
Verification of Embedded Systems
Using Modeling and Implementation Languages

Mathias Soeken1,3, Heinz Riener2,
Robert Wille1, Görschwin Fey2, and Rolf Drechsler1,3

1 Institute of Computer Science, University of Bremen
Group of Computer Architecture, D-28359 Bremen, Germany

2 Institute of Computer Science, University of Bremen
Group of Reliable Embedded Systems, D-28359 Bremen, Germany

3 Cyber-Physical Systems
DFKI GmbH, D-28359 Bremen, Germany

{msoeken,hriener,rwille,fey,drechsle}@informatik.uni-bremen.de

Abstract. We propose a verification flow which aims at functional verifica-
tion of embedded systems. We assume that the system is formally specified in
a modeling language and implemented in a high-level programming language.
The verification flow proceeds in two stages: first, we check for behavioral prop-
erties which indicate bad states at the level of the specification. Second, we
prove that the individual components of the system conform to their specifi-
cation. The first stage allows for the detection of design flaws in the system
without considering implementation details, whereas the second stage refines
the verification task allowing for the detection of functional bugs in the imple-
mentation. In both stages, the description of the verification task is automati-
cally generated from the modeling language and the implementation language,
respectively.

1 Introduction

Guaranteeing functional correctness of embedded systems is time-consuming and chal-
lenging. In modern system design flows, checking for functional correctness, i.e., func-
tional verification, accounts for more than half of the total development time [1]. Due
to time-to-market constraints, however, push-button approaches are desirable.

Formal methods aim at automatically checking whether a system implementation
conforms to a formal specification. One such method is model checking [2, 3] which
exhaustively explores the state space of a system implementation and generates a
counterexample if and only if the formal specification does not hold. Model checking has
successfully been used to prove functional correctness of hardware designs at the gate
and register-transfer levels. Today, research focuses on lifting functional verification to
higher abstraction levels, e.g., the Electronic System Level (ESL) [4–6]. At the ESL,
a designer is not only faced with guaranteeing functional correctness of an isolated
component but has to consider multiple components interacting with each other and
their environment. The main challenge at the ESL is to tackle the possibly large state
space to overcome the state-explosion problem.

Previous work includes assume-guarantee reasoning [7] and synthesis from speci-
fication [8, 9]. Assume-guarantee reasoning attempts to prove or refute a property by
utilizing the specifications of individual components to allow for a step-wise refinement
of the property. Synthesis generates a system which is correct-by-construction from
a formal specification. Both techniques, however, are computational expensive. More-
over, providing a formal specification which entirely describes the functionality of a
system is challenging for larger system designs.

In this paper, we propose a functional verification flow focusing at the ESL by lifting
parts of the verification technique to a meta-modeling level. Given a formal specification



Host
hdata: Integer

send()

Client
active: Boolean
data: Integer

connect(h: Host)

0..1 *
host clients

context Host::send()
pre: clients->size() > 1
post: cients->forAll(c|c.data = hdata)

context Client::connect(h:Host)
pre: host.isUndefined()
post: active = true

inv: hdata < 256

(a) UML class diagram with OCL con-
straints

h: Host
hdata = 42

c: Client
active = false
data = 0

h: Host
hdata = 42

c: Client
active = true
data = 0

connect(h)

connect(h)

σt σt+1 = σt+k,k>1

(b) UML object diagram

class Client {
bool active;
int data;
void connect(Host* h) {
...
active = true;
...

}
};

(c) Implementation of Client

Fig. 1. System description with a modeling and a programming language

in a modeling language and an implementation in a high-level programming language,
our verification flow proceeds in two stages.

In the first stage, we check the formal specification for behavioral properties which
indicate bad states. For instance, we verify that a system is free from deadlocks. For
this purpose, the formal specification and its properties are translated to instances
of the Satisfiability (SAT) problem. We abstract from the precise implementation of
the components using the formal specification as an abstract, behavioral model. The
behavioral model is used to detect flaws in the design in the absence of a precise
implementation.

