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Abstract

This paper presents a tabular technique for calculation
of fixed-polarity polynomial expressions for MV functions.
The technique is derived from a generalization of the corre-
sponding methods for Fixed-Polarity Reed-Muller (FPRM)
expressions for switching functions. All useful features of
tabular techniques for FPRMs, as for example, simplicity of
involved operations and high possibilities for parallelization
of the calculation procedure, are preserved. The method can
be extended to the calculation of coefficients in Kronecker
expressions for MV functions.

1 Introduction

Fixed-Polarity Reed-Muller (FPRM) expressions are
a way for optimization of Positive-polarity Reed-Muller
(PPRM) expressions [16]. FPRMs are derived by allow-
ing to freely choose the negative x i or the positive xi lit-
eral, but not both, for each variable in a given switching
function f(x1; : : : ; xn). The assignment of literals to vari-
ables is uniquely specified by the polarity p = (p1; : : : ; pn),
pi 2 f0; 1g, where pi = 1 and pi = 0 determine the assign-
ment of negative and positive literals to the i-th variable, re-
spectively. The complexity of FPRMs is usually estimated
through the number of non-zero coefficients. For a given
function f , the FPRM with the minimum number of coeffi-
cients is considered as the optimum FPRM for f .

There are several methods for the generation of FPRMs
for a given function f and the required polarity p using dif-
ferent data structures to represent f [8, 20, 12, 14, 3, 15].
The term Tabular Techniques (TTs) usually refers to meth-
ods derived for minterm representations [1, 2, 19].

TTs exploit linearity of Reed-Muller expressions, which
permits to determine the value of a coefficient c i in FPRM
expressions for f as the EXOR sum of the contributions
of each true minterm in f to ci [19]. Main features of TT
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methods, that can be seen as advantages over other methods,
can be summarized as follows:

1. In TTs, FPRM coefficients are calculated through 1-
minterms. Contribution of each minterm to the FPRM
spectrum for f can be determined separately and inde-
pendently of the contribution of other minterms. Thus,
TTs possess an inherent possibility for efficient paral-
lelization of the calculation procedure [19].

2. Processing of each minterm is simple, since there are
no arithmetic operations. Instead, processing of a
minterm reduces to convertion of a minterm into an-
other minterms by using some relatively simple pro-
cessing rules.

The concept of Reed-Muller expressions can be extended to
MV functions in several ways, depending on generalization
of AND and XOR operations. Fixed polarity Reed-Muller
expressions have been extended to the ternary field GF (3)
in [10] and in general to a prime field GF (q) in [9, 7]. In
[11, 7] different methods for calculation of FPRM expres-
sions over GF (4) have been proposed while the method for
computation of polarity matrices for Reed-Muller expres-
sions based on prime finite fields has been introduced in
[13].

In this paper, the TT method for calculation of FPRMs
for switching functions proposed in [19] is generalized to
MV functions. However, instead of minterms, the proposed
method uses MV disjoint cubes. A similar approach has
been considered in [6] for the binary case. Furthermore,
we propose some improvements to the overall algorithms
resulting in a reduced computational complexity.

Then, we briefly discuss extensions of the proposed
method to determination of Kronecker expressions for MV
functions [17]. We study further generalizations to the ex-
pressions permitting the use of an extended set of com-
plements for MV variables, as for example Reed-Muller-
Fourier (RMF) expressions [18]. We also provide a mod-
ification of the proposed method enabling to determine for
a given function f a fixed polarity polynomial expression
for a polarity pi directly from the corresponding expression



Table 1. Additions and multiplication in GF (4)

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

� 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

for f for an arbitrary polarity pj , without returning neces-
sarily to the positive-polarity expression or to some other
representation of f . This modification applies for any of
the Kronecker polynomial expressions.

For simplicity of notations, presentation in this paper is
given by the example of polynomial representations for MV
functions defined over Galois field GF (4). Extension to ar-
bitrary Kronecker product based polynomial expressions on
arbitrary GF (p), and other related polynomial expressions
are straightforward.

2 Reed-Muller Expressions over GF (4)

In this section, we introduce some notations and defini-
tions of Galois Field (GF) expressions.

