Crossing Reduction by Windows Optimization
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Abstract. The number of edge crossings is a commonly accepted mea-
sure to judge the “readability” of graph drawings. In this paper we
present a new algorithm for high quality multi-layer straight-line crossing
minimization. The proposed method uses a local optimization technique
where subsets of nodes and edges are processed exactly. The algorithm
uses optimization on a window applied in a manner, similar to those
used in the area of formal verification of logic circuits. In contrast to
most existing heuristics, more than two layers are considered simultane-
ously. The algorithm tries to reduce the total number of crossings based
on an initial placement of the nodes and can thus also be used in a post-
processing step. Experiments are given to demonstrate the efficacy of the
proposed technique on benchmarks from the area of circuit design.

1 Introduction

In the last few years the area of automated graph drawing has received a lot
of attention from academic and industrial researchers as well. Many relations
arising in computer science and in other areas such as chemistry can be modeled
by graphs. Concerning computer science visualization of graphs has a growing
number of applications e.g. in the areas of data bases, software engineering,
graphical interfaces, production scheduling and VLSI CAD (Very Large Scale
Integration Computer Aided Design). To allow humans to quickly and efficiently
interpret information given as graphs, a good drawing is very useful. In the
following, we are especially interested in the drawing of digital circuits occurring
in VLSI CAD applications, which can be modeled by graphs. Circuit designers
need a fast tool to visualize the given circuit to get a good understanding of
the design or diagnose bugs. Furthermore, highest drawing quality is needed for
public presentation or documentation in this field. Here, the drawing quality is
much more important than the required computation time.

Graph drawing - from the initial graph to the final layout - is usually split into
several sub-tasks (for an overview of graph drawing see [1]). One very important



step in the overall flow of graph drawing is crossing minimization, (see e.g. [5,
20, 21]). Unfortunately, even minimizing edge crossings in graphs with only two
layers is NP-hard [7] and remains NP-hard even if the positions of the nodes in
one layer are fixed. Several heuristic methods have been developed [4,8,12,15,
18,20], but exact solutions can be found only for small graphs [10,11]. Almost
all heuristic methods are based on the so-called layer-by-layer sweep:

— First, an initial order is chosen for all nodes. Then the positions of all nodes
in the first layer are fixed and the positions of all nodes in the second layer
are computed with respect to all nodes in the first layer.

— In the next step the algorithm fixes the positions of the nodes in the second
layer and computes the positions of the nodes located in the third layer with
respect to the second layer.

— The algorithm continues until the positions of the nodes in the last layer are
computed followed by a sweep in the reverse order of layers from the last
layer to the first layer.

Typically the procedure given above is iterated until no reduction in the num-
ber of crossings can be achieved in an iteration. By this method the multi-layer
crossing minimization problem is reduced to the minimization of the edge cross-
ings in the corresponding two-layer graphs by reordering only the nodes of one
layer. Due to the significance of the problem, several heuristics have been pro-
posed, e.g. [4,15,20,21,18]. In particular the barycenter method [20] is known
for computing good solutions in a short time. Somewhat surprising is that using
it in the same layer-by-layer sweep framework yields slightly better results than
using a one-sided exact algorithm [11].

In [12] the crossing reduction is solved with tabu search, which usually com-
putes good solutions at the expense of run time. In [15, 8] sifting has been pro-
posed, a heuristic that was originally used for minimizing the number of nodes
in Binary Decision Diagrams (BDDs) used frequently in logic synthesis applica-
tions and formal verification of logic circuits. In the BDD context, a technique
called window optimization [6, 9] has been proposed that facilitates smooth trade-
off of run time for quality.

In this paper we propose the use of windows optimization for multi-layer
crossing minimization. It is designed for post-processing a given solution in the
area of circuit visualization, if the corresponding graph is too large for an exact
approach. An initial order, e.g. computed by one of the approaches described
above is improved in the following way: A series of subsets of nodes with constant
size typically spreading over several layers are extracted and optimized exactly
with respect to their adjacent nodes. The exact method makes use of lower bound
computations to prune the search space. Only if the local solution induces a
crossing reduction of the whole graph the order of all nodes is re-adjusted. The
designer can smoothly influence the trade-off between run time and solution
quality by choosing the size of the window.

