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Abstract

Formal verification of complete ASICs with up to several million gates can only be carried
out, if the sequential problem is transformed to a combinational one. The circuits that
have to be compared are modeled as Finite State Machines (FSMs). But the state encoding
has to be (nearly) identical such that a matching of the states can be performed. Then
combinational equivalence checking is carried out on the resulting design. If the designs
are not equivalent, a counterexample consisting of values for some inputs and registers is
returned. The remaining problem is to decide whether this counterexample is (sequentially)
reachable, i.e. whether the states specified in the counterexample is valid.

Since in general the problem of reachability analysis is noteasier than sequential equiva-
lence checking, we propose approximation schemes to efficiently show non-reachability of
some target states. These schemes only focus on a small part of the sequential circuit and
by this significantly reduce run time. Binary Decision Diagrams (BDDs) are used locally
for these parts, and no global BDD for the state transition function is required. Experimen-
tal results on industrial designs show that using these methods, it is often possible to prove
non-reachability of some states within seconds, while a complete construction of the BDD
is infeasible.

1 Introduction

Formal verification of large designs is of growing interest,and it is used at various stages of the design
flow. Especiallycombinationalequivalence checking is successfully applied in industry [9]. If two
designs with the same state encoding are not equivalent, commonly used tools return a counterexample,
i.e. an assignment of values to the inputs of the designs for which the output values of the designs differ.

Due to the complexity of the problem, the generalsequentialequivalence checking problem is not
practical for large designs [3, 14, 12]. However, the combinational approach can also be used for se-
quential designs as long as the state encoding is not modified: registers of the design are treated as



additional (secondary) inputs and outputs, and only the combinational logic is compared. If the designs
are combinationally equivalent, they are also sequentially equivalent. Otherwise a counterexample is
returned. The problem that arises here is that the designs may be different in a states which is not
sequentially reachable. Since not all of the registers needto be specified, each assignment of values to
the unspecified registers is a counterexample, resulting ina set of statesS. Therefore, a reachability
analysis for this set of states is required, i.e. it has to be shown whether there is at least one state inS
that is reachable.

A similar problem arises in Bounded Model Checking (BMC). Assuming the initial state is arbitrary
(i.e. it is not the reset state), a BMC solver may return a counterexample that starts in some states, that
is sequentially not reachable.

In contrast to the general problem of a complete reachability analysis whereall reachable states have
to be computed, in this case reachability has to be shown onlyfor somestates.

It is possible that a counterexample does not specify all inputs and registers. Arbitrary values can be
assigned to unspecified registers, resulting in sets of states. Since it is enough that one of these states
is reachable, counterexamples where only few registers arespecified are more likely to be reachable.
Furthermore, in some cases modifying a counterexample by setting some registers to “unspecified” is
possible and the resulting counterexample is still valid, i.e. it shows differences of the two designs.
Therefore, removing entries of a counterexample is possible as long as the counterexample is still valid.
However, this may have an influence on its reachability, since the set of target states is increasing.

Several approaches for approximate reachability checkinghave been presented so far. Most of them
are based on approximation techniques on BDD [15, 14, 5, 10].In [11], an approach to speed up
simulation-based verification has been presented.

In this paper, we present a simple algorithm to compress counterexamples originating from combi-
national equivalence checking. It is based on simulation and it can be performed very fast. Then a
technique is described to prove the reachability or non-reachability of a counterexample. An approach
based on random pattern simulation is used to prove reachability. This is done for two reasons. First,
counterexamples that are easy to reach can be found quickly.Second, additional information which can
be used later to speed up the BDD-based approach can be obtained without causing much overhead.

Using the simulation-based approach, it is only possible toprove reachability but not non-reachability.
For non-reachability, an approach based on BDDs is proposed. Basically, a backward reachability anal-
ysis is carried out on the transitive fanin cone of the counterexample. Two over-approximation schemes
are described that focus on proving non-reachability. The first one is based on ignoring parts of the
counterexample that are easy to reach. Information gained from the simulation approach is used here.
The second one is based on replacing registers in the fanin cone by input variables. This approach not
only reduces the number of state variables that are necessary, but also reduces the size of the BDD for
the state transition function. Especially for designs containing many registers, this approach is very
powerful. This iterated technique targets very large circuits, since the method is fully automatic and is
integrated in an industrial flow. Due to the size of the circuits considered it is important to have simple
and fast core algorithms, like simulation, while symbolic techniques based on BDDs should be avoided,
if possible.

Experimental results on large industrial designs are given, showing that the BDD-based approach is
very fast in case the approximation techniques can be used.