Afterwards code representing the structure can automatically be generated from the
formal specification, i.e., only the precise implementation is left to the designer. Hence,
in the second stage just the correctness of these implementations has to be checked,
i.e., we refine the verification task leveraging the implementation and check whether the
individual components adhere to the formal specification. Our verification flow allows
for an early detection of design flaws and considers the implementation to search for
functional bugs only when necessary. To this end, the description of the verification task
is automatically generated from the modeling language and implementation language,
respectively.

In the following, we use the Unified Modeling Language (UML) [10] and the pro-
gramming language C++ to describe the structure and the behavior of components.
Our verification flow, however, applies to other modeling and programming languages,
too. Moreover, we restrict our perspective to finite-state systems, i.e., the number of
components in the system is fixed.

The remainder of the paper is structured as follows. In Section 2, we describe our
terminology. In Section 3, we introduce our verification flow and present an implemen-
tation using SAT-based Bounded Model Checking (BMC) [11]. Section 4 concludes the
paper.

2 Preliminaries

We introduce the terminology used in the paper by means of the example shown in
Fig. 1: Fig. 1(a) shows a class diagram which describes the structure of the classes
Host and Client. Additionally, the class diagram is annotated with formal constraints
leveraging UML’s Object Constraint Language (OCL) [12]. These constraints serve as
a formal specification. Fig. 1(b) shows an object diagram which describes the state of a



system consisting of one client and one host component. Lastly, Fig. 1(c) sketches the
actual implementation of the client component in C++.

In Fig. 1(a) the structure of all host and all client components is described by
classes. We call these classes Host and Client, respectively, and we say that the individ-
ual host and client components are instances (or objects) of the respective classes. A
class provides attributes and operations. The attributes serve as variables which store
values. The operations define behavior which can be invoked and modify the values
of the attributes. For instance, the class Client in Fig. 1(a) has two attributes active
and data and one operation connect. The connect operation can be invoked to establish
a connection between a client and a host component which modifies the value of the
variable active.

The valuation of the attributes of all instances of a system comprise the state of
the system. For instance, Fig. 1(b) shows a state σt, t ∈ IN, of a system, with the
assignment hdata = 42, active = false, and data = 0. When the connect operation is
invoked in state σt, the attribute active is set to true resulting in a new state σt+1. We
say that there is a transition from a state σt to another state σt+1 if and only if an
operation o exists which results in state σt+1 when invoked in state σt. We denote this
transition by σt →o σt+1. The object diagram in Fig. 1(b) shows a possible sequence
of transitions starting from state σt where the connect operation is invoked multiple
times.

We use OCL constraints to define formal properties for classes. The OCL constraints
are annotated into the class diagram using UML note elements, e.g., in Fig. 1(a). We
distinguish three types of OCL constraints: an invariant I, a precondition �, and a
postcondition �. We use I and O to denote the sets of all invariants and all operations,
respectively. An OCL constraint ϕ ∈ {I,�,�} holds in a state σ denoted by ϕ(σ) if
and only if the respective state σ satisfies the condition ϕ.

The invariants define global constraints which apply to all instances of a class. Each
invariant of a class has to hold for all states. For example, in Fig. 1(a), the value of
attribute hdata has to satisfy hdata < 256 for all instances of the class Host in all states.

Preconditions and postconditions define constraints which apply to a particular
operation of a class. We use �o and �o with subscript o to denote the pre- and post-
condition of operation o ∈ O. The invocation of operation o in a state σ is valid if and
only if �o(σ) holds.

3 Verification Flow

In this section, we first present the general idea underlying our verification flow in
Section 3.1. We then describe the verification tasks of the first and the second stage in
Section 3.2 and Section 3.3, respectively. Finally, we discuss implementation details in
Section 3.4.

3.1 General Idea

The proposed verification flow is shown in Fig. 2. The inputs of the verification flow
are a formal specification described by a UML class diagram annotated with OCL
constraints and an implementation of a system written in a high-level programming
language. In the figure, we have separated the two stages of the verification flow in two
boxes with dashed borders. The top box denotes the first stage which focuses on the
class diagram. The bottom box denotes the second stage which uses the implementation
to refine the verification task.

