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Abstract

Formal verification of complete ASICs with up to severaliorilligates can only be carried
out, if the sequential problem is transformed to a comboral one. The circuits that
have to be compared are modeled as Finite State Machines g3\t the state encoding
has to be (nearly) identical such that a matching of the stai@n be performed. Then
combinational equivalence checking is carried out on theuliing design. If the designs
are not equivalent, a counterexample consisting of valoesdme inputs and registers is
returned. The remaining problem is to decide whether thiswterexample is (sequentially)
reachable, i.e. whether the statspecified in the counterexample is valid.

Since in general the problem of reachability analysis is @&gier than sequential equiva-
lence checking, we propose approximation schemes to affic&how non-reachability of

some target states. These schemes only focus on a smallfpaet ®equential circuit and

by this significantly reduce run time. Binary Decision Diagrs (BDDs) are used locally
for these parts, and no global BDD for the state transitiondtion is required. Experimen-
tal results on industrial designs show that using these outhit is often possible to prove
non-reachability of some states within seconds, while apteta construction of the BDD
is infeasible.

1 Introduction

Formal verification of large designs is of growing interesidl it is used at various stages of the design
flow. Especiallycombinationalequivalence checking is successfully applied in induséjy [If two
designs with the same state encoding are not equivalenmoniy used tools return a counterexample,
i.e. an assignment of values to the inputs of the designsiiartwthe output values of the designs differ.

Due to the complexity of the problem, the genesafjuentialequivalence checking problem is not
practical for large designs [3, 14, 12]. However, the corabonal approach can also be used for se-
guential designs as long as the state encoding is not madifeggisters of the design are treated as



additional (secondary) inputs and outputs, and only thebtoational logic is compared. If the designs
are combinationally equivalent, they are also sequentegjuivalent. Otherwise a counterexample is
returned. The problem that arises here is that the desiggsbenaifferent in a state which is not
sequentially reachable. Since not all of the registers ned&e specified, each assignment of values to
the unspecified registers is a counterexample, resultirggat of states. Therefore, a reachability
analysis for this set of states is required, i.e. it has toHmsve whether there is at least one stat&'in
that is reachable.

A similar problem arises in Bounded Model Checking (BMC)sAmiing the initial state is arbitrary
(i.e. itis not the reset state), a BMC solver may return a terexample that starts in some stat¢hat
is sequentially not reachable.

In contrast to the general problem of a complete reachglaifilysis wherall reachable states have
to be computed, in this case reachability has to be shownfongomestates.

It is possible that a counterexample does not specify alltsipnd registers. Arbitrary values can be
assigned to unspecified registers, resulting in sets adsst&ince it is enough that one of these states
is reachable, counterexamples where only few registerseeified are more likely to be reachable.
Furthermore, in some cases modifying a counterexample timgesome registers to “unspecified” is
possible and the resulting counterexample is still valid, it shows differences of the two designs.
Therefore, removing entries of a counterexample is passiblong as the counterexample is still valid.
However, this may have an influence on its reachability,esthe set of target states is increasing.

Several approaches for approximate reachability chedkavwg been presented so far. Most of them
are based on approximation techniques on BDD [15, 14, 5, 19][11], an approach to speed up
simulation-based verification has been presented.

In this paper, we present a simple algorithm to compressteoexamples originating from combi-
national equivalence checking. It is based on simulatiah iaigan be performed very fast. Then a
technique is described to prove the reachability or nochahility of a counterexample. An approach
based on random pattern simulation is used to prove redithialiihis is done for two reasons. First,
counterexamples that are easy to reach can be found quidtynd, additional information which can
be used later to speed up the BDD-based approach can beeaabteithout causing much overhead.

Using the simulation-based approach, it is only possibpgdwe reachability but not non-reachability.
For non-reachability, an approach based on BDDs is prop&zsically, a backward reachability anal-
ysis is carried out on the transitive fanin cone of the cowax@mple. Two over-approximation schemes
are described that focus on proving non-reachability. Tist éine is based on ignoring parts of the
counterexample that are easy to reach. Information gamued the simulation approach is used here.
The second one is based on replacing registers in the fanm lop input variables. This approach not
only reduces the number of state variables that are negesséralso reduces the size of the BDD for
the state transition function. Especially for designs aonhg many registers, this approach is very
powerful. This iterated technique targets very large ¢isgsince the method is fully automatic and is
integrated in an industrial flow. Due to the size of the citggbnsidered it is important to have simple
and fast core algorithms, like simulation, while symboéichiniques based on BDDs should be avoided,
if possible.

Experimental results on large industrial designs are gisbowing that the BDD-based approach is
very fast in case the approximation techniques can be used.

