

On the Construction of Multiple-Valued Decision Diagrams

 D. Michael Miller Rolf Drechsler
 VLSI Design and Test Group Institute of Computer Science
 Department of Computer Science University of Bremen
 University of Victoria 28334 Bremen
 Victoria, BC GERMANY
 CANADA V8W 3P6 drechsle@informatik.uni-bremen,de
 mmiller@csr.uvic.ca

Abstract

Decision diagrams are the state-of-the-art
representation for logic functions, both binary and
multiple-valued. Here we consider ways to improve the
construction of multiple-valued decisions diagrams
(MDD). Efficiency is achieved through the use of a simple
computed table. We compare the use of recursive MIN
and MAX as primitive operations in multiple-valued
decision diagram construction to the MV-CASE primitive
which is a generalization of the if-then-else (ITE)
commonly used in binary DD packages.

We also consider the use of cyclic negations and
complements as MDD edge operations showing that for
certain types of functions this approach can lead to
significant reduction in MDD node count. They can also
reduce the number of primitives that need to be explicitly
implemented.

Experimental results showing the efficiency of the
proposed approaches are given. The direct
implementation of MDDs is briefly compared to
representing MDDs using a BDD package.

1. Introduction

Reduced ordered binary decision diagrams (BDD)
have been widely studied since their introduction by
Bryant [2] in 1986. A good review can be found in [3] and
the other articles included in that special issue. The
extension to multiple-valued logic has been considered
[7,8,9,15]. In the MVL case, a function is represented by a
directed acyclic graph called a multiple-valued decision
diagram (MDD). MDDs are ordered and reduced in a
fashion analogous to the binary case and the resulting
representation is termed a reduced ordered MDD. Since all
diagrams considered in this work are reduced and ordered,
we shall for brevity use MDD for multiple-valued decision
diagrams and BDD for binary decision diagrams.

The efficient implementation of BDDs has been widely
studied [1,11,13,14,15] and several highly efficient
packages are available, e.g. CUDD [13]. Many binary
techniques, or extensions thereof, are useful when

implementing a package for the creation and manipulation
of MDDs. But, there are issues new to the MDD case,
particularly the choice of logic primitives to use in diagram
construction and the appropriate use of edge operations.

Many available packages employ the if-then-else (ITE)
primitive in BDD construction. This generalizes to a CASE
operation [15] in the MVL situation. Drechsler and
Thornton [4] have shown that BDDs can be efficiently
constructed using NAND rather then ITE. Here we
consider the use of MIN and MAX primitives and show this
is more efficient than using CASE. We use recursive
implementations of the MIN and MAX. Use of these
dyadic recursive primitives allows a simpler computed table
than is needed for CASE. An efficient computed table is
critical to using the package for large problems.

It is quite common to use edge negations in BDDs
[10,13,14]. In moving to MDDs, the concept of edge
negation can be generalized. In [9] the present authors
considered the use of cyclic negations on edges. Here we
employ cyclic negations and complements together.

Adjacent level interchange and operator node
techniques [5,6] based on adjacent level interchange for
MDDs were considered in [9]. Here our concern, as in [4],
is to construct the MDD as efficiently as possible and to
minimize the implementation complexity of the MDD
package. To that end, adjacent level interchange, dynamic
variable reordering [12] and garbage collection are not
implemented. The resulting package is applicable for quite
large problems as shown by the experimental results.

The work presented here is an extension to our earlier
work presented in [9]. A better approach to handling the
unique table and the introduction of a computed table has
greatly improved the efficiency of our MDD package,
which for most problems is now at least an order of
magnitude faster. As a result this paper shows it is now
applicable to very large problems e.g. the 4-valued input, 2-
valued output problem derived from apex5 has 59 inputs
and 88 outputs and 1,227 cubes. The MDD is build in less
than 3 CPU seconds on a SUN dual 166 MHz processor
690MP.

2. Multiple -Valued Decision Diagrams

We consider totally-specified functions f X() , X =
{x

0
,x

1
,…,x

n-1
}, where the xi are p-valued. The function

takes values from (0,…p-1) as well. Such a function can be
represented by a multiple-valued decision diagram
(MDD) which is a directed acyclic graph (DAG) with up to
p terminal nodes each labelled by a distinct logic value
0,1,…,p-1. Every non-terminal node is labelled by an input
variable and has p outgoing labelled edges; one
corresponding to each logic value. The diagram is ordered
if the variables adhere to a single ordering on every path in
the graph, and no variable appears more than once on any
path from the root to a terminal node.

