
Disjoint Sum of Product Minimization by

Evolutionary Algorithms

Nicole Drechsler Mario Hilgemeier
Görschwin Fey Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
{nd,mh,fey,rd}@informatik.uni-bremen.de

Abstract

Recently, an approach has been presented to minimize Disjoint Sum-
of-Products (DSOPs) based on Binary Decision Diagrams (BDDs). Due
to the symbolic representation of cubes for large problem instances, the
method is orders of magnitude faster than previous enumerative tech-
niques. But the quality of the approach largely depends on the variable
ordering of the underlying BDD.

This paper presents an Evolutionary Algorithm (EA) to optimize the
DSOP representation of a given Boolean function. The EA is used to find
an optimized variable ordering for the BDD representation. Then the
DSOP is derived from the optimized BDD using structural and symbolic
techniques. Experiments are performed to adjust the parameters of the
EA. Experimental results are given to demonstrate the efficiency of the
approach.

1 Introduction

A DSOP is a representation of a Boolean function as a sum of disjoint cubes.
DSOPs are used in several applications in the area of CAD, e.g. the calculation of
spectra of Boolean functions [7, 8, 22] or as a starting point for the minimization
of Exclusive-Or-Sum-Of-Products (ESOPs) [17, 20]. In [9, 21] some techniques
for minimization of DSOPs have been introduced. They are working on explicit
representations of the cubes and therefore are only applicable to small instances
of the problem.

BDDs in general are an efficient data structure for representation and ma-
nipulation of Boolean functions. They are well-known and widely used in logic
synthesis [16, 10] and formal verification [2, 15] of integrated circuits. BDDs are
well-suited for applications in the area of logic synthesis, because the cubes in
the ON-set of a Boolean function are implicitly represented in this data struc-
ture.

A hybrid approach for the minimization of DSOPs relying on BDDs in com-
bination with structural methods has recently been introduced in [11]. It has

been shown that BDDs are applicable to the problem of DSOP minimization.
Given a BDD of a Boolean function, the DSOP can easily be constructed: each
one-path, i.e. a path from the root to the terminal 1 vertex, corresponds to a
cube in the DSOP, and moreover, different one-paths lead to disjoint cubes. For
the construction of the BDD the variables of the Boolean function are considered
in a fixed order. The permutation of the variables largely influences the number
of one-paths in the BDD and thus the number of cubes in the corresponding
DSOP. Additionally, the importance of choosing a “good” variable order to get
a small DSOP has theoretically been supported.

In this context EAs have been shown to be a promising approach, i.e. they
work very well for BDD minimization and other variants of permutation prob-
lems (see e.g. [6, 14]).

In this paper we present an EA for determining a good ordering for a BDD.
The BDD is optimized in such a way that the corresponding DSOP is minimized.
The parameters of the EA are studied in detail. Experimental results are given
that show improvement over the best known heuristics.

The paper is organized as follows: Section 2 briefly introduces the necessary
notion of BDDs and one-paths and shows how the DSOP representation is
related to BDDs. In Section 3 the EA is discussed in detail. Experimental
results are given in Section 4. Finally, conclusions are drawn.

2 Preliminaries

2.1 Binary Decision Diagrams

A BDD is a directed acyclic graph Gf = (V, E) that represents a Boolean
function f : Bn −→ Bm. The Shannon decomposition g = xigxi

+ xigxi
is

carried out in each internal node v labeled with label(v) = xi of the graph,
therefore v has the two successors then(v) and else(v). The leaves are labeled
with 0 or 1 and correspond to the constant Boolean functions. The root node
root(Gf) corresponds to the function f . In the following, BDD refers to a
reduced ordered BDD (as defined in [1]) and the size of a BDD is given by the
number of nodes.

Definition 1 A one-path in a BDD Gf = (V, E) is a path

p = (v0, ..., vl−1, vl),

vi ∈ V, (vi, vi+1) ∈ E

with v0 = root(Gf) and label(vl) = 1. p has length l + 1.
P1(Gf) denotes the number of all different one-paths in the BDD Gf .

