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Abstract—As digital systems get ever more complex, their
behaviour may at times appear unfathomable. Users will only be
prepared to accept this if they are convinced that the system does
indeed work correctly. Thus, we argue the need for self-explaining
systems: systems that are able to explain their behaviour, and
the reasons for it. In this paper, we propose first steps towards
a design methodology for such systems, and argue that beyond
user acceptance, self-explanation also has other applications such
as self-verification and reconfiguration. We propose a conceptual
framework for self-explaining systems, discuss how to achieve
completeness, and consider implementation aspects.

I. INTRODUCTION

Every day we are surrounded by embedded and cyber-
physical systems, some of them as visible as smartphones and
desktop computers, some of them invisible in cars or trains.
We have come to rely on them to work flawlessly, and get
at the very least mildly annoyed if they cease to function as
expected. But not every unexpected behaviour is due to a flaw
in the system, sometimes users expectations can be wrong as
well. In order for the user to accept the system behaviour, it
is therefore crucial that the system is designed in such a way
that the correct functioning is guaranteed, and moreover that
the system can explain why it behaves the way it does.

Hence, user acceptance is a matter of correctness. Users
will only be prepared to use the system — in particular, a
safety-critical system — if they are convinced that the system
has been designed correctly. A mathematical correctness proof
supports this case, but is usually so complex as to require
intensive study before it is believed. What we argue here is
that in addition to proofs of correctness, systems should be
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able to explain why they work correctly, the extent to which
they work correctly, and when they may not work correctly.
This way, users can build an understanding of the system, and
gain confidence in its correctness.

How would such a self-explaining system work? As an
example, take a service robot which is supposed to be working
in close cooperation with a human worker. Figure 1 shows an
example of such a setting: a human worker cooperating with
a robot to produce gear boxes. In this setting, it is critical that
the robot’s two manipulation arms do not hit the human, and
equally that the system assures the human worker that this is
the case. Technically, this is solved by calculating a safety zone
for the robot arms, LIDAR (light detection and ranging) and
time-of-flight sensors capturing the posture of the worker and
stopping the arms if the worker invades the safety zones. There
is an element of self-explanation here — the system visualizes
the safety zones (lower right in the picture), and displays them
on a monitor representing a view of the algorithm to the human
worker — but the system is not fully self-explaining yet. For
that, it would e.g. have to be able to explain why the robot
arm has stopped.

In our view, a basic prerequisite for self-explanation is that
the system design is based on an abstract model of the system
in the first place, otherwise the system operates on an ad-hoc
basis and will not be able to give convincing explanations of
its behaviour. To this end, we need to formalize the properties
that we expect the system to have, and a model of the system
itself. In the example above, the system model includes a three-
dimensional model of the robot’s arms and their movement,
and based on that the safety zones, which are a basic element
of the self-explanation in that setting.



Fig. 1. Example of a self-explaining system: a human worker cooperating with a robot in a factory setting.

But self-explaining systems can do more than explain their
actions: they may also verify their own correctness, or re-
configure themselves. Our vision are systems which verify
their correctness at run-time in their respective deployment
contexts, and are able to explain to users why or why not they
are functioning the way they do — systems which are both
functionally correct and user-adequate.

A. Related Work

Self-awareness [1] is another recent development making
systems inherently adaptable — and thus, more difficult to
understand. A self-aware system is one that has an internal
representation of its own state, and can thus for example
adapt its power consumption according to external and internal
stimuli [2].

When the user’s expectation of a system’s behaviour differs
from the system’s actual behaviour because the user has a
different internal model of the system, this is called mode
confusion. There has been a lot of work on mode confusion,
of which most related to our approach is work on using model
checking to detect mode confusion [3].