A reduced MDD has no node where all p outgoing
edges point to the same node and no isomorphic
subgraphs. Clearly, no isomorphic subgraphs exist if, and
only if, no two non-terminal nodes labelled by the same
variable, have the same direct descendants. With proper
management, reduction can be achieved as the decision
diagrams are built. We assume all MDDs are reduced and
ordered through the rest of this paper as that is the case of
practical interest.

For multiple-output problems, we represent the
functions by a single DAG with multiple top nodes, a
structure called a shared MDD.

In the binary case, the number of edges from each
non-terminal node is fixed at two. Here we must allow for a
variable number of edges determined by the value of p for
the function being represented. Our package uses the
following node structure (expressed in C):

typedef struct node *DDedge;
typedef struct node *DDlink;

typedef struct node
{
 char value,flag;
 DDlink next;
 DDedge edge[0];
}node;

A node is a structure with several components:

value: This component is the index of the variable labelling
a non-terminal node or the value associated with a
terminal node.

flag: This field is used to track. visits to nodes in
recursive descent algorithms.

next: This pointer is used to chain a node into linked lists
for memory management and unique table management
(see Section 4).

edge: This is an array of DDedge’s which is declared
empty but which is actually allocated as the number of
edges needed for the node being created.

Note that DDedge and DDlink are similar pointer types but
are used in different contexts – edges for the MDD
structure and links for node management.

The node structure shown looks very much like the
structure used in binary decision diagram packages. The
critical difference is the specification of an array of edges
rather than a fixed number (2 in binary). As noted, the
dimension of the array is assigned dynamically when a
node is created. For that reason, the array must be at the
end of the s tructure.

Node space is allocated as required. Since garbage
collection is not performed in the current package, ‘freed’
space is not recovered and we do not include a reference
counter with a node. Discussion of appropriate garbage
collection techniques can be found in [9,15].

Traversing an MDD from the top towards the terminal
nodes can be accomplished with conventional recursive
graph traversal techniques. In some instances, it is
necessary to ensure a node is visited only once. Our
package provides flag for that purpose.

3. Logic Primitives

Decision diagrams are normally constructed using one
or a small set of primitive operations. For example, many
binary packages construct diagrams by implementing the
normal logic operations using the if-then-else (ITE)
primitive defined as

ITE(a,b,c) = if a then b else c (1)

For example, AND(a,b) = ITE(a,b,0).
The MVL generalization of ITE is defined as

CASE(a,b0,b1,b2,…) = ba (2)

Common MVL logical operations can be expressed in terms
of CASE. For example, for p=4,

MIN(a,b) = CASE(a,0,CASE(b,0,1,1,1),
 CASE(b,0,1,2,2),b) (3a)

MAX(a,b) = CASE(a,b,CASE(b,1,1,2,3),
 CASE(b,2,2,2,3),3) (3a)

The implementation of ITE on binary decision diagrams
(see [15]) is readily extended to implementing CASE on
MDDs as outlined in Figure 1. Given that, MIN and MAX
can be implemented using (3a) and (3b). Other common
logic operations such as truncated-SUM can be
implemented in a similar fashion.

Drechsler and Thornton [4] have considered the direct
use of NAND in place of ITE in constructing binary DDs.
Here we consider MIN and MAX. Figure 2 outlines the
recursive implementation of MIN (MAX is analogous). It
is important to note that Figure 2 is the direct recursive
implementation of MIN. This is an alternative to
implementing MIN using CASE.

CASE(A,B0,B1,…,Bp-1)
 if(terminal(A)) return(BA)
 TOP=top variable of A,B0,B1,…,Bp-1
 for 0<=i<=p-1
 if(id(A)==TOP) EA=CHILD(A,i)
 else EA = A
 for 0<=j<p
 if(id(Bj)==TOP) EBj=CHILD(Bj,i)
 else EBj = Bj

 Ci=ITE(EA,EBj, …, EBj)
 R=create node(TOP,C0,...,Cp-1)
 return(R)

Figure 1: Implementation of CASE

The structure of the implementations of CASE and
MIN are quite similar. The basic difference is that CASE
has p+1 parameters whereas MIN (and likewise MAX) has
only 2. This affects the efficiency of the computed table
(see next Section). Experiments reported in Section 5 show
the direct implementation of MAX and MIN is
considerably more efficient than using CASE to implement
them.