The paper is structured as follows. First, some basic defivstare given. Compaction of coun-
terexamples is described in Section 4. The simulationébapproach is presented in Section 5.1. In



Section 5.2, the symbolic approach and the approximaticimigues are described. Finally, some ex-
perimental results are given.

2 Preliminaries

Definition 1 A Finite State Machine (FSM) is a tuplé, O, S, s¢, 0, A), wherel, O, and S are non-
empty sets of input labels, output labels, and states, atisdy. s, is an initial state.d : S x I — §

is the state transition function and: S x I — O is the output function. When the FSM is in a current
states € S and receives an input € I, the next state is given hy(s, i) and the output is given by
A(s,1).

A counterexample is given by an assignment of values to aesulighe input and state variables.
This can be seen as an assignment of values to all input aedvst@ables,

ice = (il, e ,in),Sce = (81, .. .,Sk), ij,Sj c {O, 1,dC},

using a non-Boolean don'’t care valde. For this counterexample, some property is violated. For
instance, in equivalence checking, for the two FSMs undesiceration, it holds

51 (5067 ice) 7£ 52<Sce7 ice) or >\1(5ce7 ice) # )\2<Scev ice)

for all possible extensions of the counterexample (i.da@pgdc by some Boolean constant). In BMC,
some property of a design is violated.
The problem of reachability analysis is to determine whetheequence of input assignmenis,
t € N, exists such that
5( . '(5(5(80,’i0), Zl) . ) = Sce

for the initial states, of the FSM.

3 Problem Description and Basic ldeas

In the case of combinational equivalence checking we asshateall inputs, outputs and states are
matched. Thus, the sequential problem is transferred tordicational one. But the states are consid-
ered as primary inputs in the new model. This may result ialidvcounterexamples, since states are
used that are not reachable during normal operation of tipeeseial circuit.

To guarantee robust behavior of verification tools, it is amant that these counterexamples can be
detected and eliminated. In the following a step approacisésl:

1. Compaction of counterexamples: To reduce the complexitiie proof process, the size of the
counterexample is reduced.

2. Reachability analysis: Based on the reduced countengestime reachability or the non-reacha-
bility of the counterexample is proven. For large designsragete reachability analysis cannot
be carried out. For this, approximation techniques areiegpl

If a counterexample is proven to be non-reachable, constéraan be generated that are given to the
equivalence checker in the next run.



4 Compaction of Counterexamples

In this section we focus on combinational equivalence cimgcnd present a way to pre-processing
to simplify the reachability check.
As long as a counterexample fulfills the property that twaglesunder consideration are different,
i.e.
51(8667 Z.ce) # 52(8067 Iice) or >\1<SC€7 Z.ce) # )\2(5067 ’ice)u

some entries can be replaced by the valueA counterexample containing mafe entries for state vari-
ables is more likely to be reachable, since less statedajtsire a specified value. Therefore, compaction
of a counterexample in general is desired.

The following simple algorithm can be used to reduce theasip®unterexamples: first, for each state
variables; in s.. not having valuelc it is checked whether its value can be replaceddyi.e. whether
it can be removed from the counterexample). In a secondisigy, variables are replaced by values.

A three-valued simulator is used to check whether a couxdenple is valid.

Another way to decide whether a counterexample is valid igs@® provers (which are based on a
combination of different algorithms, e.g. BDDs and SAT) how that both output values of the designs
are constant and that they are different.

More sophisticated methods can be used here, but the basiésitlb get reductions at very low cost.
Our experiments have shown that the described simple tgelams sufficient.

5 Reachability Analysis of Counterexamples

The reachability analysis is divided into two phases. Fassimulation-based approach is used to
identify counterexamples that are reachable. During th&sp, also some information about the “diffi-
culty” of the registers is gained, i.e. how difficult it is tbtain the value specified in the counterexample
for each register.

In a second phase, the main focus is to prove non-reaclyabilito approximation techniques are
used to avoid BDD blow-ups, using the information obtaingdhz previous phase.

5.1 Simulation-based Reachability Analysis

To decide reachability of a given counterexample, first gor@gch based on random pattern simula-
tion is used. Initially, all registers have an unknown value. s, = (dc, . ..,dc). Then the successor
state is computed using randomly chosen values for the snmitil the target state.. is reached or a
given number of iterations is exceeded.

The motivation for this approach is the following: usuadlfter compaction counterexamples contain
only few entries, and therefore this approach can detechedde counterexamples very quickly. Fur-
thermore, additional information can be gained during $ation, which can later be used to speed up
the BDD-based approach which is described in the next sectio

Note that using this approach, it is only possible to showhahility of a counterexample; if it is not
reachable, no definite conclusion is possible. To provenmeachability, more powerful methods have to
be used.