The paper is structured as follows. First, some basic definitions are given. Compaction of coun-
terexamples is described in Section 4. The simulation-based approach is presented in Section 5.1. In



Section 5.2, the symbolic approach and the approximation techniques are described. Finally, some ex-
perimental results are given.

2 Preliminaries

Definition 1 A Finite State Machine (FSM) is a tuple(I, O, S, s0, δ, λ), whereI, O, and S are non-
empty sets of input labels, output labels, and states, respectively. s0 is an initial state.δ : S × I → S
is the state transition function andλ : S × I → O is the output function. When the FSM is in a current
states ∈ S and receives an inputi ∈ I, the next state is given byδ(s, i) and the output is given by
λ(s, i).

A counterexample is given by an assignment of values to a subset of the input and state variables.
This can be seen as an assignment of values to all input and state variables,

ice = (i1, . . . , in), sce = (s1, . . . , sk), ij , sj ∈ {0, 1, dc},

using a non-Boolean don’t care valuedc. For this counterexample, some property is violated. For
instance, in equivalence checking, for the two FSMs under consideration, it holds

δ1(sce, ice) 6= δ2(sce, ice) or λ1(sce, ice) 6= λ2(sce, ice)

for all possible extensions of the counterexample (i.e. replacingdc by some Boolean constant). In BMC,
some property of a design is violated.

The problem of reachability analysis is to determine whether a sequence of input assignments,it,
t ∈ N, exists such that

δ(· · · δ(δ(s0, i0), i1) · · ·) = sce

for the initial states0 of the FSM.

3 Problem Description and Basic Ideas

In the case of combinational equivalence checking we assumethat all inputs, outputs and states are
matched. Thus, the sequential problem is transferred to a combinational one. But the states are consid-
ered as primary inputs in the new model. This may result in invalid counterexamples, since states are
used that are not reachable during normal operation of the sequential circuit.

To guarantee robust behavior of verification tools, it is important that these counterexamples can be
detected and eliminated. In the following a step approach isused:

1. Compaction of counterexamples: To reduce the complexityof the proof process, the size of the
counterexample is reduced.

2. Reachability analysis: Based on the reduced counterexample the reachability or the non-reacha-
bility of the counterexample is proven. For large designs a complete reachability analysis cannot
be carried out. For this, approximation techniques are applied.

If a counterexample is proven to be non-reachable, constraints can be generated that are given to the
equivalence checker in the next run.



4 Compaction of Counterexamples

In this section we focus on combinational equivalence checking and present a way to pre-processing
to simplify the reachability check.

As long as a counterexample fulfills the property that two designs under consideration are different,
i.e.

δ1(sce, ice) 6= δ2(sce, ice) or λ1(sce, ice) 6= λ2(sce, ice),

some entries can be replaced by the valuedc. A counterexample containing moredc entries for state vari-
ables is more likely to be reachable, since less state-bits require a specified value. Therefore, compaction
of a counterexample in general is desired.

The following simple algorithm can be used to reduce the sizeof counterexamples: first, for each state
variablesj in sce not having valuedc it is checked whether its value can be replaced bydc (i.e. whether
it can be removed from the counterexample). In a second step,input variables are replaced bydc values.
A three-valued simulator is used to check whether a counterexample is valid.

Another way to decide whether a counterexample is valid is touse provers (which are based on a
combination of different algorithms, e.g. BDDs and SAT) to show that both output values of the designs
are constant and that they are different.

More sophisticated methods can be used here, but the basic idea is to get reductions at very low cost.
Our experiments have shown that the described simple technique is sufficient.

5 Reachability Analysis of Counterexamples

The reachability analysis is divided into two phases. First, a simulation-based approach is used to
identify counterexamples that are reachable. During this phase, also some information about the “diffi-
culty” of the registers is gained, i.e. how difficult it is to obtain the value specified in the counterexample
for each register.

In a second phase, the main focus is to prove non-reachability. Two approximation techniques are
used to avoid BDD blow-ups, using the information obtained by the previous phase.

5.1 Simulation-based Reachability Analysis

To decide reachability of a given counterexample, first an approach based on random pattern simula-
tion is used. Initially, all registers have an unknown value, i.e. s0 = (dc, . . . , dc). Then the successor
state is computed using randomly chosen values for the inputs until the target statesce is reached or a
given number of iterations is exceeded.

The motivation for this approach is the following: usually,after compaction counterexamples contain
only few entries, and therefore this approach can detect reachable counterexamples very quickly. Fur-
thermore, additional information can be gained during simulation, which can later be used to speed up
the BDD-based approach which is described in the next section.