4. Unique and Computed Tables

It is common practice to use a unique table to avoid
creating multiple instances of a node. We use a simple
hashing approach. Our unique table has B buckets. When
a node is created as in the implementations of CASE and
MIN shown in Figures 1 and 2, respectively, it is ‘hashed’
to a particular bucket position k using

k = Σ (Ei + Ei >> b) mod B (4)

where Ei is the ith edge from the node treated as an integer,
B is the number of buckets (should be a power of two) and
b is the base 2 log of B. Because B is a power of two, the
mod operation can be implemented as a logical and with B-
1 rather than the expensive mod computation. Be use B =
4,096 in our experiments described below.

Each bucket in the hash table heads a list (initially
empty) of nodes. When a node is required, the chain for
the bucket it is hashed to is linearly searched. If the node
is found, the instance found is used, otherwise, the node is
created and added to the beginning of the bucket chain, for
possible further use. Experiment has shown that adding to
the front of the chain is most effective due to the local
computation nature of MDD construction.

Use of a unique table as described ensures that only
one instance of a node is ever created which deals with the
need to identify isomorphic subgraphs.

MDDs are constructed by performing logic operations
on MDDs, e.g. CASE, MIN and MAX described above.
As shown the procedures are recursive. It is common to
have to perform the same operation on the same diagrams
many times during the overall construction of an MDD for

MIN(A,B)
 if(A==0 or B==0) return(0)
 if(A==p-1) return(B)
 if(B==p-1) return(A)
 if(A and B are terminals)
 return(min of A and B)
 TOP=top variable of A and B
 for 0<=i<=p-1
 if(id(A)==TOP) EA=CHILD(A,i)
 else EA = A
 if(id(B)==TOP) EB=CHILD(B,i)
 else EB = B
 Ci=MIN(EA,EB)
 R=create node(TOP,C0,...,Cp-1)
 return(R)

Figure 2: Implementation of MIN

a large problem. This duplication of effort can be
significantly reduced if not eliminated using a computed
table.

In our case, the computed table consists of a number
of rows each of which stores the result of a previous
computation by retaining the type of operation, edge
pointers identifying the MDDs that were combined and a
final edge pointer that identifies the MDD resulting from
the computation. It is a global computed table [15] in that
prior computations are shared from one MDD computation
to the next. This is particularly useful in a shared MDD
environment.

The computed table rows are initially empty. Each
time a computation is to be performed, it is ‘hashed’ to a
row of the computed table using a formula analogous to (4)
which combines the edge pointers for the MDDs to be
combined. The identified row of the computed table is
checked to see if it contains the required computation. If it
does, the result pointer is returned. If it does not, the
required computation is performed, and the appropriate
information is stored in that row of the computed table.
Note that this information replaces any prior computation
stored there. In our experiments below we use a table with
4,096 rows.

The computed table approach is readily inserted into
the CASE and MIN procedures given in Figures 1 and 2.
In each case, the check for the required computation in the
computed table is placed just after the handling of terminal
cases and before computation of TOP. In addition, the
code to place the information about the computation in the
computed table goes just before the return(R) that
returns the result. A very significant difference is that the
computed table for CASE has p+1 edge pointers whereas
the computed table for MIN (and MAX) has only two.

5. MDD Construction with MIN and MAX

To evaluate the methods discussed thus far, we
present results on converting cube list specifications to
decision diagrams. We use mostly well-known binary
benchmark problems converted to 4-valued input, 2-valued
output problems. The conversion of the binary inputs to
4-valued inputs is done by taking the inputs in pairs from
left to right in order of the normally available specification.
If there is an odd number of inputs, the rightmost input
remains a binary input. There is no attempt to optimise the
pairing of inputs as our objective is simply a set of test
benchmarks to validate MDD techniques. In particular, we
emphasize that we are using these binary problems as a set
of unbiased benchmarks – our interest here is not the
optimal encoding of binary functions as MVL ones.

The outputs are left as binary to allow the
constructed MDD to be mapped back to the binary case to
verify the correctness of the MDD. In particular, a simple
depth first traversal of the paths in the MDD is performed.
Each path represents a disjoint 4-valued input cube which
is easily mapped to the binary domain. The path leads to a
0 or 1. Those leading to 1 are output. This process is
repeated for each function output resulting in a disjoint
cube list specification of the binary problem from which the
4-valued input binary output test case was derived. The
‘verify’ option of the minimizer espresso is then used to
compare the original problem specification to the cube list
obtained from the MDD.

