
Symbolic Execution of Unmodified SystemC Peripherals*

Karl Aaron Rudkowski1, Sallar Ahmadi-Pour1, and Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{karlaaron,sallar,drechsler}@uni-bremen.de

Abstract

In the modern hardware design process, the ever-increasing complexity of designs poses a challenge. An important
step in the workflow is the verification, which aims to identify errors early on. To this end, executable models of the
design, called Virtual Prototypes (VPs), allow early and continuous verification. Current symbolic execution-based
approaches rarely consider the characteristic differences of peripherals, and none consider cross-level verification of these.
Additionally, SystemC, though a popular hardware modelling language, is either not targeted, or replaced by a heavily
limited kernel implementation. We propose the first symbolic execution engine capable of verifying unmodified SystemC
peripherals. Our tool leverages the threading behaviour specified in the SystemC standard for a light-weight PThread
support. The evaluation of a RISC-V Platform Level Interrupt Controller (PLIC) shows our approach’s effectiveness in
multiple verification scenarios.

1 Introduction

In the modern hardware design workflow, VPs enable
early verification, long before any chip is fabricated. This
verification is an important step to minimise the cost
and effort associated with repairing errors. However,
it is challenged by the drastically increasing complexity
of designs [1]. Model checking [2, 3, 4, 5] can
offer a full verification, but is often based on custom
intermediate representations, which sometimes even have
to be generated manually. Simulation-based approaches
like fuzzing [6, 7] or concolic execution [8, 9] work
directly on the device, but are limited to generating
concrete inputs. They do not offer any guarantees about the
behaviour of the Design under Verification (DUV) outside
of these test cases. In contrast, symbolic execution uses
variables that represent sets of concrete values to explore
the state space more effectively. It can thus offer a more
complete reasoning about the design.
Approaches using symbolic execution either consider
hardware designs in general [10, 11], or specifically
processors [12]. However, another important verification
target are the peripherals, which implement a wide range
of tasks. Examples range from simple sensors to complex
domain-specific accelerators [13]. They also require
additional logic to communicate over bus systems. Due
to these fundamental differences between the processor
and the peripherals, they require separate attention in
the verification workflow. Peripheral-specific symbolic
execution approaches are currently limited to replacing the
SystemC kernel with an alternative implementation [14].
This replacement is considered because the original
kernel uses threads to execute SC_THREADs, which hold
all peripheral functionality. These are not supported

*This work was supported in part by the German Federal Ministry
of Education and Research (BMBF) under grant no. 16ME0127 and
no. 16ME0135 (Scale4Edge), and no. 01IW24001 (EXCLplus).

by any state-of-the-art symbolic execution tool. In
addition to the new kernel, these SC_THREADs have to be
modified. However, both the thread transformation and the
replacement are themselves weak spots in the verification,
and only support the most important SystemC Transaction
Level Modelling (TLM) features. Their equivalence to the
unmodified version of DUV and kernel are not proven.
Furthermore, in the industry, these replacements often
cannot be integrated into the verification process.
We introduce a symbolic execution engine which
supports the unmodified SystemC kernel and peripherals.
Unlike [14], we can thereby avoid any replacements or
modifications. Our contributions are:

1. Extending the state-of-the-art tool KLEE [15]
(version 3.1) by a SystemC-specific threading
approach. We leverage the SC_THREAD behaviour
specified in the standard [16] for an optimised
verification of threading-based models.

2. A workflow offering verification at both TLM and
Register Transfer Level (RTL), as well as a cross-level
verification between the two.

3. An evaluation of a real-world peripheral in these three
verification scenarios, using a RISC-V PLIC.

2 Preliminaries

2.1 SystemC [16]
The SystemC modelling language, implemented as a C++
library, encapsulates hardware components in modules.
Each module’s functionality is realised with processes,
which can be either methods or threads. The simulation
is event-driven, meaning the processes register themselves
for execution on events such as clock edges, wait times, or
incoming inputs.



Standalone
RTL TLM

Cross-Level

Testbench
3

KLEE Interface

SystemC RTL

SystemC
4 SymEx

6

LLVM IR
5TLM Peripheral

1

RTL Peripheral
Verilog

2

Figure 1 Overview Verification Workflow.

Inter-module communication can be based on signals and
ports, or, at a higher abstraction level, TLM sockets.

2.2 Symbolic Execution
Symbolic Execution is a verification technique from
the software domain. There exist several software-
focused engines like KLEE [15] and Angr [17]. The
idea is to represent sets of concrete values with
symbolic variables. During the execution, instructions
involving these symbolic variables are evaluated using
the Satisfiability Modulo Theory (SMT) solver. This can
result in forking the execution (branch instructions), or
generating concrete inputs that trigger errors. Thereby, the
program can be checked for generic failures (e.g. divide by
zero), and assertion violations.