Note that using this approach, it is only possible to show reachability of a counterexample; if it is not
reachable, no definite conclusion is possible. To prove non-reachability, more powerful methods have to
be used.



BackwardReachability(Counterexamplece) {
newStates = targetStates = ce;
while (targetStates 6= Bk) {

previousStates = getPreviousStates(targetStates);
newStates = previousStates \ targetStates;
if (newStates == ∅) {

return “Counterexample is not reachable”;
}
targetStates = targetStates ∪ newStates;

}
return “Counterexample is reachable”;

}

Figure 1. Backward Reachability

5.2 BDD-based Reachability Analysis

Backward traversal is used to decide reachability. In each iteration the set of states from which the
target states are reachable is computed and added to the set of target states. This computation is done
symbolically: both the state transition function and sets of states are represented by BDDs. This method
can determine both reachability and non-reachability of counterexamples.

Starting from the set of states given in the counterexample,a set of previous states is computed and
added to the state set, as long as new states can be added. If the initial state is among the reached states,
the target states are reachable. Otherwise, they are not. Since in practice the initial state may not exist
or may be unknown, we use a slightly different criterium: thetarget states are reachable, if and only if
all states have been reached. If the FSM has a reset state, i.e. a state that can be reached from any state
of the FSM, and if the reset state is equal to the initial state, this criterium is equivalent to the above one.

In the following, the basic algorithm for backward reachability is described in more detail and it is
discussed which problems may emerge. Then an approximationscheme that focuses on non-reachability
is described.

5.2.1 Backward Reachability

For backward reachability, a standard iterative algorithmis used, see Figure 1.
Basically, there are two main approaches to compute the set of previous states. The first one is based

on transition relations [2], the second one uses the state transition function directly [7]. A combination of
both approaches has been presented in [13]. One drawback of the transition relation is that an additional
set of state variables is necessary, slowing down dynamic reordering significantly. Furthermore, the
transition relation is usually very large, and therefore sophisticated partitioning methods have to be used
[16, 1, 6, 4, 14]. We use the approach based on transition functions. A sketch is given in Figure 2. After
the computation, input variables have to be quantified existentially in the resulting set.

In practice, however, problems may arise due to two main problems:



getPreviousStates(BDD for state sets) {
if (s = ∅ or s = Bk) returns;

x = top variable ofs;
t = getPreviousStates(sx=1);
e = getPreviousStates(sx=0);
return(x · t + x · e);

}

Figure 2. Backward traversal based on state transition functions

A. the BDD for the state transition function may be too large,or

B. the BDD for the set of target states may be too large.

In the next two sections, over-approximation algorithms are described which try to overcome the prob-
lem of huge BDD sizes and which focus on proving non-reachability. They are both based on considering
only a part of the sequential circuit, and trying to prove non-reachability within this part. This also means
that the BDD for the state transition function and intermediate sets of states are much smaller.

5.2.2 Focus on Difficult Latches

Some of the registers may take the value required for the counterexample frequently, while some others
match very seldom. This is the motivation to focus on the latter registers first: if these registers cannot
meet their requirements, non-reachability is proven. On the other hand, it is necessary to do a full
reachability analysis, if theycan take the correct values.

Therefore, in a first step some of the “difficult” registers are selected and all others are set todc.
Reachability is examined on this modified counterexample which is easier to handle. If non-reachability
could not be proven, in a second step the reachability analysis is carried out on the full counterexample.

To determine how frequently a register has the value of the counterexample, the simulation-based
approach of Section 5.1 is called before, and a counter for each register is updated each time the value
of the register is equal to the value given in the counterexample.

5.2.3 Replacing Latches by Inputs

A second over-approximation scheme is based on replacing registers by inputs. If a register is replaced
by an input, its value can arbitrarily be chosen, independent of the previous state of the FSM. Therefore,
more states are reachable. Again, if the counterexample is not reachable in the over-approximation, it
is definitely not reachable. Otherwise, no decision can be made. This approach is similar to the one
proposed in [11].

To select registers for replacement, in a first step all registers in the transitive fanin cone of the coun-
terexample are put into a priority queue, sorted by the number of variables of which the next state
function depends on. Then iteratively the register with thelargest number of variables in its support
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Figure 3. Replacing Latches by Inputs

is replaced by an input. Latches contained in the counterexample are never replaced by this approach,
since this is already done in the previously described over-approximation scheme.

Even if all of the registers which are not contained in the counterexample are replaced, the resulting
circuit may still be sequential, since registers of the counterexample may depend on other registers of
the counterexample (see Figure 3). However, these loops areusually very short, and only few iterations
are necessary for the reachability analysis.