Denote by E(4) the set of four elements. For conve-
nience, we will identify the elements of E(4) with the non-
negative integers 0, 1, 2, 3.

Definition 1 E(4) expresses the structure of the Galois
field modulo 4, GF (4), under the addition and the multi-
plication defined as in Table 1.

The set of elementary functions 1, x, x2, x3 is a basis in
the space of one-variable functions over GF (4). Therefore,
each function f given by the truth-vector

F = [f(0); : : : ; f(3)]T

can be represented by the Reed-Muller expressions for
functions over GF (4) (RMGFE) given in the matrix form
by

f(x) = [ 1 x x
2

x
3 ] � (G4(1) � F);

where

G4(1) =

2
64

1 0 0 0
0 1 3 2
0 1 2 3
1 1 1 1

3
75 ;

and all calculations are carried out in GF (4).
In this notation, the basic functions 1, x, x2, x3 can be

considered as columns of the matrix G�1
4 (1), inverse to

G4(1).
Extension of this expression to n-variable functions de-

fined over GF (4) is straightforward through the Kronecker
product.

Definition 2 The RMGFE for an n-variable four-valued
function f given by its truth-vector

F = [f(0); : : : ; f(4n � 1)]T

is

f =

 
nO
i=1

[ 1 xi x
2
i x

3
i ]

!
�

  
nO
i=1

G4(1)

!
�F

!
;

where
 denotes the Kronecker product and all calculations
are carried out in GF (4).

Optimization of polynomial representations for MV
functions is possible by using different complements for
variables [13]. For each variable xi in functions defined
over GF (4) there are three complements denoted as i�x,
i = 1; 2; 3 and defined as i�x = x � i, i = 1; 2; 3. The
use of complements for a variable requires permutation of
columns in the corresponding basic GF matrix. Table 2
shows complements for variables over GF (4) and the cor-
responding basic transform matrices.

Definition 3 Each n-variable function f defined over
GF (4) can be represented by the Fixed Polarity RMGFE
(FPRMGFE) for the polarity p = (p1; : : : ; pn)

f =

 
nO
i=1

[1;
pi�
x i; (

pi�
x i)

2
; (
pi�
x i)

3]

!
� (

nO
i=1

G
<pi>
4 ) �F;

where G<pi>
4 is the GF transform matrix for the polarity

pi.

3 Tabular Technique for FPRMGFE

The tabular technique for calculation of FPRM expres-
sions proposed in [19] is an improvement of approaches
presented in [2, 1]. This TT starts from a table of minterms
for a given switching function f . The terms in FPRM ex-
pressions for f are generated by performing a set of sim-
ple rules over each minterm. Equal product terms that
have been already generated from previously processed
minterms are deleted by a cancelation procedure. This
method processes each minterm separately.

The method consists of three important steps

1. Generation of new product terms from minterm by us-
ing some appropriately defined processing rules.

2. Canceling of equal terms.

3. EXOR of all uncancelled terms with polarity p.

In what follows, this technique for switching functions
[19] is extended to function defined over GF (4). The pro-
posed TT for MV functions (MVTT) performs the same
steps as the TT method for switching functions generalized
to MV minterms. However, we redefine processing rules
in a way that permits to eliminate summation of product
terms with the polarity p resulting in a reduced computa-
tional complexity.



Table 2. GF (4) transform matrices

x =

2
64

0

1

2

3

3
75 G4 =

2
64

1 0 0 0

0 1 3 2

0 1 2 3

1 1 1 1

3
75

1
�x =

2
64

1

0

3

2

3
75 G

<1>

4
=

2
64

0 1 0 0

1 0 2 3

1 0 3 2

1 1 1 1

3
75

2
�x =

2
64

2

3

0

1

3
75 G

<2>

4
=

2
64

0 0 1 0

3 2 0 1

2 3 0 1

1 1 1 1

3
75

3
�x =

2
64

3

2

1

0

3
75 G

<3>

4
=

2
64

0 0 0 1

2 3 1 0

3 2 1 0

1 1 1 1

3
75

3.1 Generation of New Terms

The rule for generation of new terms from a MV minterm
is derived by using the following properties of RMGFE.