The implementation of the algorithms is done in AGD [19], a state-of-the-art
library of algorithms for graph drawing. Since most of the algorithms discussed
above are implemented in AGD, a fair comparison is possible. The AGD uses



the efficient LEDA graph package for combinatorial and geometric computing
[17]. Our experiments show that further reductions of up to 10% compared to
the AGD results can be obtained by using the new technique.

The paper is organized in the following way. First we introduce the basic defi-
nitions in the field of the multi-layer straight-line crossing minimization problem.
Then a brief outline of the exact algorithm used is given. In the following section
the new approach is presented. Next we give the experimental results showing
the crossing reduction obtained by applying the windows optimization procedure
on the graphs already optimized with the AGD package.

2 Preliminaries

A directed graph G = (V, E) is a multi-layered graph with d layers if the node
set V is partitioned into d subsets V1, Va, ..., Vg, i.e. ViU Vo U ... UV =V and
(Ym £ m') Vi N Ve = 0.V, is called the m-th layer of the graph. All edges in F
connect nodes in different layers. A layering of a graph is called proper if the edges
only connect nodes of adjacent layers V,,, and V,,, 1. If a layering of a graph is not
proper one can introduce dummy nodes along edges (u,v) for which | = layer(v)
— layer(u) > 1. We replace (u,v) by a path (u = vy, v, ..., v = v) of length [. In
each layer between u and v, one dummy node has to be placed. Algorithms for
layering graphs which represent circuits are discussed e.g. in [3]. It is important
to note that only the order of the nodes in a layer V,,,, m € {1,...,d}, affects
the number of crossings with adjacent layers. To solve the exact multi-layer
straight-line crossing minimization problem we have to determine for all layers
m an order ord,, containing all nodes in layer V,,, so that the number of crossings
is minimized. In the following a set of orders ord,,, m € {1,...,d}, is called an
order for the graph.

We define z7} = 1if ord,, (i) < ord,,(j), 0 otherwise. It is easily seen, that for
a given order of a graph with d layers the number of crossings can be expressed
by:

d—1 |[Vin|=1 |Vm|

C(order) = Z Z Z (m%xgbﬂ + $ﬂ$;’;+1) (1)

m=1 i=1 k=i+1jEN()IEN(k)

where N(u) = {v € V | e = (u,v) € E} denotes the set of neighbors of u € V.

2.1 Exact Algorithm

We briefly sketch the algorithm for the multi-layer straight-line crossing mini-
mization problem. The algorithm computes the exact optimum and makes use
of a lower bound technique to reduce the search space. The main idea goes back
to dynamic programming,.

— The algorithm computes the minimum number of edge crossings for all nodes
by considering the solutions for all subsets of nodes. In the first step we



consider all subsets S with one node. For each subset the algorithm creates
an entry I and stores it in a table. Each entry I contains the number of
edge crossings caused by the edges with both ends in S. Additionally the
algorithm stores the permutation of the nodes within § in every entry I. In
the first step the first node is also the first node in the permutation of the
nodes in S

— An initial upper bound of edge crossings is obtained by using the barycenter
heuristic method to compute an order for all nodes [20]. Let S(I) denote
the set of nodes stored in the entry I. In the second step we process every
entry I of the table in the following way: For each node n;, with n; ¢ S(I),
we create a new entry I, for S(I) U n; and store it in the new table if
the upper bound is larger than the number of crossings of the new subset
S(Inew)- Then the algorithm enlarges the permutation of I, with n; and
updates the number of crossings.

— If there are two table entries with the same subsets of nodes, the one with the
larger number of crossings can be deleted, if the following holds: there exists
no more than one edge per layer, that is connected to a node u outside S(I),
except that they point to different layers. Otherwise, we cannot compute the
number of crossings induced by the permutation of the nodes in the subset
S(I).

— To prune the search space the following lower bound L is used: We count
the number |u| of edges which leave I from layer m for nodes in layer m+1
(not in T) and the number |v| of edges which leave I in layer m+1 for nodes
in layer m not in I. Then L can be computed as the number of crossings in
I plus the product of |u| and |v|. If L is larger than the upper bound we can
also delete the table entry.