For AI systems, i.e. systems based on techniques of machine
learning and neural nets, verification and self-explanation is al-
ready a research trend [4]. Because of the subsymbolic nature
of these techniques, obtaining a reconstructible explanation of
their decisions is a challenge in itself, as is the verification of
their correctness [5]. Both machine learning and neural nets
work by heuristic algorithms where configurations (classifiers,
weights of the net) are set by training, that is we configure the
system until its output is conformant to our expectations, but
we do not construct the weights of the net or the classifier from
a mathematical model of the specification of the algorithm. But
if we cannot really reconstruct why a neural net or classifier

works, how can we prove it? And how can we explain its
output?

Proof carrying code [6] is a technique where programs
are annotated with a proof of the desired safety or security
properties, such that the proof can be checked easily before the
program is run. There are various approaches to proof-carrying
code, most of which hinge on the syntax and semantics of the
proof language (we can use formats based on type theory,
propositional, first-order or higher-order logic, or proof tactics
— the simpler the language, the easier it is to write a proof
checker, but the lengthier the proofs).

Decision procedures are typically very complex algorithms
that are used to certify the integrity of systems, e.g. [7], [8].
This pairing of complexity and certification early stimulated
the search for understanding the verdict provided by a deci-
sion procedure. Typically, this verdict either yields a feasible
solution to some task, e.g. a satisfying assignment in case of
Boolean satisfiability (SAT) solver, or denies the existence of
any solution at all, e.g., unsatisfiability in case of SAT solving.
A feasible solution can easily be checked as a recipe to solve
some task. However, understanding why some task cannot
be solved is more difficult. Here, proofs provide a natural
explanation why something is not possible that can efficiently
be produced for SAT solvers [9], [10].

B. Our Contribution

The major contribution of this paper is to sketch the
requirements for a design flow for self-explaining systems,
by adapting the usual design flow of digital systems such
that information needed at runtime does not get discarded
but is preserved. We will show two major applications of
this paradigm which we have developed in our current work,
namely self-verifying systems and self-reconfiguring systems.
Self-verification aims to improve the functional safety of
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Fig. 2. Design flow for self-explaining systems: the system at runtime needs
a representation M0 of the system model M.

the system by showing its correctness at runtime; and self-
reconfiguration aims to improve the security of a system by
making it a moving target for side-channel attacks.

Following on, we propose a conceptual framework for self-
explanation that yields layered explanations providing details
where necessary, but keeping explanations understandable at
the same time. We discuss how to achieve completeness
for self-explanation, and how self-explanation can support
verification.

This paper is structured as follows: we first discuss
the requirements for the new design flow, then consider
self-verification and reconfiguration, before discussing self-
explanation in detail.

II. DESIGN FOR SELF-VERIFICATION AND
SELF-EXPLANATION

The usual design flow starts with analyzing the requirements
of the system, typically first in natural language, and then for-
malized in a specification language such as SysML/OCL [11],
[12], [13]. At this level, we describe the structure of the
system, and the functional and non-functional requirements
it needs to satisfy in toto (for example, safety requirements).
The next step is an executable system model (in languages
such as SystemC [14], [15], [16] or CLaSH [17]) which we
can use for emulation, proof, or generating an implementation.
Each of the design steps from the initial specification to the
final implementation is complemented by a corresponding
verification activity [18], using any of the available verification
techniques such as testing, static analysis, theorem proving or
model checking [19]. However, once the system is developed
and deployed, the model is discarded; it is not represented
anymore during runtime.

For self-explaining systems, we propose a design flow which
carries a representation of the abstract model and verification
conditions into runtime, to allow referring back to it. Figure 2
sketches this design flow. We have the same first steps as
in traditional design flows: start with abstract requirements,
formalize them, then find or derive an abstract system model
M. However, we carry an abstraction M0 of the model into
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Fig. 3. Design flow for self-verification: at runtime, many parameters of the
verification conditions can be instantiated, making proving them easier.

runtime, in such a way that its elements (actions or properties
of the system) can be linked to specific functionalities of the
running system. This allows us, at runtime, to elucidate on the
system’s behaviour — to explain why a functionality is safe,
or why a functionality is not available. It also allows us, at a
more basic level, to verify the safety at run-time. However, it
is important that we construct an abstraction of the model at
runtime, as the full model with proofs would simply be too
large.