From linearity of RMGFE, for arbitrary functions f and
g defined over GF (4), it holds

GF (f � g) = GF (f)�GF (g);

where GF (f) and GF (g) are RMGFE for f and g.
From properties of the Kronecker product, we derive

GF
<p>(f � g) = GF

<p>(f)�GF
<p>(g): (1)

Denote by M the decimal index for a minterm m =
(m1; : : : ;mn) over GF (4). Thus, M =

Pn

i=1mi4
n�i.

An n-variable four-valued function f given by the truth-
vectorF = [f(0); f(1); : : : ; f(4n�1)]T can be represented
as a sum of truth-vectors for true MV minterms of f

F = F0 �F1 � : : :�= F4n�1;

where Fi = [0; 0; : : : ; 0; f(i); 0; : : : ; 0]T ,
From Equation (1), it follows that

GF
<p>(F) = GF

<p>(F0)� : : :�GF
<p>(F4n�1):

New terms in RMGFE generated from a given MV
minterm m represented by FM , are determined as
GF

<p>(FM ).

Since in each Fi, i = 0; : : : ; 4n � 1, there is a single
non-zero element f(i), while f(j) = 0 for j 6= i, then

GF
<p>(Fi) = f(i)gi;

where gi is the i-th column of G<p>
4 (n). Each value in

GF
<p>(Fi) can be considered as a contribution of minterm

m to the corresponding coefficients in GF
<p>(F) =

C<p> = [c<p>0 ; : : : ; c
<p>
4n�1]

T . These contributions can be
calculated as

c
<p>
u =

L4n�1
v=0

�
G

<p>
4 [u; v] � f(v)

�
=
L4n�1

v=0

�
�n
z=1G

<pz>
4 [uz; vz ]

�
� f(v);

(2)

where u = 0; : : : ; 4n � 1, u = (u1; : : : ; un), v =
(v1; : : : ; vn). G

<p>
4 [u; v] denotes the element in the u-th

row and the v-th column in G<p>
4 , while G<pz>

4 [uz; vz ]
denotes the element in the uz-th row and the vz-th column
inG<pz>

4 .

Example 1 Consider the calculation of the coefficients in
FPRMGFE of a two-variable function f for the polarity p =
(2; 1). By definition,

C<p> = (G<2>
4 
G<1>

4 ) � F:

Contribution of the function value f3, i.e. of the minterm
m = (03) = x1 �

3 �x2 to the coefficient c6 is equal to

G
<(21)>
4 [6; 3] � f3 = 1 � f3. This contribution can be calcu-

lated by using Equation (2) as

G<2>
4 [1; 0] �G<1>

4 [2; 3] � f3 = 3 � 2 � f3 = 1 � f3:

Contribution of the minterm m = (03) = x1 �3 �x2
to all coefficients in the FPRMGFE for f is given by
GF

<p>(F3) =G<21>
4 �F3

= G<21>
4 � [0; 0; 0; f3; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0]

T

= [0; 0; 0; 0; 0; 2f3; f3; 3f3; 0;
f3; 3f3; 2f3; 0; 3f3; 2f3; f3]

T
:

where multiplication of a constant by a function value is
performed in GF(4) and

G<21>
4 = G<2>

4 
G<1>
4 :

By using Equation (2), we derive a rule for the genera-
tion of new terms � = (�1; �2; : : : ; �n) and determine the
contribution v(�) of a minterm m as

�i 2 fjjG
<pi>
4 [j;mi] 6= 0g; (3)

v(�) = (v1 � v2 � : : : � vn) � f(M); (4)

where vi = G
<pi>
4 [�i;mi]; i = 1; : : : ; n.

The number of newly generated terms from a minterm
m depends on the relationships between bits in the minterm
m and the polarity p.