3 Symbolic Execution of SystemC
Peripherals

In the SystemC kernel, the SC_THREADs are implemented
using system threads. Threading is not supported
by symbolic execution due to the associated overhead
of verifying multi-threaded software, e.g. checks
for data races. However, in SystemC, the standard
specifies cooperative multitasking [16]. That means
that all processes, including SC_THREADs, are executed
without interruption, and sequentially. The developer
defines the synchronisation points, e.g. with wait()
statements. System threads enable the context switches
between SC_THREADs, but they do not execute in parallel.
Therefore, many threading issues are not a topic for the
symbolic execution of SystemC peripherals. Instead, it is
only necessary to model the thread calls and suspensions
according to the SystemC standard.
The following sections present the verification workflow
using the proposed symbolic execution tool, as well as a
description of how SystemC threading is integrated into the
symbolic execution.

3.1 Verification Workflow
In Figure 1, we give an overview of the proposed
verification workflow. The desired DUV can be provided
at both the RTL and TLM level. The TLM description 1
is usually readily available in SystemC. Similarly, the
RTL description 2 can be written in SystemC. However,
more commonly, it would be available in Verilog, in
which case an automatic transcompilation to SystemC
using Verilator [18] is possible. A symbolic execution
test bench 3 is written to define the desired behaviour of

prepare()
...
// Create PThread

...

create() {
...

pthread_create(t1)

pthread_cond_wait(create)

...

MAIN

invoke()
...

pthread_cond_signal(create)

pthread_cond_wait(t1)

run()

THREAD 1

Figure 2 Overview SystemC Thread Creation (PThread
module).

simulate()
...
// Call SC_THREAD

...

yield()
...

pthread_cond_signal(t1)

pthread_cond_wait(main)

...

MAIN

run()
...

sc_wait(run_event)
...

yield()
...

pthread_cond_signal(main)

pthread_cond_wait(t2)

...

...

...

THREAD 2

run()
...

sc_wait(run_event)
...

yield()
...

pthread_cond_signal(t2)

pthread_cond_wait(t1)

...

...

...

THREAD 1

Figure 3 Overview SystemC Thread Simulation
(PThread module).

the DUV using assertion statements, and declare symbolic
variables with KLEE interface methods. The tests can
realise three possible verification scenarios:

(a) Standalone verification of a TLM device

(b) Standalone verification of a RTL device

(c) Cross-level verification RTL⇔TLM

If both RTL and TLM implementations of a device are
available, the test bench can cover all three scenarios in
separate tests.
The SystemC device(s), optimised kernel 4 , and
test bench are compiled into the LLVM Intermediate
Representation, using the Clang C++ compiler 5 . Finally,
the peripheral can be verified using our symbolic execution
tool 6 .

3.2 SystemC Threading
SystemC offers multiple implementations of the threading
behaviour defined in the standard. These differ in the
threading they are based on, but the general attributes
remain the same. We focused on the PThread-based
version. In it, each SC_THREAD, as well as the
scheduler, is it’s own PThread, associated with a unique
pthread_condition (in the following pt_cond). All
threads are created before the simulation start, as illustrated
in Figure 2. During the setup, the new thread does not
execute the SC_THREAD-declared function (here: run).
Instead, it starts waiting on it’s newly created pt_cond
after setup.
During the simulation, the thread execution is managed
over a pt_signal/_wait handshake, as illustrated in
Figure 3. To switch from one thread to another, the callee
thread first signals the called thread’s pt_cond. Then, it
starts waiting on it’s own pt_cond, and only continues



execute

pt_signal

yieldinitcreate

pt_wait

pt_create pt_signal

Figure 4 Overview Symbolic Execution Engine States.

execution after it is signalled again. Therefore, at any time,
only one thread is actually executing.
In the symbolic execution engine, each thread needs it’s
own context, represented by stack and program counter.
The stack is initially empty, and contains only variables
allocated while the respective thread is active. During the
symbolic execution, the CallInsts targeting pthread_*
functions are intercepted. Their original implementation is
ignored, which avoids the creation of real system threads.
Instead, they mark an internal state change, as illustrated
in Figure 4. In init, the main thread’s context is active.
In create, sysc::invoke is executed in a new context,
as seen in Figure 2. After pt_wait, this context is
associated with the new pt_cond. Back in init, the main
context continues with the instruction after pt_create. A
pt_signal triggers yield, as shown in Figure 3. During
yield, the current context is saved, and the desired one is
loaded. Afterwards, regular execution continues.
Outside of these three types of CallInst, all LLVM
instructions are handled as specified. Thus, the original
implementations of SystemC and DUV are considered.
This stands in contrast with the current state of the art [14],
where both SystemC and DUV were modified.