2.2 BDD and DSOP

Consider a BDD Gf representing the Boolean function f(x1, ..., xn). A one-
path p = (v0, ..., vl) of length l + 1 in Gf corresponds to an (n− l)-dimensional

cube that is a subset of ON(f)1. The cube is described by:

mp =

l−1
⋂

i=0

li, where

li =

{

label(vi), if vi+1 = else(vi)
label(vi), if vi+1 = then(vi)

Two paths p1 and p2 in a BDD are different iff they differ in at least one
edge. Since all paths originate from root(Gf), there is a node v where the paths
separate. Let label(v) = xi. Therefore one of the cubes includes xi, the other
xi. Hence, the cubes mp1

and mp2
are disjoint.

Now the DSOP can easily be built by summing up all cubes corresponding
to the one-paths.

Remark 1 Let Gf be a BDD of f(x1, ..., xn) and M1 be the set of one-paths
in Gf . Then Gf represents the DSOP

∑

p∈M1

mp,

where mp is the cube given above.

From this it is clear that the number of cubes in the DSOP represented by
Gf is equal to P1(Gf). Thus, as opposed to the usual goal of minimizing the
number of nodes in a BDD, here the number of one-paths is minimized.

Known techniques to minimize the number of nodes can be used to minimize
the number of paths by changing the objective function. One such technique is
sifting [19]: A variable is chosen and moved to any position of the variable order
based on exchange of adjacent variables. Then it is fixed at the best position
(i.e. where the smallest BDD results), afterwards another variable is chosen. No
variable is chosen twice during this process.

For the evaluation of our fitness function, in the following the improved path-
minimization algorithm based upon sifting from [11] is used. This algorithm
employs structural techniques to reduce the number of cubes in the DSOP.

3 Evolutionary Algorithm

In this section we describe the Evolutionary Algorithm (EA) that is applied
to the problem given above. In Sections 3.1 to 3.4 the submodules of our EA
(like the evolutionary operators) and the overall structure of the algorithm are
described. Finally, the detailed choices for the parameter settings are discussed.

The DSOP of a Boolean function that is represented by a BDD directly
depends on the chosen variable ordering. Finding a good or even optimal vari-
able ordering is a permutation problem that is optimized by an evolutionary
approach.

1ON(f) is the ON-set of the Boolean function f , i.e. the variable assignments that evaluate
f to value 1.

3.1 Representation

A population is a set of individuals that represent solutions of the given op-
timization problem. In this application an individual represents the ordering
position of each variable:

We use an integer encoding to represent the ordering of the variables. (A
binary encoding would require special repair operators to avoid the creation of
invalid solutions similar to the TSP, see e.g. [23].) Each integer vector of length
n represents a permutation of the variables and thus it is a feasible ordering.

The length of the strings is given by the number of variables n, because for
each variable the ordering position has to be stored.

3.2 Objective Function and Selection

The objective function assigns to each individual a fitness that measures the
quality of the variable ordering. First the BDD is constructed using the variable
ordering given by the individual, then the number of reduced one-paths are
counted [11].

The selection is performed by roulette wheel selection and we also make use
of steady-state reproduction [4]: The best individuals of the old population are
included in the new one of equal size. This strategy guarantees that the best
element never gets lost and a fast convergence is obtained. (EA practice has
shown that this method is usually advantageous.)

3.3 Evolutionary Operators

Different types of crossover operators and mutations for permutation problems
are used. For the crossover operators two parents are selected by the method
described above. For more details about the evolutionary operators we refer to
[13, 3, 18, 5, 14].

Notice that a simple exchange of the parts between the cut positions (as
often applied to binary encoded EA problems) is not possible, since this would
often produce invalid solutions.

PMX [13]: Choose two cut positions randomly in the parent elements. Con-
struct the children by choosing the part between the cut positions from one
parent and preserve the absolute position and order of as many variables
as possible from the second parent.

OX [3]: Choose two cut positions randomly in the parent elements. Construct
the children by choosing the part between the cut position from one parent
and preserve the relative position and order of as many variables as possible
from the second parent.