— To speed up the algorithm a dynamic hash table is used to store the current
permutation together with the current lower bound. For each entry I the
corresponding set of nodes is used as a hash key.

In the following we embed this exact algorithm in our windows optimization
scenario. However it should be noted that, in principle, the optimization tech-
nique described below also works in combination with other exact approaches,
like e.g. [11].

3 Windows Optimization

The basic idea is to extract subsets S of nodes from the graph with constant
size and the corresponding subset of edges with at least one end in S. Then the
optimal order for S and a somewhat simplified representation of neighborhood N
of S is computed. (The notion simplified neighborhood is explained below.) If the
exactly optimized order of the nodes in S with regard to N reduces the number
of crossings of the graph we adopt the locally optimized solution, otherwise we
proceed with a new subset S.



More precisely, the algorithm extracts windows of D layers with a maximum
of W nodes in each layer!. First, we extract windows with nodes located in the
upper D layers. Starting at the leftmost nodes occurring in the current global
permutation the algorithm slides the window one position to the right after each
attempt to reduce the number of crossings. We compute a sequence of windows
whose horizontal size is adapted layer by layer based on the layers with the
largest number of nodes. Then the window processes the following D layers, i.e.
layers two to layer D + 1, in the same manner until we have traversed the whole
graph. We repeat the procedure described above until no further reduction of the
number of crossings can be achieved. Then we may increase the number of layers
which are considered by incrementing D and repeat the windows optimization
procedure to reduce the number of crossings. This allows to achieve a smooth
trade-off between quality and run time. A sketch of the algorithm is given below:

WindowsOptimization(Graph G, Order Ord, int D, int W) {
Coiqa = #crossings(G, Ord)
d = number of layers in G
repeat {
Cnew = CVold
for(i=1;i<d-—D+1){
k = mazi<m<i+p (nodes in layer m)
for(j =1; j <k—-W) {
I = all nodes n located in layer i,.. ., layer i + D — 1 with
Jj < Ord(n) x k/(#nodes in n's layer) < j + W
N = compute neighborhood of I
set G to order Ord
minimize exactly(I, N)
Ord' = current Order
if(#crossings(G, Ord ') < Chew) {
Crew = Ftcrossings(G, Ord ')
Ord = Ord’
}
} // end for
} // end for
} until (Cnew = old)
return Ord

All nodes n ¢ S, where n is connected to S via one or more edges, are called
the neighborhood N of S. We simplify the representation of the neighborhood
to avoid long run times of the exact algorithm as follows. First we ignore all

! In the experiments we initialize the values D with two and W to four.



crossings produced by edges which are connected to nodes located in the layer
below all nodes of S. They will be considered when processing the next level.
All edges which are connected to nodes located in the layer above all nodes of
S and which are not connected to a node n € S are also ignored. A boundary
node is created for each node in the layer that is above all nodes in S if at least
one of its edges is connected to a node in S. It is important to notice that the
given graph is converted to a proper graph by adding dummy nodes and hence
the layer above all nodes in the subset S is uniquely defined. Edges which are
connected to nodes in a layer which all point in the same direction with respect to
the current order of the graph are redirected to a single boundary node located
in the same layer and in the same direction. In other words, the problem is
solved using the exact algorithm to compute the optimal order of S with respect
to a simplified representation of the neighborhood. An example given below
illustrates an instance of the simplified representation of the neighborhood.

Fig. 1. Subset {9,10,15,16} and the corresponding boundary nodes

Example 1. The left side of Figure 1 shows an example graph. The algorithm
tries to reduce the edge crossings by optimizing the order of the nodes in the
subset S ({9,10,15,16}). First the algorithm computes a simplified representa-
tion of the neighborhood (shown in the right side of Figure 1). Node 1 can be
ignored, because it is not connected to a node in S. The node sets {7,8}, {11,12},
{13,14}, and {17,18} are each collapsed to single boundary nodes B8,B2,B9 and
B1 respectively. The procedure computes the optimal order of S with respect to
this neighborhood.