3.2 Cancelling of Terms

In TT for calculation of FPRM expressions, each two
newly generated terms that are equal to some previously
generated term are deleted, since contribution of each new
term is equal 1 and 1 � 1 = 0. Therefore, in existing TTs,
this process is called “cancelling of equal pairs”. There are
two approaches to cancelling equal pairs, i.e. by using a
hash table [2] or an index table with 2n entries for an n vari-
able function [19]. In a hash table, only uncancelled terms
are stored. For each newly generated term we first check if
there exists the equal term already in the hash table. If such
a term exists, the newly generated term is deleted, otherwise
it is included in the hash table. Due to that, the hash table
consumes less memory than the index table although in the
worst case the hash table can consume 2n entries as in the
index table. Therefore, this approach can be applied for an
arbitrary number of variables, but requires some consider-
able execution time because access to the desired entry in
a hash table is on the average slower than in an index ta-
ble. On the other side, the usage of the index table provides
possibilities for parallelization of the related procedures.

In the MV case, we process each minterm of a given
function by using Equation (3) to generate new terms and
Equation (4) to determine their contributions to the coeffi-
cients in a FPRMGFE for f . The contribution of a term
takes values in E(4). Therefore, we cannot delete equal
terms if they have different contributions, which means if
they correspond to different function values. However, the
total contribution of a subset of terms can be equal to zero,
in which case we delete these terms.

Example 2 For a function f , assume that from a subset of
minterms corresponding to non-zero values for f , we gen-
erate three new terms t1 = t2 = t3 whose contributions are
2, 3, and 1, respectively. The sum of these contributions is
2 + 3 + 1 = 0, and thus the terms t1, t2, and t3 can be
deleted.

Let a function f be given by its truth-vector

F = [f0; f1; f2; a; a; f5; f6; f7; f8; f9; f10;
f11; f12; f13; a; f15];

where a; fi 2 f0; 1; 2; 3g. Contributions of minterms (03),
(10), and (32) to the coefficient c<2;1>

6 are 1 � a, 2 � a, and
3 � a, respectively. The sum of these contributions is 1 � a+
2 � a+ 3 � a = 0. Therefore, minterms (03), (10), and (32)

do not influence the coefficient c<2;1>
6 .

3.3 EXOR of Uncanceled Terms

In [19], the last step in TT performs EXOR of uncan-
celled terms with the given polarity p. The same is done in
a similar way in [6]. However, the rule for generation of
new terms from a minterm incorporate this step. Thus, this
step does not exist in the algorithm to implement MVTT,
which improves efficiency of the algorithm in terms of time.
Therefore, MVTT consists of the following steps

1. Given a function f by the set of minterms corre-
sponding to non-zero values in f and a polarity p =
(p1; : : : ; pn). Generate new terms by using the relation
above and determine their contributions to the coeffi-
cients in the FPRMGFE.

2. Cancel the terms when the sum of their contributions
is equal to zero, and store the other terms.

In what follows, we derive an algorithm to perform MVTT
by using the index table. However, the same algorithm can
be performed by using the hash table.

3.4 MVTT Algorithm Using the Index Table

Let I be an index table with 4n entries:

I = (I0; : : : ; I4n�1)

= (I(0;0;:::;0); : : : ; I(4n�1;4n�1;:::;4n�1))

The algorithm to perform MVTT for FPRMGFE consists of
the following steps:

1. Given a polarity p = (p1; p2; : : : ; pn).

2. GenerateG<i>
4 , i 2 fp1; p2; : : : ; png (see Table 2).

3. Express a minterm m as a four-valued n-tuple m =
(m1;m2; : : : ;mn). Value of m is f(m).

4. For a mintermm generate new terms �j and determine
their contributions v(�j), by using Equation (3) and
(4), respectively.

5. For each newly generated term �j add the value v(�j)
to the index table entry I(�1;:::;�n).

6. Repeat steps 3, 4, and 5 for all minterms.

Example 3 Consider the calculation of a FPRMGFE for
a two variable function f given by the truth vector
F = [0; 0; 0; 0; 2; 2; 2; 2; 0; 0; 0; 0; 1; 0; 0; 0]T , for the polar-
ity p = (2; 1). By definition

C<p> = (G<2>
4 
G<1>

4 ) �F

= [0; 0; 0; 0; 3; 1; 1; 1; 1; 1; 1; 1; 2; 1; 1; 1]
T
:

(5)

We calculate these coefficients by using MVTT as follows:
From the non-zero values in the truth-vector F, the function
f is given by the minterms

f(x1; x2) = 1 for (x1x2) 2 f(30)g

and

f(x1; x2) = 2 for (x1x2) 2 f(10); (11); (12); (13)g.