CX [18]: Choose a single position i in the parent elements at random. Copy
the values of this position into the children at exactly the same position:
child1[i] = parent1[i] and child2[i] = parent2[i]. Then, position j in parent1
is determined, such that parent1[j] = parent2[i]. Set i := j and continue
the procedure as described above, until the new position j has already
been copied in the children elements. Then a “cycle” has been found and
the remaining positions in child1 (child2) are taken from parent1 (parent2).

MERGE [14]: It produces the first child in the following way. Alternating
between the parents, MERGE takes one variable index from each parent
(in the order they appear in the parents) until the double permutation
length is reached. After doing this, MERGE checks from left to right if
an index has been used already. If this is the case, that index number
is removed. The second child is produced by exchanging even and odd
positions in the index list.

INV: The inversion operator INV inverts the order of the index list for a ran-
domly chosen part of the chromosome. It produces one child from each
parent.

Additionally, three different mutation operators are used:

Mutation (MUT): Select one individual and choose two different positions
at random. Swap the values of these two positions.

2-time Mutation (MUT2): Perform MUT two times on the same parent.

Mutation with neighbor (MUT-N): Perform MUT at two adjacent posi-
tions.

3.4 Flow of the Algorithm

Using the operators introduced above our EA works as follows:

• Initially a random population of permutations (variable ordering) is gen-
erated.

• The crossover operators described in Section 3.3 are applied to selected
elements and create |pop|/2 offspring. The parent elements are chosen
according to their fitness (see Section 3.2). The offspring are then mutated
by the mutation operators with a given probability.

• The fitness of the offspring is calculated as described in Section 3.2. The
worse half of the population is then replaced by new individuals.

• The last two steps are iterated until the termination criterion holds.

Experiments have shown that it is sufficient to consider 24 individuals in
a population. For larger population sizes the execution times are getting “too
high”.

To get a good parameter setting of the EA, several experiments and operator
studies have been performed. Due to the page limitation we can not discuss these
experiments in detail. The following weighting of the evolutionary operators has
been selected with respect to the given test suite: PMX, OX, CX, MERGE, and
INV are performed with probabilities 1%, 43%, 1%, 11%, and 43%, respectively.
The mutation probabilities are all set to 1%.

The termination criterion depends on the best fitness value of the con-
sidered population: The algorithm stops if no improvement is obtained for
50 ∗ log10 best fitness iterations. The idea is: if the considered fitness value
is higher, more optimization potential can be expected.

1 10 100 1000 10000

nodes

1

10

100

1000

10000

D
SO

Ps

medians with minimum and maximum

Figure 1: Representation of benchmark suite

4 Experimental Results

Experiments were carried out on a Pentium II system at 450 MHz with 256 MB
of physical memory. The machine was running under Linux. Control programs
for the experiments were written in Python. The EA was based on the C++
library for evolutionary algorithms GAME [12] (version 2.43).

The experimental results show the quality of the proposed evolutionary
method. The EA is applied to several benchmark functions, most of them taken
from LGSynth93. The experiments are summarized in the following tables.

In Table 1 the EA for all considered benchmarks is analyzed. To get an
impression of the (local) minimum number of cubes per function, the EA is
applied 25 times to the 37 benchmarks in the test suite. Each time a randomly
chosen seed for the random number generator was used. In column hybrid the
number of cubes resulting from the method proposed in [11] for each function
is given. Columns EA summarize the results from the EA proposed in this
paper. min. and max. show the minimal and maximal DSOP of all test
runs, respectively. In column median the median values and in column ∆ the
differences between hybrid and min. are shown.

As can be seen, no DSOP number calculated by the EA in column min.
is worse than the number of DSOPs found previously [11]. In more than 60%
of the test cases the minima in column hybrid could be improved. E.g. for
benchmark cordic the size of the DSOP is improved by more than 50%.

Fortunately, it can be observed that the differences between the minimum
and maximum are relatively small. I.e. the performance of the proposed evo-
lutionary method is very stable and nearly independent of the random number
generator.