Table I shows the results of constructing MDDs for 4-
valued input binary output problems derived from binary
benchmark problems as described above. These results
were obtained using the recursive implementations of MIN
and MAX. The construction involves building MDD
literals for each element of an input cube and then using
MIN to combine those to form a single MDD representing
the input side of the cube. The MIN of that cube and 1 is
then found and the result is combined into the MDD for
each appropriate output function using MAX.

Table I shows that the approach is quite efficient even
for some quite large problems. The table is sorted in
decreasing order of the number of MDD nodes.
Comparing the two timings, (a) which is with the computed
table approach outlined above and (b) which is without a
computed table, clearly shows the advantage of using
such a table. The speedup varies from virtually nothing for
the small problems to a factor of about 30 to 50 for the large
apex problems.

Table I shows the number of calls of MIN and MAX
when the computed table is used. Note that only calls
requiring computation are counted including those found
in the computed table. Those resolved as terminal cases
are not included in the counts. The recursive calls of MIN
and MAX are counted. It is peculiar to the nature of our
test cases that calls to MAX generally dominate. This is
because the input side of the two level specification deals
with combining literals which are relatively simple MDD

structures whereas the output side must combine the more
complex MDDs representing the cubes. That requires
considerably more computation. Problem e64 is a unique
case where each output is a single cube so no calls to
MAX are required. To further emphasize the importance of
the computed table, we note that constructing the MDDs
for apex2 without a table requires 22.2 million MAX calls
and 1.1 million MIN calls.

Table II compares MDD construction using the
recursive MIN and MAX and the CASE-based MIN and
MAX for the same problems as above. Again, no edge
negation operations are used. The table is ordered by
decreasing number of computed table references for the
recursive case. For each approach, the table shows the
number of computed table references, the percentage that
were ‘hits’ where a hit means the required value was found
in the computed table, and the CPU time required.

The right two columns compare the number of
computed table references and the CPU time required for
the two methods. The recursive MIN and MAX approach
is clearly significantly faster and requires significantly
fewer computed table references. It is interesting that the
CASE-based approach consistently shows a much higher
computed table hit rate but this does not translate into a
faster method. This is because each non-terminal
computation of the recursive MIN or MAX requires p
recursions, whereas the CASE approach requires three
CASE computations for a MIN or MAX and each non-
terminal computation of a CASE requires p+1 recursions.
The higher hit rate tends to be concentrated on the ‘inner’
CASEs with predominantly constant arguments.

6. Edge Negations

There have been several suggestions [1,10,14] for the
use of edge negations as a means to further reducing the
size of a decision diagram. Unlike the binary case where
there is only one definition of negation, we must consider
alternatives in the multiple-valued case.

Cyclic negation of x by k will be denoted kx , and is

defined as pkxx k mod)(+= . A second form of
negation in multiple-valued logic is the complement
defined as xpx −−= 1 . We also use x′ to denote the
complement. Note that for p=2, both are binary negation.

The following identities are of particular use here:

Identity 1: jkjk xx +=)(

Identity 2: kpk xx −=′)(

Identity 3: xx =′

Identity 4:)())((′=′ −+ jpkjk xx

Identity 5: xx kpk =−)(

Identity 6: xx kk =′′)))(((

A review of the above identities shows that any
sequence of cycles and comp lements can be reduced to a
single cycle possibly followed by a single complement.
Hence we will label each edge in an MDD with a single
cycle 0…p-1 and an optional complement that when
present follows the cycle. The interpretation is that the
edge identifies the subfunction found by applying the
indicated cyclic possibly followed by a complement to the
function represented by the subgraph to which the edge
points.

Use of cyclic negation as an edge operation in MDDs
was discussed by the present authors in [9]. For cycles
alone, two rules are required to ensure the representation is
canonic:

1. there is a single terminal node whose value is 0
(other terminal values required can be generated
using a cycle on the edge pointing to the terminal
0);

2. the 0-edge from a node never has a cycle (when
one is called for it is promoted to the edge
pointing to the node itself and the cycles on all
other edges from the node are adjusted
accordingly).

When using a cycle and complement together on a
single edge, rule 1 remains the same. Rule 2 is extended so
that if a cycle-complement pair is moved from the 0-edge to
the edge leading to a node, every other edge from the node
is adjusted by post-multiplying its cycle negation pair by
the inverse of the cycle-negation pair from the 0-edge. The
inverse is identified using identity 5 or identity 6 and the
post-multiplication is carried out using identity 1 or 4.