BackwardReachability(Counterexamplee) {

newStates = targetStates = ce;

while (targetStates # BF) {
previousStates = getPreviousStates(targetStates);
newStates = previousStates \ targetStates;
if (newStates == 0) {

return “Counterexample is not reachable”;

}

targetStates = targetStates U newStates;

}

return “Counterexample is reachable”;

Figure 1. Backward Reachability

5.2 BDD-based Reachability Analysis

Backward traversal is used to decide reachability. In etafation the set of states from which the
target states are reachable is computed and added to thietagged states. This computation is done
symbolically: both the state transition function and sétstates are represented by BDDs. This method
can determine both reachability and non-reachability ointerexamples.

Starting from the set of states given in the counterexangp$st of previous states is computed and
added to the state set, as long as new states can be addedinititi state is among the reached states,
the target states are reachable. Otherwise, they are muate 8i practice the initial state may not exist
or may be unknown, we use a slightly different criterium: theget states are reachable, if and only if
all states have been reached. If the FSM has a reset statestae that can be reached from any state
of the FSM, and if the reset state is equal to the initial staie criterium is equivalent to the above one.

In the following, the basic algorithm for backward reactipis described in more detail and it is
discussed which problems may emerge. Then an approxingtieme that focuses on non-reachability
is described.

5.2.1 Backward Reachability

For backward reachability, a standard iterative algorithnnsed, see Figure 1.

Basically, there are two main approaches to compute thef pegwous states. The first one is based
on transition relations [2], the second one uses the statsitron function directly [7]. A combination of
both approaches has been presented in [13]. One drawbauk wansition relation is that an additional
set of state variables is necessary, slowing down dynanoideeing significantly. Furthermore, the
transition relation is usually very large, and thereforgtssticated partitioning methods have to be used
[16, 1, 6, 4, 14]. We use the approach based on transitioritursc A sketch is given in Figure 2. After
the computation, input variables have to be quantified enistlly in the resulting set.

In practice, however, problems may arise due to two mainlpros:



getPreviousState@BDD for state set) {
if (s = 0 or s = B¥) returns;

x = top variable ofs;

t = getPreviousStates(s,—1);
e = getPreviousStates(s,—);
return(x -t + T - e);

Figure 2. Backward traversal based on state transition functions

A. the BDD for the state transition function may be too large,
B. the BDD for the set of target states may be too large.

In the next two sections, over-approximation algorithnmes@ascribed which try to overcome the prob-
lem of huge BDD sizes and which focus on proving non-readityabl hey are both based on considering
only a part of the sequential circuit, and trying to prove-meachability within this part. This also means
that the BDD for the state transition function and internagglsets of states are much smaller.

5.2.2 Focus on Difficult Latches

Some of the registers may take the value required for theteoesample frequently, while some others
match very seldom. This is the motivation to focus on thestattgisters first: if these registers cannot
meet their requirements, non-reachability is proven. Gndther hand, it is necessary to do a full
reachability analysis, if thegantake the correct values.

Therefore, in a first step some of the “difficult” registerg aelected and all others are setdto
Reachability is examined on this modified counterexamplielis easier to handle. If non-reachability
could not be proven, in a second step the reachability aisalysarried out on the full counterexample.

To determine how frequently a register has the value of thatswexample, the simulation-based
approach of Section 5.1 is called before, and a counter fdr ezgister is updated each time the value
of the register is equal to the value given in the countergtam

5.2.3 Replacing Latches by Inputs

A second over-approximation scheme is based on replacgistees by inputs. If a register is replaced
by an input, its value can arbitrarily be chosen, indepenhdethe previous state of the FSM. Therefore,
more states are reachable. Again, if the counterexampletieeachable in the over-approximation, it
is definitely not reachable. Otherwise, no decision can béemdhis approach is similar to the one
proposed in [11].

To select registers for replacement, in a first step all teggsn the transitive fanin cone of the coun-
terexample are put into a priority queue, sorted by the nurobeariables of which the next state
function depends on. Then iteratively the register with llrgest number of variables in its support



other latches and primary inputs
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Figure 3. Replacing Latches by Inputs

is replaced by an input. Latches contained in the countarpl@are never replaced by this approach,
since this is already done in the previously described approximation scheme.

Even if all of the registers which are not contained in thentetexample are replaced, the resulting
circuit may still be sequential, since registers of the ¢ertexample may depend on other registers of
the counterexample (see Figure 3). However, these loopssadly very short, and only few iterations
are necessary for the reachability analysis.

Note that using the size of the fanin cone is only one postilid select the registers. Many other
criteria are also possible, like for instance to use a BFSstarting from the counterexample to order
the registers.

