
On the Exact Minimization of Path-Related
Objective Functions for BDDs

Rüdiger Ebendt Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

Email: {ebendt,drechsle}@informatik.uni-bremen.de

Abstract— Reduced ordered Binary Decision Diagrams (BDDs)
are a data structure for efficient representation and manipulation
of Boolean functions. They are frequently used in logic synthesis
and formal verification. In recent practical applications, BDDs
are optimized with respect to new objective functions.

In this paper we investigate the exact optimization of BDDs
with respect to path-related objective functions. First, the path-
related criteria are studied in terms of sensitivity to variable
ordering. Second, we aim at a deeper understanding of the
computational effort of exact methods targeting the new objective
functions. This is achieved by an approach based on Dynamic
Programming which generalizes the framework of Friedman and
Supowit. A prime reason for the computational complexity can
be identified using this framework.

For the first time, experimental results give the minimal
expected path length of BDDs for benchmark functions. They
have been obtained by an exact Branch&Bound method which
can be derived from the general framework. The exact solutions
are used to evaluate a heuristic approach. Apart from a few
exceptions, the results prove the high quality of the heuristic
solutions.

I. INTRODUCTION

Reduced ordered Binary Decision Diagrams (BDDs) were
introduced in [1] and are well-known from logic synthesis and
hardware verification.

Run time and space requirement of BDD-based algorithms
depend on the size of the BDD. However, this size is very sen-
sitive to a chosen variable ordering [1]. In general, determining
an optimal variable ordering is a difficult problem. It has been
shown that it is NP-complete to decide whether the number of
nodes of a given BDD can be improved by variable reordering
[2]. Therefore, heuristic methods have been proposed, based
on structural information or on dynamic reconstruction [3]. But
for applications like logic synthesis using multiplexor-based
BDD circuits also exact methods are needed: here a reduction
in the number of BDD nodes directly transfers to a smaller
chip area. Evaluation of heuristic solutions showed that they
are often far away from the best known solution. Moreover,
exact methods can provide the basis for such an evaluation.

Similar questions arise for alternative, path-related objec-
tive functions. The optimization with respect to the number of
paths in a BDD has been studied in [4]. It is motivated by a
number of applications in different areas, e.g. testing of BDD
circuits, minimization of DSOPs [5] which are used in the
calculation of spectra of Boolean functions or as starting point
for the minimization of Exclusive-Sum-Of-Products (ESOPs),
see e.g. [6]. Moreover, the number of paths in BDDs is related
to SAT-solving [7] and can support concepts to integrate SAT
and BDDs, see e.g. [8]. The optimization with respect to the
Expected Path Length (EPL) has been studied in [9]–[12] and
is motivated by DD-based functional simulation. Minimization

of EPL as well as of the Maximal Path Length (MPL) in BDDs
is also motivated by logic synthesis targeting the delay of the
resulting circuits. The minimization of MPL has been studied
in [11], [13].

To understand how the operation of all these applications
for the path-related objective functions depends on the variable
ordering, the sensitivity of the new objective functions must
be studied. Finally, to evaluate the quality of heuristic results,
again a comparison with exact solutions is of great help.

In this paper we first present studies on the sensitivity
of path-related objective functions. Second, to analyze the
computational hardness of the respective exact optimization
problems, a known approach to sequencing optimization prob-
lems [14], [15] based on Dynamic Programming (DP) is
generalized. By this, a much less restrictive framework is
obtained. Next, this framework is used as a formal tool to
analyze the given problems. First, the problems of exact BDD
node minimization as well as of EPL-minimization can be
solved with DP-based approaches for Branch&Bound (B&B)
derived by this framework. Second, we show that the problems
of minimizing the number of paths in BDDs and of MPL-
minimization can not be solved easily. A prime reason for
this can be identified, the violation of Bellmann’s principle
[16].

Experiments show that, apart from a few exceptions, the
results of a heuristic approach to minimize the EPL in BDDs
are of the same quality as exact solutions.