III. SAFETY BY SELF-VERIFICATION

In the usual development models verification has to end
before the system is deployed. Hence, due to time-to-market
constraints verification often has to be terminated before it
can be complete — leading to potentially faulty systems.
By keeping a suitable representation of the formal system
model in the deployed system, we can continue verification
after deployment. This has three main benefits: we have more
time, because verification does not have to be finished by
the time the system is deployed; we have more resources,
because the computing power of all deployed systems can
be harnessed; and we have more information, because once
deployed and operational, verification can take its context into
account, reducing the system state space drastically [20], [21].

Figure 3 sketches an instantiation of the design flow from
Figure 2 for self-verification. The aspect of the formal model
of the system which is needed at run time are the verification
conditions, the proofs that the implementation does indeed
satisfy the formalized requirements. For self-verification, we
instantiate some of the parameters of the system which are
unknown at design time, but which become known and change
only rarely or not at all during runtime. This reduces the state
space of the system, and makes verification viable, even under
the resource constraints of an embedded or cyber-physical
system.



We have realized such a design flow in a prototypical system
design [22], which we will describe in the following. The
design starts with a formal model of the system, which is given
in SysML (specifically, SysML block definition diagrams)
with OCL constraints. The OCL constraints can be invariants
or pre/postconditions for operations declared in the block
definition diagrams. To formally verify them, we convert them
into a formula in conjunctive normal form (CNF), which can
be proven using a SAT checker.

The deployed system will usually have less computing
power and memory than the servers typically used for design,
so the question is how much of the design process we can
move into the deployed system. We decided to move the
final step — the SAT checking of the CNF formula — into
runtime. SAT checking is where the exponential blowup comes
from (SAT checking is famously NP-complete). As mentioned
above we can instantiate certain variables in the CNF once
they are known at runtime, allowing an exponential reduction
of the system state space.

To elaborate on this: modern electronic systems are usually
designed to be very versatile so they can be configured to a
variety of deployment contexts. For example, a smart home
controller could be configured to have a number of sensor
inputs (such as brightness, temperature or presence sensors),
connected to a number of outputs (controlling lights, heating,
doors, or blinds) in a highly configurable number of ways (e.g.
if the brightness sensor outside drops below a certain value
turn on lights in all rooms where the presence sensors indicate
inhabitants are present). In this setting, all configurations are
unknown at design time, but can be considered as fixed
at run-time, in contrast to the actual sensor (and actuator)
values, which may change rapidly. Hence, if we instantiate the
configurations by replacing the corresponding variables in the
CNF with constants, the resulting CNF can be checked by a
light-weight version of MiniSAT [23] at run-time. In a simple
experiment with one light sensor and one light controller,
we achieve a reduction of the system space from 233 to 29

(a reduction by a factor of 224; more realistic applications
achieve reductions in the order of 213056 to 22816 (factor of
210240) [22]. In further experiments, specifications which were
not provable in full generality at design time could be proven
at runtime, on a realistic embedded system, in times ranging
between less than one second up to seven minutes.

IV. SECURITY BY RECONFIGURATION

In addition to functional correctness of self-explanatory
systems, modern applications and use-cases often come with
strong security requirements that need to integrate efficient
countermeasures to thwart a large number of directed attacks.
Usually these requirements involve the inclusion of crypto-
graphic schemes and powerful security subsystems. With the
increasing complexity of modern digital systems, however,
it becomes a major challenge for the designer to build a
secure system that does not yield options for attacks. Due to
the asymmetry of the attacking and defending party, a single
failure in the security subsystem usually enables the attacker

to completely break the system by extracting secrets or to
disabling the security system.