Rather than add a separate negation component to our
representation of an edge, we store the cycle and
complement in the bottom three bits of the pointer: one bit
for complement and two for the cycle allowing us to handle
the cases p=2, 3 or 4. This is possible because memory
management systems typically align dynamically allocated
memory blocks on fixed address boundaries (e.g. many
systems align the block on addressed that are multiples of
8). Hence, there are unused bits (fixed to 0) at the low end
of dynamic allocation addresses. There may also be
‘available’ bits at the high end if a sufficiently long address
is used. In our implementation, the actual bits ‘borrowed’
from the pointer to store the cycle are controlled by
symbolic constants and macros to facilitate porting the
package to alternative systems. This approach also makes
it straightforward to make the negations a separate field in
the node structure if that is required as would be necessary
in our case for p>4. Note that the hashing function used
(4) would have to be altered to be effective if the position
of the ‘borrowed’ bits is moved.

7. MDD Construction with Edge Operations

Table III shows results of MDD construction using
edge operations. The problems are those from before but
there is a very significant difference here. For the
experiments described above the binary outputs were
coded 0 and 1 as one would expect. But that coding does
not allow for the effective use of cyclic negation. Hence
for the experiments presented in Table III the binary output
values 0 and 1 are coded as 0 and 2 in formulating the MVL
problems.

The table is sorted by the MDD size without
negations (a). For each problem, we present the size of the
MDD when edge negations are used (b) and the relation
between the two sizes. Many functions show little
improvement but there is substantial improvement for
arithmetic functions (e.g. alu4 and 74181) as well as others.
Similarly good improvement is also found for the symmetric
problems (rd53, rd73 etc. not shown due to space
limitations) but these are small examples and larger
symmetric problems need to be tried to confirm that this is
a real effect.

MDDs were built for each problem using three
methods:

1. recursive MIN with MAX implemented in terms of
MIN;

2. recursive MAX with MIN implemented in terms of
MAX;

3. recursive MIN and recursive MAX implemented
separately.

The MDDs are the same size for all three methods but it is
important to note that the resulting MDDs are not
identical. The MDD are canonic for each separate method,
i.e. for each method the MDD constructed for a particular
function is unique, but canonicity does not carry across
the three approaches. The MDD do have the same
structure but the selection and placement of edge
negations is not the same. A traversal of an MDD using
the relations given above does allow one MDD to be
transformed to another. The best way to deal with the lack
of overall canonicity is under investigation. For many
applications it is not an issue since only one of the three
approaches offered would be used.

The results in Table III show the three approaches are
very similar in terms of overall complexity and
computational cost. The results show the computed table
approach is quite effective

We observe that the total nodes allocated in
constructing the MDD is the same regardless of the
method used. The MIN only approach consistently makes
fewer references to the unique and computed tables with
generally lower hit rates but the differences are not
appreciable.

8. Representing MDDs using BDDs

An MDD can be encoded as a BDD and implemented
using a BDD package. In such an approach, an MV input
is represented by a binary variable encoding. An MV
output can be similarly encoded, but another alternative
(the one used in VIS [16]) is to encode a p-valued output
as a set of p binary functions, i.e. as decisive functions
with one function per logic value.

Using a BDD package to represent an MDD does have
advantages since BDD packages such as CUDD [13] are
highly optimized and implement key features such as edge
negation, variable reordering and garbage collection.
CUDD is typically two to five times faster than our package
for the examples described earlier. This is due to its highly
optimized and clever implementation and not indicative
that the BDD approach is in principle superior to the direct
MDD approach.

However, there are advantages to representing an
MDD directly as described in this paper. Edge negations
in a BDD representation of an MDD can reduce the
complexity but they do not correspond to MVL negation or
complementation. Indeed implementation of MVL negation
and complementation appears to be quite complex on the
BDD representation of an MDD. Similarly, other common
operation needed for example in logic synthesis
applications are more complex on a BDD representation of
an MDD then they are on a direct MDD implementation.

A proper comparison of the two approaches is a
complex task which is ongoing. It certainly appears that
the best approach depends on the intended application
and that neither approach will be globally better. Indeed
transformation between the two methods of representation
is a possibility that should be pursued.