Table 1: Descriptive statistics and comparison of EA minima to hybrid algo-
rithm

DSOP
hybrid EA ∆

function min. median max.

s1196 2861 2504 2516 2877 357
s1238 2861 2504 2521 2776 357
s1488 369 352 352 353 17
s1494 369 352 352 353 17
s208 53 53 53 55 0
s27 16 16 16 16 0
s298 70 70 70 70 0
s344 330 330 330 344 0
s349 330 330 330 340 0
s382 238 230 230 239 8
s386 61 57 57 63 4
s400 238 230 230 241 8
s444 243 230 230 240 13
s510 170 153 153 155 17
s526 162 156 157 173 6
s526n 162 156 159 175 6
s641 1700 1444 1486 1609 256
s713 1700 1445 1486 1511 256
s820 155 146 146 146 9
s832 155 146 146 149 9
alu4 1545 1372 1372 1372 173
b12 60 60 60 60 0
clip 262 212 212 212 50
inc 66 27 27 27 39
majority 5 5 5 5 0
misex1 34 34 34 34 0
misex2 30 29 30 30 1
rd53 35 35 35 35 0
rd73 147 147 147 147 0
rd84 294 294 294 294 0
sao2 96 96 96 98 0
t481 1009 841 841 841 168
xor5 16 16 16 16 0
5xp1 82 79 79 79 3
9sym 148 148 148 148 0
cordic 19763 8311 9885 9978 11452
misex3 2255 1973 1986 1993 282

This small spread in the results can also be observed in Figure 1, where it
is demonstrated by small or invisible range bars of the median DSOP values
(ordinate). The figure also shows the size range of the benchmarks in the test
suite.

Table 2: Comparison of different operator weightings
median minimum

function EAP EA ∆ EAP EA ∆

s1196 2534 2516 18 2504 2504 0
s1238 2544 2521 23 2504 2504 0
s1488 352 352 0 352 352 0
s1494 352 352 0 352 352 0
s208 53 53 0 53 53 0
s27 16 16 0 16 16 0
s298 70 70 0 70 70 0
s344 330 330 0 330 330 0
s349 330 330 0 330 330 0
s382 230 230 0 230 230 0
s386 57 57 0 57 57 0
s400 230 230 0 230 230 0
s444 236 230 6 230 230 0
s510 153 153 0 153 153 0
s526 160 157 3 156 156 0
s526n 162 159 3 156 156 0
s641 1496 1486 10 1444 1444 0
s713 1497 1486 11 1458 1445 13
s820 146 146 0 146 146 0
s832 146 146 0 146 146 0
alu4 1372 1372 0 1372 1372 0
b12 60 60 0 60 60 0
clip 212 212 0 212 212 0
inc 27 27 0 27 27 0
majority 5 5 0 5 5 0
misex1 34 34 0 34 34 0
misex2 30 30 0 29 29 0
rd53 35 35 0 35 35 0
rd73 147 147 0 147 147 0
rd84 294 294 0 294 294 0
sao2 97 96 1 96 96 0
t481 841 841 0 841 841 0
xor5 16 16 0 16 16 0
5xp1 79 79 0 79 79 0
9sym 148 148 0 148 148 0
cordic 9932 9885 47 9882 8311 1571
misex3 1986 1986 0 1973 1973 0

In Table 2 a comparison of different operator weightings is given. The op-
erator weighting used for the EA proposed in here (column EA) is shown in
parallel with the results using a different kind of operator weighting (column
EAP). The problem specific weightings from [14] were used as reference (PMX:
98%, Inversion: 1%, MUT1: 7%, MUT2: 7%). The comparison of the results

shows the advantage of the proposed setting for DSOP minimization.
Finally, the runtimes of the EA are shortly discussed. In principle, com-

pared to specialized heuristics, the runtimes of EAs are relatively large. In this
application they are in general smaller than 200 CPU seconds. And for small
benchmark functions, the EA converges in a few CPU seconds. The quality of
the results and the relatively short runtimes show the efficiency of the chosen
termination criterion.

5 Conclusions

An approach based on Evolutionary Algorithms to minimize the DSOP repre-
sentation of a Boolean function was presented. The experimental results show
the quality of the proposed evolutionary method. For more than 60% of the
test cases the results from the specialized heuristic could be improved. Even
the runtimes of the EA are in an acceptable range. The experiments underlined
the robustness of the approach.

References

[1] R.E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Trans. on Comp., 35(8):677–691, 1986.