The interaction of the components are conducted in the first stage in the absence
of an implementation. If the verification on the specification level fails, design bugs
can be determined and fixed without considering implementation details. If no further



ImplementationUML model

A
op1() B

op2()
C

op3()

Verification [13]

Debug behavior
of the system

fail

Verification of system behavior

Implementation

op1();

op2();

op3();

Verification

Debug implementation
of an operation

fail

pass

ok

Verification of individual components

pass

Fig. 2. Verification flow

design bugs are found, the individual components are verified in the second stage. For
this purpose, also information from the specification level is required. This particularly
includes the respective pre- and postcondition from the operations as well as the invari-
ants specified in the class diagram. In the second stage, functional bugs are detected
which may be caused by an erroneous implementation of operations.

3.2 Verification of System Behavior

In the first stage, we check whether a verification condition τ can be refuted for a
fixed system configuration in the absence of an implementation We use the annotated
constraints in a UML class diagram as a formal specification. The negated verification
condition ¬τ denotes a formal property which characterizes bad behavior in the system,
e.g., a possible deadlock situation.

The system configuration provides a fully or partially defined initial state of the
system σ0, i.e., the number of components is fixed and their attributes are assigned
to precise values. We automatically generate a logic formula using a BMC approach.
The logic formula encodes a reachability problem on a state-transition graph, where
the states correspond to the states of the system and the transitions correspond to
the formal specification of the operations. The verification condition defines the states
which must not be reachable. A satisfying assignment of the logic formula serves as a
counterexample for the verification condition, e.g., a deadlock is a sequence of operation
invocations from which the invocation of no other operation is valid.

The generated logic formula for the verification task of the first stage is shown
in (1), where I is the set of invariants.

k∧
t=0

∧
I∈I

I(σt) ∧
k−1∧
t=0

(�ot(σt) ∧ �ot(σt+1)) ∧ ¬τ(σk) (1)



The satisfiability of the formula is decided utilizing a state-of-the-art solvers for
the SAT problem. From a satisfying assignment, a sequence of operation invocations
o0, . . . , ok−1 is derived such that all invariants, pre- and postconditions, and the negated
verification condition are satisfied. The length of the sequence of invoked operations
is bounded by k, i.e., if no counterexample is found within the bound, k has to be
increased, up to a reasonable value.

The verification condition τ can be adjusted for a particular pattern of bad behavior
to be checked. For instance, to check for a deadlock we use

τ(σ) =
∨
o∈O

�o(σ), (2)

i.e., at least one precondition of any operation has to hold in state σ.

3.3 Verification of Individual Components

In the second stage, we check whether the individual components are functionally cor-
rect using the implementation written in a high-level programming language to refine
the verification task. Also here, we generate a logic formula for each operation which is
satisfiable if and only if the implementation of an operation o does not conform to the
formal specification. The logic formula is built by encoding the implementation of an
operation as a logic formula implo conjoined with the precondition, the postcondition,
and the invariants.

We consider two states σt and σt+1 denoting the system before and after the op-
eration o has been invoked. Furthermore we assume that the invariants are correct,
i.e. our approach considers an underapproximation of the state space if the invariants
are too strict. The problem whether the implementation of the operation is functionally
correct, i.e., the implementation conforms to the specification, is formalized as (3):∧

I∈I

(I(σt)∧I(σt+1))∧�o(σt)∧implo(σt, σt+1)∧¬ �o (σt+1) (3)

The logic formula checks for the existence of two states σt and σt+1 such that σt

and σt+1 satisfy the system invariants I, σi satisfies the precondition �o, σt+1 violates
the postcondition �o, and implo describes the behavior of the operation’s implemen-
tation, i.e., the transition σt →o σt+1 with o. A satisfying assignment corresponds to
a counterexample which proves an inconsistency of the formal specification and the
implementation. The counterexample can be used to analyze and fix the inconsistency.
Otherwise, if the logic formula is unsatisfiable, no such counterexample exists, i.e., the
operation’s implementation conforms to the formal specification.