9. Concluding Remarks

This paper has examined the construction of MDDs.
A simple computed table greatly improves the efficiency.
Experimental results on a set of benchmark functions
clearly show the advantage of using recursive MIN and
MAX primitives rather than implementing them using a
CASE primitive. Use of cyclic negation and complement as
edge operations can reduce the size of the MDD with no
noticeable increase in computation cost. The results show
that there is little to choose between the use of the three
methods applied in Table III. As noted in [15] for the
binary case, the fact edge operations (cycle and
complement) do not generally significantly reduce the size
of the MDD does not render them unimportant, since using
them reduces the number of primitive that must be
explicitly implemented. For example, using complement
requires only MIN or MAX but not both be explicitly
implemented. We do note that use of MIN and MAX
together with cycles does not require complements on the
edges. There are clearly tradeoffs depending on the

primitives required which must be carefully investigated for
each application.

Future work will include implementation of other MVL
logic operations such as truncated–sum and development
of routines to construct MDDs from circuit level
descriptions rather than cube list specifications.
Optimisation of the package continues and we are
continuing to consider the relation between the diagrams
constructed using MIN and MAX as the single primitive.

As noted in Section 8, we are pursuing an in-depth
comparison of the direct MDD approach with the BDD
representation of MDDs, as well as the complexity and
usefulness of transforming between the two
representations.

The MDD package described in this paper is robust
and provides sufficient efficiency to be of interest to
researchers interested in applying MDD in various
application areas.

The MDD package described is freely available at
www.csr.uvic.ca/~mmiller/MDD.

Acknowledgements

The work reported in this paper was supported in part
by a Research Grant from the Natural Sciences and
Engineering Research Council of Canada. We thank the
referees for their helpful suggestions regarding this paper.

References

[1] Brace, K. S., R L. Rudell and R. E. Bryant, “Efficient
implementation of a BDD package”, Proc. Design
Automation Conference, pp. 40-45, 1990.

[2] Bryant, R.E., “Graph-based algorithms for Boolean
function manipulation,” IEEE Trans. on Computers,
V. C-35, no. 8, pp. 677-691, 1986.

[3] Drechsler, R, and D. Sieling, “Binary decision
diagrams in theory and practice,” Int. Journal on
Software Tools for Technology Transfer, 3, pp. 112-
136, 2001.

[4] Drechsler, R., and M.A. Thornton. “Fast and Efficient
Equivalence Checking based on NA ND-BDDs,”
Proceedings of IFIP International Conference on
Very Large Scale Integration (VLSI'01), Montpellier,
pp. 401-405, 2001

[5] Hett, A., R. Drechsler and B. Becker, “MORE:
Alternative implementation of BDD packages by
multi-operand synthesis,” Proc. European Design
Automation Conference, pp. 164-169, 1996.

[6] Hett, A., R. Drechsler and B. Becker, “Reordering
based synthesis,” Proc. Reed-Muller Workshop 97,
pp. 13-22, 1997.

[7] Lau, H.T., and C.-S. Lim, “On the OBDD
representation of general Boolean functions,” IEEE
Trans. on Comp., C-41, No. 6, pp. 661-664, 1992.

[8] Miller, D.M., “Multiple-valued logic design tools,”
(Invited Address) Proc. 23rd Int. Symp. on Multiple-
Valued Logic, pp. 2-11, May 1993.

[9] Miller, D. M., and R. Drechsler, “Implementing a
multiple-valued decision diagram package,” Proc.
28th Int. Symp. on Multiple-Valued Logic, pp. 52-57,
May 1998.

 [10] Minato, S., N. Ishiura and S. Yajima, “Shared binary
decision diagrams with attributed edges for efficient
Boolean function manipula tion,” Proc. ACM/IEEE
Design Automation Conference, pp. 52-57, 1990.

[11] Minato, S., “Graph-based representations of discrete
functions,” Proc. IFIP WG 10.5 Workshop on the
Application of Reed-Muller Expansion in Circuit
Design,, pp. 1-10, 1995.

[12] Rudell, R. “Dynamic variable ordering for ordered
binary decision diagrams,” Proc. IEEE/ACM ICCAD,
pp. 43-47, 1993.

[13] Somenzi, F., “CUDD: CU Decision Diagram Package,”
http://bessie.colorado.edu/~fabio/ CUDD

[14] Somenzi, F., “Efficient manipulation of decision
diagrams,” Int. Journal on Software Tools for
Technology Transfer, 3, pp. 171-181, 2001.

[15] Srinivasan, A., T. Kam, S. Malik, and R.E. Brayton,
“Algorithms for discrete function manipulation,”
Proc. ICCAD, pp. 92-95, 1990.

[16] VIS Group, “VIS: A System for Verification and
Synthesis,” Proc. Computer-Aided Verification,
LNCS 1102, pp. 428-432, 1996.