4 Evaluation

We evaluate our approach by applying it to a RISC-V TLM
PLIC, specifically the FE310 configuration based on the
SiFive FE310 SoC [19]. It manages global interrupts,
for example from Input/Output devices, and notifies the
targets, usually Hardware Threads. The order of the
interrupts is determined by their individual priorities, as
well as the per-target priority threshold.
The TLM implementation from the open source RISC-V
VP1 was already used as a case study in [14], who used
a custom SystemC replacement kernel. We additionally
consider an in-house implementation of this device at the
RTL abstraction level, which allowed for tests across three
different verification scenarios: the standalone at each
abstraction level, and the cross-level verification between
the two. For each scenario, multiple test cases were
defined. At both TLM and RTL, there are three that
consider the firing of an interrupt (T1-3,T6-8). Tests
#1/#6 models the basic case of triggering one input with
a symbolic interrupts number, tests #2/#7 add to this a
symbolic priority and priority threshold. Tests #3/#8 check
the correct interrupt order given two symbolic interrupts,
each with a symbolic priority. For the TLM PLIC, cases
#4 and #5 read/write symbolic data over the TLM socket,
respectively. Finally, for the cross-level verification, tests
#9 and #10 mirror tests #2 and #3.

1https://github.com/agra-uni-bremen/riscv-vp

Table 1 PLIC Evaluation (TO=Timeout).

Test Paths Time Memory Commentcompl. partial
1

T
L

M

0 5 TO 448.55 F1
2 1 6 TO 453.76
3 1 14 TO 457.06
4 970 198 221.43 459.47 F2,F3
5 2733 261731 TO 6279.18 F2-5
6

R
T

L

0 5 TO 566.65
7 0 530 566.69 608.07 F6,F7
8 2460 5889 TO 2221.87
9

E
Q 0 8 TO 607.21

10 0 7 TO 609.83

We configured our symbolic execution tool to use STP [20]
as the solver for SMT queries. In order to achieve
results within an acceptable time frame, some limits were
imposed: an execution runs a maximum of 24 h, and can
use at most 4000 MiB of working memory. A single solver
query can take at most 120 s, so that the run time is not
dominated by few solver queries. The search strategy for
choosing execution states during the exploration is Breadth
First Search (BFS).
Table 1 shows the results for each test case. First, the
number of explored paths is given, divided into those
that were exhaustively explored, and those that were
prematurely abandoned, e.g. due to the time limit or
assertion violations. Following, we list the run’s complete
duration (in seconds), and the average memory usage
(MiB). Finally, the result of the test case is summarised.
At the TLM level, our tool found the same errors as [14]
(F1-5). At the RTL, the relationship between the priority
and the threshold was inverse (F6,7). Instead of firing
an interrupt if it’s priority was greater than the threshold,
it was fired if it was less than or equal. However, this
error was not found in the cross-level scenario. The cause
for this are the timeouts (TO), in which the tool could
not exhaustively explore a test’s state space in under 24 h.
They appear even in the standalone test cases mirroring the
cross-level ones. Consequently, if the tool has to find a path
through both implementations, timeouts are more likely to
occur. This limits the results that can be attained.
There are multiple causes of these timeouts. First,
larger object sizes directly lead to larger arrays in SMT
queries. Current solvers, however, struggle with large
arrays. The object size is influenced by the involved
SystemC features. For example, the TLM PLIC generates
a 2336 B sized array, of which over 1000 B come from the
tlm::simple_target_socket. This problem could be
addressed by including only relevant parts of the array.
A second source of origin is a known limitation of
symbolic-execution-based approaches called the state
space explosion [21]. The number of possible symbolic
states grows exponentially with the number of branch
instructions. Under this constraint, achieving interesting
results with limited resources is important. Our tool was
able to find all known errors in the DUV implementations.
The results match those of the current state-of-the-
art [14], despite the greater number of processed branch



instructions. Evaluating the advantages and disadvantages
of these two opposing approaches, including a detailed
performance comparison, would be an interesting direction
for future work.
Additionally, the timeouts, as well as the problems in the
cross-level scenario, highlight the importance of choosing
the most relevant states to follow. While there are
surveys regarding the (dis)advantages of search strategies
for symbolic execution of software, we are not aware
of similar studies for symbolic execution of hardware.
Consequently, this too is a knowledge gap to be filled in
the future.

5 Conclusion

We propose a symbolic execution engine capable of
verifying unmodified SystemC peripherals. We leverage
the SC_THREAD behaviour as defined in the standard
to model the expected control and data flow between
threads. This domain-specific approach avoids the
overhead associated with verifying general multi-threaded
software. In an experimental evaluation, our approach’s
effectiveness in verifying at two different abstraction
levels, TLM and RTL, is shown using a RISC-V PLIC.
This showed our approach’s functional improvement over
the current state-of-the-art [14], a replacement kernel
limited to TLM. However, the performance penalty
associated with SystemC’s complexity revealed three
objectives for future work. They consist of an improved
object handling, a detailed comparison to [14], and
appropriate exploration of the state space.