II. PRELIMINARIES

In this section, basic notations and definitions are given.

A. BDDs

Reduced ordered Binary Decision Diagrams (BDDs) are
directed acyclic graphs where a Shannon decomposition

f = xifxi
+ xifxi

(1 ≤ i ≤ n)

is carried out with each node. Nodes v are labeled with
variables in Xn = {x1, . . . , xn} (denoted by var(v)), edges
are 1- or 0-edges, leading to one of the two child nodes
denoted then(v) and else(v). The variables are bound to
values in B := {0, 1}. They are encountered at most once
and in the same order, the “variable ordering” denoted π, on
every path from the root to one of the two terminal nodes
1 and 0. Formally, variable orderings map level numbers to
variables. The set of all orderings is denoted Π. For a BDD
F , we also use π as a prefix operator (i.e. πF) to express that
F respects the ordering π. The term nodes(F, xi) denotes the
set of nodes in the xi-level of F and label(F, xi) abbreviates
|nodes(F, xi)|.

ff
21

1 1

2 2

3

4

8

10

2

01

x x

xx

x

x

x

(a) An α-minimal ordering for {x1, x2, x3}.

ff
21

2

1

9

10

1 1

3

2

4

01

x

xx

x x

x

x

(b) A suboptimal ordering for {x1, x2, x3}.

Fig. 1. Two BDDs for f1 = x1 · x2 + x1 · x3 and f2 = x1 · x2 + x2 · x4.

Note that reduced diagrams are considered, derived by
removing redundant nodes and merging isomorphic subgraphs.
In the following we assume shared BDDs with Complement
Edges (CEs) [17] without mentioning it further (and without
using CEs in the illustrations). Note that all results reported
here directly transfer to BDDs without CEs. For examples of
shared BDDs, see Fig. 1, for more details see [1].

B. Cuts

Cuts through the BDD at depth k split up the graph into an
upper and a lower part. Cuts can be characterized by a set of
nodes which are on a borderline of the cut, e.g. a set of lower
nodes which are adjacent to upper nodes or vice versa.

For a BDD F over Xn, let C(F, k) denote the set of nodes
in levels below the k-th level of F (including the terminal
nodes) referenced directly from the nodes in levels 1, . . . , k of
F . Note that also nodes that have no direct, i.e. only external
references, are contained in C(F, k). Let C(F, 0) denote the set
of externally referenced nodes, i.e. the set of nodes which
represent user functions. The set C(F, 0) is equal to the set of
output nodes in F .

f

3

2

2

1

2

1 0

x

x

x

(a) A µ-minimal order-
ing for {x1, x2, x3}.

f

3

2

3

2

1 1

1 0

x

x

x x

(b) A suboptimal order-
ing for {x1, x2, x3}.

Fig. 2. Two BDDs for f = x1 · x2 + x1 · x3.

The nodes on the borderline of an edge cut at depth k are
C(F, k). By the definition of C, every path starting at an output
node and ending at a terminal node must traverse a node in
C(F, k). This definition of a cut is especially useful when
considering path related objective functions. We will also need
the notation K(F, k) = C(F, k)\{1,0}. For examples of edge
cuts, see Figs. 1 and 2.

The nodes on the borderline of a horizontal cut at depth k
are the nodes situated at the k-th level nodes(πF, π(k)).

The function CUT is used as a general notation of
cuts at depth k. CUT returns a set of nodes situated at
the borderline, i.e. the choices for CUT(πF, k) are among
{nodes(πF, π(k)), C(F, k)}.

C. Path-Related Objective Functions

We start by the EPL: let F be a BDD and let v be a node in
F . The following definition of ε(v), i.e. the expected number
of variable tests needed to evaluate an input assignment along
a path from v to 1 follows [9]. The probability that a variable
x is assigned to a value b ∈ B is denoted by pr(x = b).