[2] R.E. Bryant. Binary decision diagrams and beyond: Enabling techniques
for formal verification. In Int’l Conf. on CAD, pages 236–243, 1995.

[3] L. Davis. Applying adaptive algorithms to epistatic domains. In Proceedings
of IJCAI, pages 162–164, 1985.

[4] L. Davis. Handbook of Genetic Algorithms. van Nostrand Reinhold, New
York, 1991.

[5] R. Drechsler. Evolutionary Algorithms for VLSI CAD. Kluwer Academic
Publisher, 1998.

[6] R. Drechsler, B. Becker, and N. Göckel. A genetic algorithm for variable
ordering of OBDDs. IEE Proceedings, 143(6):364–368, 1996.

[7] B.J. Falkowski. Calculation of rademacher-walsh spectral coefficients for
systems of completely and incompletely specified boolean functions. In
IEEE Proceedings on Circuits, pages 1698–1701, 1993.

[8] B.J. Falkowski and C.-H. Chang. Paired haar spectra computation through
operations on disjoint cubes. In IEEE Proceedings on Circuits, Devices and
Systems, pages 117–123, 1999.

[9] B.J. Falkowski, I. Schäfer, and C.-H. Chang. An effective computer algo-
rithm for the calculation of disjoint cube representation of boolean func-
tions. In Midwest Symposium on Circuits and Systems, pages 1308–1311,
1993.

[10] F. Ferrandi, A. Macii, E. Macii, M. Poncino, R. Scarsi, and F. Somenzi.
Symbolic algorithms for layout-oriented synthesis of pass transistor logic
circuits. In Int’l Conf. on CAD, pages 235–241, 1998.

[11] G. Fey and R. Drechsler. A hybrid approach combining symbolic and struc-
tural techniques for disjoint SOP minimization. In Workshop on Synthesis
And System Integration of Mixed Information technologies (SASIMI), pages
54–60, 2003.

[12] N. Göckel, R. Drechsler, and B. Becker. GAME: A software environment
for using genetic algorithms in circuit design. In Applications of Computer
Systems, pages 240–247, 1997.

[13] D.E. Goldberg and R. Lingle. Alleles, loci, and the traveling salesman
problem. In Int’l Conference on Genetic Algorithms, pages 154–159, 1985.

[14] M. Hilgemeier, N. Drechsler, and R. Drechsler. Minimizing the number of
one-paths in BDDs by an evolutionary algorithm. In Congress on Evolu-
tionary Computation, pages 1724–1731, 2003.

[15] Th. Kropf. Introduction to Formal Hardware Verification. Springer, 1999.

[16] Y.-T. Lai, S. Sastry, and M. Pedram. Boolean matching using binary
decision diagrams with applications to logic synthesis and verification. In
Int’l Conf. on CAD, pages 452–458, 1992.

[17] A. Mishchenko and M. Perkowski. Fast heuristic minimization of exclusive-
sums-of-products. In Int’l Workshop on Applications of the Reed-Muller
Expansion in Circuit Design, pages 242–250, 2001.

[18] I.M. Oliver, D.J. Smith, and J.R.C. Holland. A study of permutation
crossover operators on the traveling salesman problem. In Int’l Conference
on Genetic Algorithms, pages 224–230, 1987.

[19] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams.
In Int’l Conf. on CAD, pages 42–47, 1993.

[20] T. Sasao. EXMIN2: A simplification algorithm for Exclusive-OR-Sum-
of products expressions for multiple-valued-input two-valued-output func-
tions. IEEE Trans. on CAD, 12:621–632, 1993.

[21] L. Shivakumaraiah and M.Thornton. Computation of disjoint cube rep-
resentations using a maximal binate variable heuristic. In Southeastern
Symposium on System Theory, pages 417–421, 2002.

[22] M. Thornton, R. Drechsler, and D.M. Miller. Spectral Techniques in VLSI
CAD. Kluwer Academic Publisher, 2001.

[23] D. Whitley, T. Starkweather, and D. Fuquay. Scheduling problems and
traveling salesman: The genetic edge recombination operator. In Int’l Con-
ference on Genetic Algorithms, pages 133–140, 1989.

