to M10 are used.
Thus, a value larger than 1.0 means that the method is worse
than M10, while it is better for a value less than 1.0. For
a small number of partitions, M10 produces much better
results than GRE, while N+2 takes an intermediate place.
However, for a growing number of partitions GRE also im-
proves, and it is better than M10 for more than 500 parti-
tions. To obtain a stable algorithm, i.e. a method that per-
forms well independent of the number of partitions, it does
make sense to use a combination of both approaches, i.e. to
run the greedy algorithm after recursive bi-partitioning.

5. Conclusions

We presented a new method to improve recursive bi-
partitioning of netlists for a very large number of partitions.
The parameters for bi-partitioning are chosen dependent on

the recursion level, since the quality of the cut is not very
much of importance for the first cuts, while it has a large
impact on the result for later cuts. Therefore, it is possi-
ble to speed up the algorithm for the first cuts where the
number of nodes that have to be considered is still large.
When the quality of the cuts becomes more important, much
fewer nodes have to be considered and more iterations can
be processed. The algorithm is further improved by using
a post-processing step that allows to move nodes from one
partition to another in a greedy fashion.

Using this post-processing step directly for the ini-
tial partitioning, i.e. without carrying out recursive bi-
partitioning first, the memory can be further reduced, since
no information for bi-partitioning has to be stored. Since
more time can be spent for the greedy algorithm, also the
quality of the results improves, if the number of partitions
is large enough.
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