5.3 Overall Algorithm

The algorithm starts with the random pattern simulatiorcdbed in Section 5.1. If reachability could
not be proven, the approach based on BDDs is used. First,dakemam degree of over-approximation
is used, i.e. only very few of the registers contained in thenterexample are considered, and all other
registers are replaced by input variables. Then succégsheecalculation gets more precise, until non-
reachability is proven. In the BDD-based approach, reatityadsf a counterexample can only be proven
in the last iteration, where no over-approximation techegare used.

In the experiments, the following sequence of over-appnations showed good results:

=

. Ignore3/4 of the counterexample, replace all other registers.
Ignore3/4, replace3 /4 of the other registers.

Ignore3/4, replacel /4 of the other registers.

Ignore3/4, replace none of the other registers.

Use the full counterexample, replace all of the otherstegs.

o o & W N

Use the full counterexample, replace none of the othesterg.



Table 1. Experimental results: Compression of Counterexamples

| circuit | in | out | registers] gates| orig size | compressed
indust-1| 285 27 2,335 27,305 25 20
indust-2| 226 12 244 3,966 9 7
indust-3 48 | 1,359 1,395 17,097 67 67
indust-3 48 | 1,359 1,395 17,097 52 52
indust-3 48 | 1,359 1,395 17,097 67 67
indust-4 | 316 594 766 13,067 81 81
indust-4 | 316 594 766 13,067 115 115
indust-5| 381 7 614 24,298 14 14
indust-5| 381 7 614 24,298 13 13
indust-6 38 48 210 4,870 12 12
indust-6 38 48 210 4,870 28 20
indust-7 | 2843 | 4178 | 150,215| 1,914,512 10 10

The factorsl /4 and3/4 have been determined by experiments.

In many cases, non-reachability can already be shown witterfirst three steps. Then, it is not
necessary to build the BDD for all registers of the countaneple, and therefore prove non-reachability
also for large designs.

6 Experimental Results

In this section we describe experimental results that haea lcarried out on a 450 MHZUN Ultra
80. We used a memory limit of 512 MBytes. All run times are giveiCiPU seconds. The algorithm has
been implemented in C++ and has been integrated in the Imfimedfication environment CVE [8, 9].
Several industrial designs containing errors have beed. Udee first 6 designs have been given on the
register-transfer level, while the last one is a flat netlist

The results showing the effectiveness of the overall allgoriare given in Table 1 and 2. In Columns
2 to 5, the number of primary inputs, outputs, registers,gatds are given, respectively. In Table 1, the
size of the counterexample before and after compressianaa g the next two columns. It can be seen
that usually the counterexamples are very small compartgtettmtal number of registers. Furthermore,
in some cases the sizes can be further reduced by the siomitzised approach described in Section 4.

The reachability results without and with approximatioohigiques are given in Table 2. In many
cases BDDs can be built for the whole transitive fanin con¢hefcounterexamples. In most cases
the approximation techniques work very well, and a speedfuseveral orders of magnitude can be
observed. Even if the BDD for the state transition functi@mmot be built, non-reachability can be
quickly decided.



Table 2. Experimental results: Reachability

wo/ approx. w/ approx.
circuit | in | registers| gates| reach| time | reach| time
indust-1| 285 2,335 27,305 || BDD blowup no | 47.98
indust-2 | 226 244 3,966 yes| 0.27 yes| 0.27

indust-3 48 1,395 17,097 yes | 26.08 yes | 56.12
indust-3 48 1,395 17,097 yes | 22.58 yes | 26.22
indust-3 48 1,395 17,097 yes | 23.64 yes 100

indust-4 | 316 766 13,067 no | 2349 no 3.03
indust-4 | 316 766 13,067 no | 2303 no 3.41
indust-5| 381 614 24,298 no| 1181 no 982
indust-5| 381 614 24,298 no 710 no 634
indust-6 38 210 4,870 no | 23.07 no 2.48
indust-6 38 210 4,870 no 90 no | 16.41

indust-7 | 2843 | 150,215| 1,914,512| BDD blowup no| 0.77

7 Conclusions

We presented a framework to prove non-reachability of cenexemples originating from combina-
tional equivalence checking and bounded model checking.first phase, the focus is to prove reach-
ability using simulation. During this phase, also someigtiatl information is gathered. In a second
phase, a local BDD-based backward reachability analysiarised out. Approximation techniques use
the statistical information of the previous phase to prowe-reachability of the counterexample.

The main focus of this approach is to avoid some of the falgatnees reported by formal verification
tools. This is one of the drawbacks of combinational eqeneé checking or bounded model checking.
By proving that a counterexample is sequentially unredehdbe usability and reliability of formal
verification tools can be significantly improved.
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