ε(v) =







0, v ∈ {1,0}
1 + pr

(

var(v) = 1
)

· ε(then(v)), else (1)
+ pr

(

var(v) = 0
)

· ε(else(v))

The EPL of F , denoted ε(F), is based on this definition: in
case of a single-rooted BDD it is simply the ε-value of the
root node, otherwise it is the average of the according values
for all roots. Moreover, let ωε(v) denote the probability that
an evaluation of input assignments which starts at an output
node traverses v.

Other path-related objective functions for BDDs are the
number of paths and the maximal path length: let α(v) denote
the number of paths from v to an output node, and let α(F)
denote the number of paths from an output node to a terminal
node, respectively. Let µ(v) denote the maximal length of
a path from v to an output node, and let µ(F) denote the
maximal length of a path from an output node to a terminal
node, respectively. The length of a path is the number of inner
nodes on the path.

For a node v, let ωα(v) denote the number of paths from an
output node to v and let ωµ(v) denote the maximal length of a

path from an output node to v, respectively. Further, µ via(v)
denotes the maximal length of a path via v.

D. Miscellaneous

Sequences s are denoted using brackets, e.g. s =
〈e1, . . . , ek〉. By s ◦ e we denote the concatenation of s with
e to 〈e1, . . . , ek, e〉.

We also make use of the following notations: let I ⊆ Xn.
Throughout the paper, Π(I) denotes the set of all orderings
whose first |I | positions constitute I . Let cost be a cost
function on BDDs, e.g. for BDD size, cost(F, Xn) = |F |.
If cost(F, Xn) = κ(F) for an objective function κ, we have
a cost function for κ. Then

min costI = min
π∈Π(I)

cost(πF, I)

denotes the minimal cost under all orderings in Π(I). In the
case of a cost function for κ, we call π a κ-minimal ordering
for I . We write ΠI for the set of all κ-minimal orderings for
I . Note that min costXn

= minπ∈Π κ(πF).

III. PREVIOUS WORK

To keep the paper self-contained, we briefly review previous
work related to our studies. Our analysis is founded on results
from two fields of research: the first field is sequencing
optimization by DP, the second is BDD optimization. This
paper presents research in the intersection of both fields.

A. Sequencing Optimization

Aiming at exact optimization with reasonable run times,
it is mandatory to keep the size of the search space within
sane limits: an exhaustive search essentially would compare
every single input datum to every other input datum to find the
solution. Hence, an exhaustive search requires n! operations
on the data. More mature methods manage to reduce the size
of the search space to one of only 2n states. Moreover, this
space can often be pruned by B&B. Following this general
outline, the framework for exact BDD minimization [18] was
based on a more general DP-approach to solve sequencing
optimization problems [14], [15]. It makes use of Bellmann’s
principle [16]:

An optimal sub-sequence e1, . . . , ek must be part of
the overall optimal sequence e1, . . . , ek, . . . , en via
ek.

(2)

In [14], [15], n-element sequencing problems were solved with
recurrent equations for partial solution costs. These are derived
by repeatedly applying (2) to m-element starting sequences
(1 ≤ m ≤ n) with a fixed last element (an example will be
given at the end of the section).

The tackled problems all respect the following sufficient
condition for the validity of (2):

The cost of the overall sequence is the sum of the
elements costs. For all partial sequences e1, . . . , ek,
the cost caused by ek must depend only on what
elements are preceding ek (i.e. it must be independent
of their order).

(3)

As a consequence of (2), it is not necessary to construct all
of the n! orders for the n elements of the sequence.

As an illustrating example, next it is described how this
idea has been used for exact node minimization in [18]. In
brief, the optimal variable ordering is computed iteratively by

computing for increasing k’s min costI for each k-element
subset I of Xn, until k = n: then, the BDD has a variable or-
dering yielding a BDD size of min costXn

. This is an optimal
variable ordering.

This is done by a gradual schema of continuous minimum
updates, using the following reccurrent equation [18]. Let F
be a BDD.

min costI′ = min
xi∈I′

[

min costI′\{xi} + label(πiF, xi)
]

(4)

where πi is a variable ordering contained in Π(I ′ \{xi}) such
that πi(|I ′|) = xi. The starting value is min cost∅ = 0.