Binary problem

specification
MDD using min-max and computed table

No computed table

in

out

Cubes
MDD
nodes

calls to
MAX

calls to
MIN

CPU (a)
msec.

CPU (b)
msec. (a) / (b)

apex5 117 88 1,227 3,543 98560 13387 2831 803,530 0.4%

apex2 39 3 1,035 3,471 445,905 24,605 5,381 1,865,383 0.3%

apex1 45 45 206 3,082 87034 4047 930 556,421 0.2%

seq 41 35 1,459 1,301 20605 20857 1300 6,061 21.4%

e64 65 65 65 1,020 0 2969 90 12,602 0.7%
alu4 14 8 1,028 787 38914 11577 700 1,240 56.5%
vg2 25 8 110 733 7636 1630 90 1,830 4.9%

apex4 9 19 438 640 8184 4786 200 340 58.8%

apex3 54 50 280 598 4468 3022 300 360 83.3%
duke2 22 29 87 562 3475 1537 70 610 11.5%
misex3 14 14 1,848 434 18192 19099 720 1,110 64.9%
74,181 14 8 1,133 403 17246 8772 420 740 56.8%

clip 9 5 167 118 1483 1450 40 70 57.1%
misex2 25 18 29 115 136 340 20 40 50.0%
mdiv7 8 10 256 104 3276 2329 60 120 50.0%
alu2 10 8 70 91 793 417 10 40 25.0%
bw 5 28 25 89 250 409 20 20 100.0%

sao2 10 4 58 82 886 505 20 30 66.7%
misex1 8 7 32 48 92 114 10 10 100.0%
rd84 8 4 256 32 1164 1585 50 60 83.3%
rd73 7 3 141 27 647 946 40 40 100.0%
9sym 9 1 88 19 988 856 20 30 66.7%
rd53 5 3 32 17 77 166 10 10 100.0%

postal 8 1 256 12 199 125 10 10 100.0%

Table I: Benchmark results for MDD constructed using MIN-MAX and a computed table

 Recursive MIN-MAX CASE-based MIN-MAX Comparison

 computed
table

reference
s (a)

%
hits

CPU
msec.

(b)

computed
table

reference
s (c)

%
hits

CPU
msec.

(d)

%
(a) / (c)

%
(b) / (d)

apex2 325,259 35.8% 5,381 1,041,387 64.90% 9,571 31.23% 56.22%

apex5 67,529 29.6% 2,671 180,483 71.60% 3,171 37.42% 84.23%

seq 57,357 35.2% 1,300 153,969 66.30% 1,650 37.25% 78.79%

misex3 50,443 34.8% 720 131,047 67.30% 1,060 38.49% 67.92%

alu4 49,486 34.0% 700 142,906 66.00% 990 34.63% 70.71%

apex1 46,414 15.3% 930 210,639 70.40% 1,570 22.03% 59.24%

74181 30,561 30.8% 420 94,272 68.30% 650 32.42% 64.62%

apex4 15,141 21.9% 200 60,349 68.20% 440 25.09% 45.45%

apex3 8,248 18.9% 300 35,264 62.80% 460 23.39% 65.22%

vg2 6,178 22.3% 90 25,120 66.70% 160 24.59% 56.25%

mdiv7 4,971 21.4% 60 22,752 77.50% 130 21.85% 46.15%

e64 4,935 28.3% 90 16,017 59.10% 170 30.81% 52.94%

duke2 4,204 20.9% 70 15,029 63.40% 140 27.97% 50.00%

rd84 3,936 31.9% 50 9,482 72.30% 80 41.51% 62.50%

clip 3,619 28.7% 40 10,379 63.30% 90 34.87% 44.44%

9sym 2,315 24.8% 20 7,513 62.20% 80 30.81% 25.00%

rd73 1,848 62.4% 40 6,241 62.60% 30 29.61% 133.33%

sao2 1,559 27.7% 20 3,907 54.80% 40 39.90% 50.00%

alu2 1,147 26.2% 10 3,474 62.40% 40 33.02% 25.00%

bw 979 30.1% 20 2,223 63.20% 30 44.04% 66.67%

misex2 577 23.4% 20 1,908 60.40% 30 30.24% 66.67%

rd53 385 22.6% 10 1,019 53.70% 10 37.78% 100.00%

postal 353 22.9% 10 1,066 59.30% 20 33.11% 50.00%

misex1 278 29.1% 10 694 54.60% 20 40.06% 50.00%

Table II: Comparison of MIN-MAX and CASE based MDD construction

(Note: All experiments reported in this paper were performed on a SUN 690MP

with dual Ross Technology 166 MHz processors and 128MB)