However, an attacker still needs to perform extensive pro-
filing of the system in order to identify and exploit the
vulnerabilities, e.g., by manipulating the physical execution
environment of the system. In this regard, common attack
vectors for an attacker with physical access to the device
are known to be side-channel analysis (SCA) [24] or fault-
injection attacks (FIA) [25]. Passive SCA attacks exploit
the leakage of secret information that is emitted during the
execution of a, e.g., cryptographic operation. Possible sources
for leakage are power traces, electro-magnetic emanations or
acoustic and photonic emissions that can be easily observed if
the attacker has physical access to the device. With the active
injection of faults during the security-critical operation, the
attacker manipulates the operating environment or the device
itself so that the device either cannot finish the security-critical
operation correctly or reveals critical information about the
secret from the faulty output. Besides permanent faults (e.g.,
by specifically destroying cryptographic features or parts of
it), the injection of transient faults disturbs the operation of
the device for a short moment only.

It is still a subject of research which combination of
countermeasures is optimal to achieve protection against all
types of such physical attacks. Nevertheless, a fundamental
problem for the security designer is the basic limitation of
static hardware that can easily be analyzed by an attacker
by a static profiling process. Generally this assumption is
inevitable since all gates and routes are assigned to immov-
able locations on the chip. The capabilities of reconfigurable
platforms that can modify and swap circuits in place, as
with field-programmable gate arrays (FPGA), provide the
potential for new powerful countermeasures against static
profiling attacks on the static implementation. Any type of
physical correlation for leaked information that is gathered
by an attacker will become significantly more difficult when
the hardware dynamically evolves during or between security-
critical operations. In this context, the continuous dynamic
reconfiguration of a security hardware implementation can
generate powerful countermeasures against side-channel anal-
ysis and fault injection attacks. Likewise, reverse-engineering
attacks will become more complex due to the self-updating
circuits and components that require a runtime analysis of the
hardware components.

Technically speaking, the integration of dynamically evolv-
ing circuits for improved hardware security involves the fol-
lowing major challenges:

• Identification of algorithmic components in security sys-
tems that can be efficiently placed (and re-mapped) on
different elements using local and partial reconfiguration.

• Specification of efficient randomized isomorphic map-
pings between the identified reconfigurable hardware
elements.

• Verification and protection of the function-invariant re-
configuration process of dynamic security components
during runtime (by a reconfiguration controller).
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Fig. 4. Self-explanation at work: the self-explanation layer uses the abstract
system modelM0 to link user-observable actions to the state transitions, and
thus construct explanations of their causes and effects.

Note that the protection of the dynamic reconfiguration
process is of utmost importance since an exploitable vul-
nerability in the reconfiguration controller might render the
dynamic reconfiguration process unusable. This, however, is
likely to lead to a static behaviour of the security circuit.
Hence, additional tamper protection needs to be in place to
guarantee the correct operation of the reconfiguration process
at any time.

V. TOWARDS SELF-EXPLAINING SYSTEMS

Self-verification of a system relies on a certain level of self-
introspection. Reconfiguration makes a system and the actions
executed by a system quite intransparent to users and even
designers. Self-explanation is able to provide self-introspection
for a system and also helps to understand why the system
behaves the way it does. Depending on whether the system
uses a model of its environment, e.g., a robot that expects an
increase in light intensity when moving towards a light source,
or not, e.g., the robot simply moves towards the light source,
the system can even explain differences from expectations.

In general explaining observations is difficult as causes for
events are not necessarily unambiguous [26] and even restoring
a system-wide time reference causes some overhead [27].
However, during runtime every detail of the system is deter-
mined and can be used for a precise unambiguous explanation
of the actual behaviour.

A. A Technical Approach

We propose the approach illustrated by Figure 4. The system
itself is extended by a layer for self-explanation that supports
users such as end-users or designers in understanding the
actions executed by the system. The layer for self-explanation
includes the abstracted model M0 of the actual system. Here
abstraction means that the system’s data has a simplified
representation, e.g., the “motor turns forward with high speed”
instead of storing the exact values of all signals driving
a motor. This reduces the cost for explanation and makes
explanations easier understandable.