3.4 Prototypical Tool

We have built a prototypical tool which implements the described verification flow.
This tool generates a logic formula representing the considered verification tasks and
utilizes a Satisfiability Modulo Theories (SMT) solver to determine a solution for it.
The generation of the corresponding SMT solver input from the OCL constraints is
described in [14, 13]. To generate the logic formula from the C++ source code, we lever-
age the Low Level Virtual Machine (LLVM) [15] compiler infrastructure as described
in [16]. First, we translate C++ to an LLVM Intermediate Representation (LLVM-IR).
Then, we use a BMC approach [11] to translate the LLVM-IR into a logic formula.
We unroll loops in the LLVM-IR for a fixed number of iterations, introduce one logic
variable each time a program variable is written, and encode the individual instruc-
tions to semantically equivalent logic constraints. Finally, we conjoin the logic formula
encoding the OCL constraints and the logic formula encoding the implementation and
assert correlating variables in the resulting logic formula to be equal.



4 Conclusions

We proposed a two-staged verification flow which focuses on the ESL. The verification
flow is applicable to a system which is formally specified in a modeling language and im-
plemented in a high-level programming language. In the first stage, we use light-weight
model checking to detect design bugs early without considering the implementation
details. Thus, the first stage can be used even if the implementation is not available.
In the second stage, we refine the verification task leveraging the implementation to
detect functional bugs. In both stages, the description of the verification task for the
solving engine is automatically generated.

References

1. H. Foster, “Applied Assertion-Based Verification: An Industry Perspective,” Foundations
and Trends in Electronic Design Automation, vol. 3, no. 1, pp. 1–95, 2009.

2. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking. Cambridge, MA,
USA: MIT Press, 1999.

3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model Checking without
BDDs,” in Tools and Algorithms for Construction and Analysis of Systems. Springer,
Mar. 1999, pp. 193–207.

4. M. Y. Vardi, “Formal Techniques for SystemC Verification; Position Paper,” in Design
Automation Conference. IEEE, June 2007, pp. 188–192.

5. B. Bailey and G. Martin, ESL Models and their Application: Electronic System Level
Design and Verification in Practice. Dordrecht, Heidelberg, London, New York: Springer,
Dec. 2009.

6. F. Rogin and R. Drechsler, Debugging at the Electronic System Level. Dordrecht, Hei-
delberg, London, New York: Springer, July 2010.

7. T. A. Henzinger, S. Qadeer, and S. K. Rajamani, “Decomposing Refinement Proofs Using
Assume-Guarantee Reasoning,” in Int’l Conf. on Computer-Aided Design. IEEE, Nov.
2000, pp. 245–252.

8. R. P. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer,
“Specify, Compile, Run: Hardware from PSL,” in Int’l Workshop on Compiler Optimiza-
tion Meets Compiler Verification, Mar. 2007, pp. 6–20.

9. ——, “Automatic hardware synthesis from specifications: a case study,” in Design, Au-
tomation and Test in Europe. ACM, Apr. 2007, pp. 1188–1193.

10. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language reference man-
ual. Essex, UK: Addison-Wesley Longman, Jan. 1999.

11. E. M. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C Programs,” in
Tools and Algorithms for Construction and Analysis of Systems, ser. Lecture Notes in
Computer Science, vol. 2988. Springer, Mar. 2004, pp. 168–176.

12. J. Warmer and A. Kleppe, The Object Constraint Language: Precise modeling with UML.
Boston, MA, USA: Addison-Wesley Longman, Mar. 1999.

13. M. Soeken, R. Wille, and R. Drechsler, “Verifying Dynamic Aspects of UML Models,” in
Design, Automation and Test in Europe, Mar. 2011, pp. 1077–1082.

14. M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler, “Verifying UML/OCL
models using Boolean satisfiability,” in Design, Automation and Test in Europe, Mar.
2010, pp. 1341–1344.

15. C. Lattner and V. S. Adve, “LLVM: A compilation framework for lifelong program analysis
& transformation,” in Int’l Symp. on Code Generation and Optimization. IEEE Computer
Society, Mar. 2004, pp. 75–88.

16. H. Riener and G. Fey, “FAuST: A Framework for Formal Verification, Automated Debug-
ging, and Software Test Generation,” in SPIN Workshop, July 2012, pp. 234–240.