6 Literature

[1] W. Chen et al., “Challenges and Trends in Modern
SoC Design Verification,” IEEE Design & Test,
vol. 34, no. 5, pp. 7–22, 2017.

[2] P. Herber et al., “STATE – A SystemC to Timed
Automata Transformation Engine,” in 2015 IEEE
17th ICHPCC, 2015 IEEE 7th CSS, and 2015 IEEE
12th ICESS, 2015, pp. 1074–1077.

[3] H. M. Le et al., “Towards Formal Verification of
Real-World SystemC TLM Peripheral Models - A
Case Study,” in 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2016, pp.
1160–1163.

[4] S. Deng et al., “Bounded Model Checking for
RTL Circuits Based on Algorithm Abstraction
Refinement,” in 2006 8th International Conference
on Solid-State and Integrated Circuit Technology
Proceedings, 2006, pp. 2082–2084.

[5] P. Bavonparadon et al., “RTL Formal Verification of
Embedded Processors,” in 2002 IEEE International
Conference on Industrial Technology, 2002. IEEE
ICIT ’02., vol. 1, 2002, pp. 667–672.

[6] N. Bruns et al., “Efficient Cross-Level Processor
Verification Using Coverage-Guided Fuzzing,” in

Proceedings of the Great Lakes Symposium on VLSI
2022, ser. GLSVLSI ’22, 2022, p. 97–103.

[7] S. Ahmadi-Pour et al., “Synergistic Verification
of Hardware Peripherals through Virtual Prototype
Aided Cross-Level Methodology Leveraging
Coverage-Guided Fuzzing and Co-Simulation,”
Chips, vol. 2, pp. 195–208, 2023.

[8] A. Ahmed et al., “Directed Test Generation Using
Concolic Testing on RTL Models,” in 2018 DATE,
2018, pp. 1538–1543.

[9] B. Lin et al., “Concolic Testing of SystemC Designs,”
in 2018 19th International Symposium on Quality
Electronic Design (ISQED), 2018, pp. 1–7.

[10] Y. Zhang et al., “Automatic Generation of
High-Coverage Tests for RTL Designs Using
Software Techniques and Tools,” in 2016 IEEE
11th Conference on Industrial Electronics and
Applications (ICIEA), 2016, pp. 856–861.

[11] B. Lin et al., “Generating High Coverage Tests for
SystemC Designs Using Symbolic Execution,” in
2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC), 2016, pp. 166–171.

[12] N. Bruns et al., “Processor Verification using
Symbolic Execution: A RISC-V Case-Study,” in
2023 DATE, 2023, pp. 1–6.

[13] J. L. Hennessy et al., “A New Golden Age for
Computer Architecture,” Communications of the
ACM, vol. 62, no. 2, pp. 48–60, 2019.

[14] P. Pieper et al., “Verifying SystemC TLM peripherals
Using Modern C++ Symbolic Execution Tools,”
in Proceedings of the 59th ACM/IEEE Design
Automation Conference, 2022, pp. 1177–1182.

[15] C. Cadar et al., “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex
Systems Programs,” in Proceedings of the 8th
USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI’08, 2008, p.
209–224.

[16] “IEEE Standard for Standard SystemC® Language
Reference Manual,” IEEE Std 1666-2023 (Revision
of IEEE Std 1666-2011), pp. 1–618, 2023.

[17] Y. Shoshitaishvili et al., “SOK: (State of) The Art of
War: Offensive Techniques in Binary Analysis,” in
2016 IEEE Symposium on Security and Privacy (SP),
2016, pp. 138–157.

[18] (2004) Verilator Compiler. [Online]. Available:
https://www.veripool.org/verilator/

[19] (2020) SiFive FE310-G000 Manual. [Online].
Available: https://static.dev.sifive.com/FE310-G000.
pdf

[20] V. Ganesh et al., “A Decision Procedure for Bit-
Vectors and Arrays,” in Computer Aided Verification,
W. Damm et al., Eds., 2007, pp. 519–531.

[21] R. Baldoni et al., “A Survey of Symbolic Execution
Techniques,” ACM Comput. Surv., vol. 51, no. 3,
2018.

https://www.veripool.org/verilator/
https://static.dev.sifive.com/FE310-G000.pdf
https://static.dev.sifive.com/FE310-G000.pdf

	Introduction
	Preliminaries
	SystemC systemc
	Symbolic Execution

	Symbolic Execution of SystemC Peripherals
	Verification Workflow
	SystemC Threading

	Evaluation
	Conclusion
	Literature