This recurrence is based on the principle expressed in
(2). The optimal order for an |I ′|-element sub-sequence of
variables is determined by minimizing over all possible last
variables xi. By (2), for every such variable the optimal sub-
sequence of the first (|I ′| − 1) variables must be part of the
optimal sub-sequence for all |I ′| elements via xi (“via” here
means ending with xi).

In essence, (2) holds as a direct consequence of the follow-
ing: the term label(πiF, xi) only depends on which variables
occur before xi in the ordering. This has been shown in [18]
and is a sufficient condition following (3).

The state space considered here is 2Xn which is of a size
growing much slower with n than n!. By the use of B&B
with lower and upper bounds on BDD size, it can be further
reduced [19], [20]. But also recent approaches like the A∗-
based approach in [21] still depend on the use of a smart state
encoding.

B. BDD Optimization

Section I already gave an overview of work in this field.
Our approach in part is founded on the following previous
results.

The first result follows [11] and is used later for the proof of
Lemma 3 in Section VI-A (which describes an exact approach
to EPL minimization).

Theorem 1: Let F be a BDD representing a Boolean func-
tion f and let v be a node in F . Fixed probabilities are
assumed for the variable assignments to values in B. The term
ωε(v) is invariant with respect to variable ordering iff a) the
function represented by v and b) the number of the v-level are
preserved.
The approach in Section VI-A also relies on the next result
which can be found in [22].

Theorem 2: Let F be a BDD with the underlying DAG
(V, E). Then

ε(F) =
∑

v∈V \{1,0}

ωε(v). (5)

IV. SENSITIVITY

It is well-known that the size of BDDs is often very sensitive
to a chosen variable ordering. In [1] an example has been
given where the BDD size varies from linear to exponential
dependent on the ordering of the variables (see Fig. 3). An
analogous result on the sensitivity of the number of paths in
BDDs has been given in [4]. In this section, we give similar
results for the sensitivity of the EPL and MPL in BDDs: in
essence, there are n-ary BDD functions for which the EPL
under different orderings varies by a factor of Θ(n), i.e. the
variation can achieve its theoretical maximum. On the other
hand, the variation of the MPL for certain BDD functions

under different orderings still is up to a factor of Θ(
√

n).
This shows how important it is to determine a good ordering
for the new path-related objective functions.

Lemma 1: Let f : B
n2 → B be defined as

f =
n
∑

i=1

i−1
∏

k=1

xk ·
n−1
∏

k=0

xk·n+i.

Let F be a BDD representing f and let the variable orderings
π1, π2 be given as

π1 = x1, xn+1, . . . , x(n−1)·n+1, x2, xn+2, . . . , x(n−1)·n+2,

. . . , xn, x2·n . . . , xn2 and
π2 = x(n−1)·n+1, x(n−2)·n+1, . . . , x1, x(n−1)·n+2,

x(n−2)·n + 2, . . . , x2, . . . , xn2 , x(n−1)·n, . . . , xn.

It is

µ(π1F) = 2 · n − 1, and

µ(π2F) = n2.
Proof: First, the result regarding the BDD respecting

ordering π1 is proven. Let fi denote f |x1,...,xi−1
and let fi,j

denote f |x1,...,xi−1,xi,x1·n+i,...,x(j−1)·n+i
. As can be seen with

the resulting BDD in Fig. 4(a), the longest path from the root
to a terminal node is the one along the nodes representing f =
f1, f2, . . . , fn, fn,1, . . . , fn,n−1. This path contains 2 · n − 1
inner nodes, yielding the result.

Next, the BDD respecting ordering π2 is constructed. For
this purpose π1F is transformed into π2F by a series of
function-preserving swap operations [3], [23]. This process
is illustrated in Fig. 4(b) and results in π2F as depicted in
Fig. 4(c). Along the thickened edges, the longest path traverses
n2 edges, completing the proof.