Contribution of the minterms to the coefficients vector
C<2;1> as well as their values in the index table are given
in Table 3.

The starting value of the index table (column denoted as
sIT ) is equal to zero for all the coefficients. The i-th value



in the column denoted as �. Each minterm represents its
contribution to the i-th coefficient in C<2;1>. These con-
tributions are added to the current values in the index table
(column IT on the left side) and the new value of the index
table is shown in the column denoted by IT on the right
side. The last calculated value in the index table includes
contributions of all the minterms and it is equal to the co-
efficient vector (the last column IT in the table). Minterms
are processed in the following order:

(10)� 2; (11)� 2; (12)� 2; (13)� 2; (30)� 1

Contributions of each minterm given in the form of newly
generated terms are shown in Table 4.

4 Extensions

The MVTT method introduced in this paper is explained
by the example of the calculation of FPGFRME by using
the index table and starting from the function represented by
minterms. However, this method can also be applied for the
calculation of other fixed polarity polynomial expressions
for MV functions.

4.1 Calculation of Kronecker Expansions

The method can be extended to expressions for MV func-
tion, when the corresponding transform matricesT(n) have
a Kronecker product structure. Such extensions will be ex-
plained by the example of Kronecker RM-expressions over
GF (4) [17].

Definition 4 Each n-variable function f defined over
GF (4), given by its truth vector F; can be represented by
the Kronecker RM Expressions (KRME)

f =

nO
i=1

Xi �

nO
i=1

Ki � F;

where

Xi 2
��
1; _xi; _x

2
i ; _x

3
i

�
; [J0(xi); J1(xi); J2(xi); J3(xi)]

	
;

and Ki 2
�
G<i>

4 ; I4
	

, _xi is the corresponding comple-
ment of variable xi, i.e. i�xi while Jj(xi); j = 0; 1; 2; 3 are
the characteristic functions defined by

Jj(xi) =

�
1; ifxi = j;

0; otherwise:

Example 4 Consider a KRME for function f in Example
3 where the 2-Davio GF (4) is used for variable x1, and
the generalized Shannon expansion is used for variable x2.
This KRME is calculated as

C =
�
G4

<2> 
 I4
�
�F

= [0; 0; 0; 0; 1; 0; 0; 0; 0; 1; 1; 1; 3; 2; 2; 2]

Table 4. New minterms

minterm generated minterms
(10)-2 (11)-2; (12)-2; (13)-2; (21)-1; (22)-1; (23)-1;

(31)-2; (32)-2; (33)-2
(11)-2 (10)-3; (13)-3; (20)-1; (22)-1; (30)-2; (33)-2
(12)-2 (11)-1; (12)-2; (13)-3; (21)-2; (22)-3; (23)-1;

(31)-3; (32)-1; (33)-2
(13)-2 (11)-2; (12)-1; (13)-3; (21)-3; (22)-2; (23)-1;

(31)-1; (32)-3; (33)-2
(30)-1 (11)-1; (12)-1; (13)-1; (21)-1; (22)-1; (23)-1;

(31)-1; (32)-1; (33)-1

The difference among the Positive-Polarity RMGFE,
FPRMGFE, and KRME is in the expansion rules applied to
the variables. Therefore, the modification in the algorithm
for implementation of the MVTT for FPRMGFE to calcu-
late the KRMEs consists in the usage of different rules for
generation of new terms. In particular, in Equation (3) the
matrix G should be replaced by the corresponding trans-
form matrixKi.

4.2 MVTT Method Starting from FPRM

The proposed algorithm calculates FPGFRM coeffi-
cients starting from the function given by its minterms. This
algorithm can be used for the calculation of FPGFRME for
a polarity (p0) starting from FPGFRME from an arbitrary
polarity (p) by changing the rule for the generation of new
terms. If a function is given by a fixed polarity expression
for the polarity p, and the fixed polarity expression for the
polarity p

0 is required, then the matrix G<pi>
4 in Equation

(3) should be replaced by the matrixT<p0

i
> � (T<pi>)�1.