4 Experimental Results

The algorithm has been implemented in C' and integrated in AGD. All exper-
imental results are based on graphs which are extracted from the sequential
benchmark circuits in [2,16]. The circuits are modeled as proposed in [14] by
creating a node for every input, every output and every gate of the circuit. Also
one has to create a fanout node for every gate n; which has more than one
fanout branch. The fanout node is conected with the output of n; and the in-
puts of the corresponding gates. A depth first search assigned each node to one



level, starting at the input nodes. Also dummy nodes were created to compute
a proper layering of the graph. All experiments were carried out by running the
implemented procedures on a 900 MHz personal computer with 500 MB main
memory with linux OS. All run times are given in CPU seconds.

For comparison we utilized the AGD [19] barycenter, median, weighted-
median, split and sifting implementation all combined with the greedy switch
method after each traversal of the graph. It turned out, that the barycenter
method combined with the greedy switch method clearly dominates the others
(see also [11]). In Figure 2 we illustrate the crossing reduction in percent refer-
enced to the barycenter method. The x-axis corresponds to different benchmarks
and on the y-axis we give the number of crossings obtained using different pro-
cedures relative to the number of crossings obtained using barycenter procedure.
Due to these results, we restrict ourselves to a comparison of the proposed pro-
cedure with barycenter (bc) in combination with greedy switch (bc+gs) in the
following.

200 T | — T T
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"median+gs" -------
"weighted-median+gs" --------
"split+gs" -
180 |- i "sifting+gs" - ]
160 P b
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Fig. 2. Crossing reduction compared to barycenter+greedyswitch.

In Table 1 the results are given. In the second column the number of nodes
of each graph is shown. In the third and the fourth column the number of edge
crossings using AGD barycenter implementation and the barycenter implementa-
tion combined with the greedy switch method are given, respectively. On average
13% less crossings are obtained with bc+gs. This demonstrates that in the VLSI
CAD scenario it is very effective to use the greedy switch method. We further



post-processed the order obtained by bc+gs method with our windows optimiza-
tion algorithm shown in the column wo-+bc+gs. In almost all cases the number
of crossings could be further reduced. On average the number of crossings went
down by 4% and in some cases we even obtained a reduction of more than 10%.
We also made experiments running more iterations of the layer-by-layer based
methods. Spending the same amount of time as for window optimization usually
dose not lead to better results.

Table 1. Benchmark results

circuit nodes be bc + gs  wo + bc + gs time
add6 504 230 170 159 30
alul 125 101 91 86 5
alu2 391 602 558 536 52
alu3 452 791 742 721 43
adr4 210 186 144 137 10
col4 261 97 76 69 13
dk17 437 444 440 435 37
dk27 186 111 95 95 4
dk48 641 619 591 582 67
mish 571 127 108 107 11
radd 215 68 61 54 5
rd53 193 371 320 290 27
s208 665 385 280 269 65
$298 638 1312 1142 1119 42
8382 903 1288 1199 1143 204
$386 763 4243 3868 3723 254
5400 941 1380 1366 1342 7
vg2 456 241 157 149 27
x1dn 470 218 185 179 43
x9dn 419 209 188 183 24
74 238 184 149 140 17
Z9sym 767 5300 5189 4917 414

Another advantage of the proposed method is that it allows to smoothly
trade-off run time versus quality. A trade-off between crossing reduction and
run time consumption can be achieved if we start with a small window and
successively increment the number of affected layers. More precisely, at the be-
ginning we adjust the window to observe two layers with four nodes in each
layer. If no crossing reduction could be achieved after a traversal of the graph
we enlarge the window adding one layer until we reach a depth of four layers. In
Figure 3 the effect of the process is demonstrated by an experiment. In Figure



3 also the bc+gs procedure gives the 100%-line. It can be easily seen that with
increasing window size the quality is significantly improved.
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Fig. 3. Trade-off between quality and run time

5 Conclusions

We presented a new method to improve the results of layer by layer sweep
crossing minimization algorithms. The algorithm changes the permutation of the
nodes if the local optimization leads to a reduction of the number of crossings.
The experiments have shown that this method can enhance the quality of already
locally optimized solutions produced by AGD by more than 10%. In the average
case a crossing reduction of four percent could be observed. If graph drawings
are used for documentation in VLSI CAD a small improvement is of significant
value.

Future work is directed towards improving the run time of the algorithm.
For this, alternative implementations of the exact method [10,11] will be studied
instead of the one used here.
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