In more detail, we view at the system executing a series of
events, where an event denotes a certain action at a specific

point in time. An action may be internal (not externally ob-
servable) when updating the state of the system, or externally
observable, e.g., by using an actuator. Typically, a system
processes input, updates its internal state, and produces output,
as indicated by the blue zig-zag arrows sketching the data path
in Figure 4. The self-explanation layer observes these events,
indicated by black bold arrows, and provides an explanation
with each event. Such an explanation may refer to previous
events that triggered the current one, and to the specification
of the system that requires certain behaviour. In order to
do so, the self-explanation layer constructs and stores cause-
effect chains for events from the abstracted system model
M0. This way, the self-explanation layer references events and
their explanation to causes of subsequent events, as indicated
by dotted black arrows. Users can access the cause-effect
chains stored in the self-explanation layer for understanding
the causes of actions they observe (indicated by green dots
and arrows).

In principle, any action of the deterministic system must
be explainable in terms of the input data and specification.
However, a limited memory capacity in the self-explanation
layer limits the historical data to the most recent history.
Including an abstraction of the system’s state into the system
model M0 for the self-explanation layer alleviates the effect
of limited historical data. Cause-effect chains can be cut,
removing the explanation how the system arrived at a certain
state but showing which state was responsible.

B. Different Perspectives and Usage Scenarios

The precise small-step execution of a program or hardware
unit can in principle be considered as an explanation for
the actions taken at the end of the execution. However,
this precision in explanation definitely overloads users with
irrelevant details.

We propose to consider several types of explanations sup-
porting different perspectives and various levels of granularity:

• User-understandable explanations refer to input data and
the user-visible conceptual state that triggers an action.

• Specification-defined explanations remove all references
to input data and the system state to reduce the explana-
tion to the specification relevant for certain actions.

• Architectural explanations show which modules con-
tributed to triggering an action.

• Program-level explanations justify the execution paths
taken by a program or hardware units.

At least user-understandable explanations must be available
during runtime, and be generated by the system itself. Other
types of explanations, e.g. program-level explanations that
are explaining low-level details, may only be needed during
design. However, consistency between the explanations and
the system must be guaranteed.

C. Completeness

Whether explanations are complete must be assessed in the
design of the system. Observable actions must be specified
precisely. Whether any observable action is associated to an



explanation and whether the related causes are appropriately
justified can be analyzed automatically. This also serves as
a basis for verification. Instead of referring to low-level
aspects of the system, verification can be lifted to the abstract
system model of the self-explanation layer, provided that an
appropriate mapping between this model and the actual system
has been guaranteed. Such completeness can be checked with
approaches similar to [28]. Inferring causes for events is
similar to extracting behaviour from a given design, e.g., using
an approach similar to [29].

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have proposed first steps towards a
methodology for designing self-explaining systems. We argue
that the complexity of cyber-physical systems can make their
behaviour rather intransparent to the user, impeding user
acceptance and endangering safety. By giving systems the
ability to explain their actions, users will gain confidence in
these systems’ correctness.

Self-explanation requires a formal specification and model
of the system, an abstraction of which is needed at run-
time to construct explanations for the systems behaviour,
based on cause-effect chains of actions constructed from the
system specification. We have shown that in addition, the self-
referential approach needed for self-explanation can also have
other applications, such as self-verification (where the system
shows its own correctness at runtime) or reconfiguration
(where the system becomes a moving target to specific types
of external attacks).

We have only sketched first steps here, which require
more work as described above. Adding cognitive abilities
to the system, and functionalities based on subsymbolic AI
techniques such as neural nets and machine learning, will
provide additional challenges that we will have to master.
However, we are confident that ultimately systems without
self-explanation capabilities will not be accepted by users any
more.
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