 Unique table Computed table

 (a) (b)
%

(b) / (a)
Method Total

nodes
reference

s
%
hits

references %
hits

%
replacements

CPU
msec.

apex5 3,543 3,535 99.8% MIN 27,584 45,158 38.9% 105,384 63.3% 32.9% 2,741

 MAX 27,584 47,878 42.4% 111,981 62.9% 35.2% 2,670

 Both 27,584 47,483 41.9% 112,163 63.4% 33.4% 2,680

apex2 3,471 3,403 98.0% MIN 91,195 194,508 53.1% 422,193 53.7% 45.3% 5,311

 MAX 91,195 207,577 56.1% 458,516 53.9% 45.7% 5,381

 Both 91,195 206,333 55.8% 466,286 55.0% 44.2% 5,341

apex1 3,082 3,033 98.4% MIN 32,177 39,049 17.6% 90,407 58.0% 37.4% 940

 MAX 32,177 39,349 18.2% 90,642 57.8% 39.9% 960

 Both 32,177 39,251 18.0% 90,975 58.1% 38.8% 830

seq 1,301 1,217 93.5% MIN 16,868 36,766 54.1% 40,746 39.2% 50.9% 1,170

 MAX 16,868 37,727 55.3% 41,697 38.0% 57.1% 1,230

 Both 16,868 36,658 54.0% 41,314 40.2% 50.4% 1,150

e64 1,020 1,014 99.4% MIN 2,141 3,502 38.9% 2,941 29.8% 33.6% 70

 MAX 2,141 3,507 39.0% 2,945 29.7% 35.0% 80

 Both 2,141 3,502 38.9% 2,941 29.8% 33.6% 80

alu4 787 648 82.3% MIN 15,601 32,264 51.6% 48,210 41.1% 50.5% 580

 MAX 15,601 32,714 52.3% 48,639 40.5% 55.3% 600

 Both 15,601 32,564 52.1% 50,383 42.9% 49.8% 570

vg2 733 717 97.8% MIN 3,409 4,693 27.4% 8,893 52.9% 19.3% 90

 MAX 3,409 4,725 27.9% 8,929 52.7% 28.5% 80

 Both 3,409 4,732 28.0% 9,106 53.5% 25.1% 100

apex4 640 632 98.8% MIN 8,493 11,669 27.2% 12,892 26.3% 46.0% 220

 MAX 8,493 11,923 28.8% 12,994 24.9% 59.7% 230

 Both 8,493 11,733 27.6% 12,944 26.1% 53.3% 220

apex3 598 552 92.3% MIN 5,091 6,672 23.7% 7,472 24.9% 36.8% 280

 MAX 5,091 6,737 24.4% 7,506 24.2% 50.9% 290

 Both 5,091 6,703 24.1% 7,507 24.7% 44.4% 310

duke2 562 544 96.8% MIN 2,431 3,286 26.0% 4,919 44.7% 19.5% 80

 MAX 2,431 3,289 26.1% 4,921 44.7% 26.5% 70

 Both 2,431 3,296 26.3% 4,978 45.1% 23.8% 70

misex3 434 379 87.3% MIN 15,254 32,555 53.1% 36,620 42.1% 47.0% 630

 MAX 15,254 33,830 54.9% 37,599 40.1% 54.5% 650

 Both 15,254 32,769 53.5% 37,241 42.4% 47.3% 680

74,181 403 350 86.8% MIN 11,630 20,920 44.4% 24,898 38.4% 45.9% 370

 MAX 11,630 21,261 45.3% 25,175 37.5% 54.4% 420

 Both 11,630 21,043 44.7% 25,923 40.3% 46.6% 390

clip 118 106 89.8% MIN 1,524 2,555 40.4% 2,849 33.7% 22.6% 40

 MAX 1,524 2,562 40.6% 2,852 33.5% 27.6% 50

 Both 1,524 2,575 40.9% 2,923 34.5% 25.0% 40

misex2 115 113 98.3% MIN 307 434 29.5% 468 40.4% 1.5% 10

 MAX 307 435 29.7% 470 40.4% 5.5% 20

 Both 307 436 29.8% 472 40.5% 2.3% 10

Table III: Comparing use of cycles and complements with recursive MIN and MAX
NOTE: binary outputs are coded as 0 (logic 0) and 2 (logic 1) see Section 7