This modification follows from the property that new
terms are considered as contributions of minterms to the
calculated coefficient vector, and from the relation

C<p0> = T<p0>(n) � F

= T<p0>(n) � (T<p>(n))
�1

�C<p>
:

4.3 MVTT for Extended Polarities

As is pointed out in Section 2, polarity of variables can
be considered as a permutation of elements in the vector
of possible values for variables. For FPRMGFE in GF (4),
we use only 4 out of 4! possible permutations, since other
permutations do not reduce the number of non-zero coeffi-
cients. However, there are polynomial expressions for MV
functions where all the permutations of values for variables
reduce the number of non-zero coefficients, as for exam-
ple Reed-Muller-Fourier (RMF) expressions [18]. The pro-
posed method also applies to those expressions. For calcu-
lation of coefficients in RMF expressions, the set of possible
matrices G<pi> in Equation (3) should be extended. For
example, for RMF expressions over GF (4), the polarity p

may be any permutation of order four.



Table 3. Contributions and index table

(10)-2 (11)-2 (12)-2 (13)-2 (30)-1
i sIT � IT � IT � IT � IT � IT
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 3 3 0 3 0 3 0 3
5 0 3 3 0 3 1 2 2 0 1 1
6 0 3 3 0 3 1 2 2 0 1 1
7 0 3 3 3 0 3 3 3 0 1 1
8 0 0 0 1 1 0 1 0 1 0 1
9 0 1 1 0 1 2 3 3 0 1 1
10 0 1 1 0 1 3 2 2 0 1 1
11 0 1 1 1 0 1 1 1 0 1 1
12 0 0 0 2 2 0 2 0 2 0 2
13 0 2 2 0 2 3 1 1 0 1 1
14 0 2 2 0 2 1 3 3 0 1 1
15 0 2 2 2 0 2 2 2 0 1 1

Example 5 The RMF transform matrix for a four valued
functionR(1) is given by

R(1) =

2
64

1 0 0 0
1 3 0 0
1 2 1 0
1 1 3 3

3
75 :

The RMF transform matrix which corresponds to the 10-th
complement of variable x, 10�x, is given by

R<10>(1) =

2
64

0 0 1 0
3 0 1 0
2 0 1 1
1 3 1 3

3
75 ;

where the permutations are considered in the lexicographic
order ((0123), (0132), (0213), (0231), (0312), (0321),
(1023), (1032), (1203), (1230), (1302), (1320), (2013),
(2031), (2103), (2130), (2301), (2310), (3012), (3021),
(3102), (3120), (3201), (3210)).

4.4 Minterms or Disjoint Cubes

The rule for generation of new terms from minterms can
be modified into a rule that works with disjoint cubes (the
algorithms to generate disjoint cubes are given in [4, 5]) in-
stead of minterms similar as this is done for the binary case
in [6]. This modification reduces the time complexity of
the related algorithms, since the number of disjoint cubes is
usually considerably smaller than the number of minterms.
A generalization of that approach to the MV case may be
done as follows:

Cubes representing a function f are disjoint if each
minterm m, f(m) 6= 0, is covered by only one cube. The

function f is given by

F = U1 � : : :�Ut;

where Ui = Fi1 � : : : � Fi4r , t is the number of disjoint
cubes, and r is the order of the cube.

Experimental results given in Table 5 show that im-
plementation of MVTTs is faster over cubes than over
minterms. We compare runtimes of our algorithm applied
to the calculation of all 4n FPRMGFE for randomly gen-
erated 4-valued functions represented by disjoint cubes and
minterms. In the column denoted by in the number of vari-
ables is given. The number of disjoint cubes and minterms
are given in the columns denoted as cubes and mint., respec-
tively. The corresponding runtimes in seconds are given
in columns denoted by cruntime and mruntime. The col-
umn (%) shows reduction of the runtimes for function rep-
resented by cubes versus function represented by minterms.

The number of minterms or cubes has an important in-
fluence on runtimes. Table 6 shows this property. In
the column denoted by cubes, the number of cubes in 5-
variable four-valued randomly generated functions is given,
while the corresponding time spend in calculation of all
45 = 1024 FPRMs is given in the column denoted by run-
time. In this experiment, the savings due to the usage of dis-
joint cubes instead of minterms range from 60% to 94.57%.