Lemma 2: Let f : B
2·n → B; (x1, x2, . . . , x2n) 7→ x1 ·x2+

x3 · x4 + . . . + x2·n−1 · x2·n. Let pr(x = 0) = pr(x = 1) = 1
2

and let the variable orderings π1, π2 be given as

π1 = x1, . . . , x2·n, and
π2 = x1, x3, . . . , x2·n−1, x2, x4, . . . , x2n.

It is

ε(π1F) < 6, and
ε(π2F) > n.

Proof: First, the result regarding the BDD respecting
ordering π1 is proven. This BDD has been given in [1] and is
illustrated in Fig. 3(a). By (1) it is straightforward to develop
the following closed form for ε(F) :

ε(F) =
3

2
·

n−2
∑

k=0

(

3

4

)k

+
3

2
·
(

3

4

)n−1

=
3

2
·
(

1 −
(

3
4

)n−1

1 − 3
4

)

+
3

2
·
(

3

4

)n−1

(6)

= 6 − 9

2
·
(

3

4

)n−1

Eq. (6) uses the well-known sum formula for geometric series.
Since ε1 < 6 for all n, the first result is proven. Note that we
also have limn→∞

(

6 − 9
2 ·
(

3
4

)n−1
)

= 6 since 3
4 < 1.

Regarding the result for ordering π2, see Fig. 3(b): along
all paths the n variables in {x1, x3, . . . , x2·n−1} are tested.
Hence, ε(π2F) > n follows.

2n−1

5

3

2

f

1

4

2n

01

x

x

x

x

x

x

x

(a) EPL is
bounded by
the constant
6.

2n−1 2n−1 2n−12n−1

f

1

3 3

5 5 5 5

2 2

2n

01

x x xx

x x

x x x x

x

x

x

x

(b) EPL is greater than n.

Fig. 3. Two BDDs for f = x1 · x2 + x3 · x4 + . . . + x2n−1 · x2n.

V. GENERALIZED COST FUNCTION FOR PATH-RELATED
OBJECTIVE FUNCTIONS

Let a function acc map series with at most n-elements to
IR and let it respect the following condition:

acc(c1, . . . , ck) = acc(acc(c1, . . . , ck−1), ck) (1 ≤ k ≤ n)

Then, for I ⊆ Xn, a general form of a cost function that is
appropriate for a recursion schema is:

cost(πF, I) = acc(c1, . . . , c|I|) where

ck =
⊙

v∈CUT(πF,k)

C(v) (1 ≤ k ≤ |I |)

Since any cost function is uniquely determined by the
choices of acc,�, CUT, and C, it is convenient to give
cost functions by tuples (acc,�, CUT, C), e.g. cost size =
(
∑

,
∑

, nodes, 1). For all nodes v, the contribution is 1(v) =
1. By this, in the k-th summand of acc, only the nodes in the
k-th level are counted, respectively. Depending on the choice
of acc and �, more complex cost functions can be expressed.

VI. COMPUTATIONAL EFFORT OF EXACT OPTIMIZATION
TARGETING PATH-RELATED OBJECTIVE FUNCTIONS

All path-related BDD optimization problems are special se-
quencing problems. This raises the question whether DP-based
B&B optimization methods using the framework outlined in
Section III can be found. This is particularly promising since
a B&B method for node minimization already is known (see
Section III).

n+1

1

n(n−1)
+1

2

n+2

2n+2

n(n−1)
+2

n2

f
1

f
2

f
n

n,2
f

n,1
f

n,n−1
f

2n

n

3n

2n+1

f =

x

x

x

0

x

x

x

x

x

0
x

x

1 0

0

x

0

0

0

0

01

1 0

x

(a) Maximal path length 2 ·n−1.

i

n(n−1)
+i

n+i

n(n−2)
+i

n+i

n(n−2)
+i

n(n−1)
+i

ii

n+i

n(n−1)
+i

n(n−2)
+i

i i

f
i

1 0

0

x

x

x
0

x

1 0

0
x

x

x

x

0

x

1 0

x

x

x

x x

0

(b) Moving down xi by swaps.

n(n−1)
+1

n(n−2)
+1

n(n−3)
+1

1

n(n−1)
+2

n(n−2)
+2

n(n−3)
+2

22

n

n2

1

n(n−1)

n(n−2)

f

1

x

x

x

x

1

0
x

x

x

xx

1

0

0

0

0

0

x

x

x

x

x

(c) Maxmimal path length n2.