Note that using the size of the fanin cone is only one possibility to select the registers. Many other
criteria are also possible, like for instance to use a BFS runstarting from the counterexample to order
the registers.

5.3 Overall Algorithm

The algorithm starts with the random pattern simulation described in Section 5.1. If reachability could
not be proven, the approach based on BDDs is used. First, the maximum degree of over-approximation
is used, i.e. only very few of the registers contained in the counterexample are considered, and all other
registers are replaced by input variables. Then successively the calculation gets more precise, until non-
reachability is proven. In the BDD-based approach, reachability of a counterexample can only be proven
in the last iteration, where no over-approximation techniques are used.

In the experiments, the following sequence of over-approximations showed good results:

1. Ignore3/4 of the counterexample, replace all other registers.

2. Ignore3/4, replace3/4 of the other registers.

3. Ignore3/4, replace1/4 of the other registers.

4. Ignore3/4, replace none of the other registers.

5. Use the full counterexample, replace all of the other registers.

6. Use the full counterexample, replace none of the other registers.



Table 1. Experimental results: Compression of Counterexamples

circuit in out registers gates orig size compressed

indust-1 285 27 2,335 27,305 25 20
indust-2 226 12 244 3,966 9 7
indust-3 48 1,359 1,395 17,097 67 67
indust-3 48 1,359 1,395 17,097 52 52
indust-3 48 1,359 1,395 17,097 67 67
indust-4 316 594 766 13,067 81 81
indust-4 316 594 766 13,067 115 115
indust-5 381 7 614 24,298 14 14
indust-5 381 7 614 24,298 13 13
indust-6 38 48 210 4,870 12 12
indust-6 38 48 210 4,870 28 20
indust-7 2843 4178 150,215 1,914,512 10 10

The factors1/4 and3/4 have been determined by experiments.
In many cases, non-reachability can already be shown withinthe first three steps. Then, it is not

necessary to build the BDD for all registers of the counterexample, and therefore prove non-reachability
also for large designs.

6 Experimental Results

In this section we describe experimental results that have been carried out on a 450 MHzSUN Ultra
80. We used a memory limit of 512 MBytes. All run times are given in CPU seconds. The algorithm has
been implemented in C++ and has been integrated in the Infineon verification environment CVE [8, 9].
Several industrial designs containing errors have been used. The first 6 designs have been given on the
register-transfer level, while the last one is a flat netlist.

The results showing the effectiveness of the overall algorithm are given in Table 1 and 2. In Columns
2 to 5, the number of primary inputs, outputs, registers, andgates are given, respectively. In Table 1, the
size of the counterexample before and after compression is given in the next two columns. It can be seen
that usually the counterexamples are very small compared tothe total number of registers. Furthermore,
in some cases the sizes can be further reduced by the simulation-based approach described in Section 4.

The reachability results without and with approximation techniques are given in Table 2. In many
cases BDDs can be built for the whole transitive fanin cone ofthe counterexamples. In most cases
the approximation techniques work very well, and a speed-upof several orders of magnitude can be
observed. Even if the BDD for the state transition function cannot be built, non-reachability can be
quickly decided.



Table 2. Experimental results: Reachability

wo/ approx. w/ approx.
circuit in registers gates reach time reach time

indust-1 285 2,335 27,305 BDD blowup no 47.98
indust-2 226 244 3,966 yes 0.27 yes 0.27
indust-3 48 1,395 17,097 yes 26.08 yes 56.12
indust-3 48 1,395 17,097 yes 22.58 yes 26.22
indust-3 48 1,395 17,097 yes 23.64 yes 100
indust-4 316 766 13,067 no 2349 no 3.03
indust-4 316 766 13,067 no 2303 no 3.41
indust-5 381 614 24,298 no 1181 no 982
indust-5 381 614 24,298 no 710 no 634
indust-6 38 210 4,870 no 23.07 no 2.48
indust-6 38 210 4,870 no 90 no 16.41
indust-7 2843 150,215 1,914,512 BDD blowup no 0.77

7 Conclusions

We presented a framework to prove non-reachability of counterexamples originating from combina-
tional equivalence checking and bounded model checking. Ina first phase, the focus is to prove reach-
ability using simulation. During this phase, also some statistical information is gathered. In a second
phase, a local BDD-based backward reachability analysis iscarried out. Approximation techniques use
the statistical information of the previous phase to prove non-reachability of the counterexample.

The main focus of this approach is to avoid some of the false negatives reported by formal verification
tools. This is one of the drawbacks of combinational equivalence checking or bounded model checking.
By proving that a counterexample is sequentially unreachable, the usability and reliability of formal
verification tools can be significantly improved.
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