The experiments were carried out on a 60MHz SUN
SPARCstation 20 with 128MB of main memory and all the
runtimes are given in CPU seconds.

5 Concluding Remarks

We presented a method for calculation of FPRM expres-
sions for functions defined over GF (4), given by minterms
or disjoint cubes. The method was extended to calculation



Table 5. MVCTT runtime for functions repre-
sented by disjoint cubes and minterms

in cubes mint. cruntime mruntime (%)
3 10 22 0.02 0.05 -60.00
4 10 52 0.28 1.22 -77.05
5 100 328 18.18 72.36 -74.98
6 100 613 157.33 1604.12 -90.19
7 100 1402 2072.59 38169.28 -94.57
8 1000 8155 160599.04 2383390.72 -93.26

of Kronecker expressions overGF (4) and fixed polarity ex-
pressions for a required polarity starting from the expres-
sion for an arbitrary polarity. The method can be applied
also to polynomial expressions where an extended set of
complements for variables is allowed.

All useful features of TTs for calculation of FPRM ex-
pressions for Boolean functions, as simplicity of involved
operations and high possibilities for parallelization [19], are
preserved.

Table 6. Number of cubes and runtimes

cubes runtime
1 2.99

100 13.55
200 24.22
300 36.57
400 48.35
500 60.27
600 72.12
700 81.58
800 95.73
900 106.56

1000 120.01
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[4] Falkowski, B.J., Schäfer, Perkowski, M.A., “A fast
computer methods for the calculation of disjoint cubes
for completely and incompletely specified Boolean
functions”, in Proc. 33rd Midwest Symp. on circuits
and Systems, Calgary, Canada, 1990, 1119-1122.

[5] Falkowski, B.J., Perkowski, M.A., “Algorithm for the
generation of disjoint cubes for completely and in-
completely specified Boolean functions”, Int. J. Elec-
tronics, Vol.70, No.3, 1991, 533-538.

[6] Falkowski, B.J., Perkowski, M.A., “One more way
to calculate Generalized Reed-Muller expansions of
Boolean functions”, Int. J. Electronics, Vol.71, No.3,
1991, 385-396.

[7] Falkowski, B.J., Rahardja, S., “Efficient computation
of quaternary fixed polarity Reed-Muller expansions”,
IEE Proc., Part E, Vol.142, No.5, 1995, 345-352.

[8] Fisher, L.T., “Unateness properties of
AND-EXCLUSIVE-OR logic circuits”, IEEE Trans.
on Computers, Vol.23, No.2, 1974, 166-172.

[9] Green, D.H, Taylor, I.S., “Modular representation of
multiple-valued logic systems”, IEE Proc., Part E,
Vol.121, No.2, 1974, 166-172.

[10] Green, D.H., “Ternary Reed-Muller switching func-
tions with fixed and mixed polarities”, Int. J. Electron-
ics, Vol.67, No.5, 1989, 761-775.

[11] Green, D.H., “Reed-Muller expansions with fixed and
mixed polarities over GF(4)”, IEE Proc., Part E,
Vol.137, No.5, 1990, 380-388.

[12] Harking, B., “Efficient algorithm for canonical Reed-
Muller expansions of Boolean functions”, IEE Proc.,
Part E, Vol.137, No.5, 1990, 366-370.

[13] Harking, B., Moraga, C., “Efficient derivation of
Reed-Muller expansions in multiple-valued logic sys-
tems”, 22nd ISMVL, Sendai, Japan, 1992, 436-441.

[14] Purwar, S., “An efficient method of computing gener-
alized Reed-Muller expansions from Binary decision
diagram”, IEEE Trans. on Computers, Vol.40, No.11,
1991, 1298-1301.

[15] Sarabi, A., Perkowski, M.A., “Fast exact and quasy-
minimal minimization of highly testable fixed polar-
ity AND/XOR canonical networks”, Proc. Design Au-
tomation Conference, June 1992, 30-35.

[16] Sasao, T., Logic Synthesis and Optimization, Kluwer
Academic Publishers, 1999.
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