Fig. 4. An example for the sensitivity of the MPL in BDDs.

A. Exact Minimization of Expected Path Length

First, the objective function ε is considered. By Theorem 1
the following result can be deduced.

Lemma 3: Let F be a BDD representing f , I ⊆ Xn,
k = |I |, and xi ∈ I . Then there exists a constant c such that
∑

v∈nodes(πF,xi)
ωε(v) = c for each π ∈ Π(I) with π(k) = xi.

Consequently, (3) is respected and (2) holds. Let F be a BDD.
Analogously to (4) we can derive the recurrence

min costI′

= min
xi∈I′



min costI′\{xi} +
∑

v∈nodes(πiF,xi)

ωε(v)



 (7)

where πi is a variable ordering contained in Π(I ′ \{xi}) such
that πi(|I ′|) = xi. The starting value again is min cost∅ =
0. By (5), min costXn

= minπ∈Π ε(πF). Using (7), for
increasing k’s, a DP-approach can compute min cost I for
each k-element subset I of Xn, until k = n. This yields a
BDD of minimal ε-value.

B. Exact Minimization of Other Path Related Objective Func-
tions

Before a sound DP-method following the framework of
Section III for the exact optimization of α and µ can be

obtained, (2) must be proven valid. Unfortunately, both for
α and µ, there is only little hope to find a sufficient condition
following (3):

Let F be a BDD with an underlying DAG G = (V, E).
First, equations must be found that describe the contribution
of a single node v to α(F) or µ(F). We give the following
equations describing this interrelation: let 0 ≤ k ≤ n. For α,
it is

α(F) =
∑

v∈C(F,k)

α(v) · ωα(v), (8)

α(F) =
∑

v∈C(F,n)

ωα(v). (9)

For µ, it is

µ(F) = max
v∈V

µ via(v), or, more specific, (10)

µ(F) = max
v∈C(F,k)

µ via(v), (11)

and

µ(F) = max
v∈C(F,n)

ωµ(v). (12)

It is straightforward to see this since every path from an output
node to a terminal node must traverse a node in an edge cut

(see also Section II-B). The most general equations are (11)
and (8). Second, a result in analogy to (3) must exist, i.e. the
contribution of v must be invariant with respect to reordering
of the BDD part above the level the node v is situated at.
Unfortunately, all of the above node contributions depend on
the ordering of variables before (and some also on that after)
the position of v in the ordering.

Still, this does not give strong evidence that sound DP-
approaches would not exist: note that (3) is a sufficient but not
a necessary condition for the validity of Bellmann’s principle.

In the following section, the remaining possibilities to obtain
the desired DP-approaches are discussed. Obviously, it is
necessary to generalize the schema of recursion applied in
(4) and (7).

C. Generalized Dynamic Programming Framework

For a generalization, a necessary and sufficient condition
is formulated which in fact is equivalent to the principle
of Bellmann (2) itself. Hence a much less restrictive and
more general schema is yielded. A benefit from the following
definition in comparison to (2) is the increased operationality,
i.e. it is easier to detect whether a given sequencing problem
respects the condition or not.

Let s1, s2 be two sequences (orders) of the elements
in {e1, . . . , ek} and let s1 be an optimal sequence.
Let cost(s) denote the cost of a sequence s. Then it
must be

cost(s1) = cost(s2) ⇒ cost(s1 ◦ ek) = cost(s2 ◦ ek) (13)
cost(s1) < cost(s2) ⇒ cost(s1 ◦ ek) < cost(s2 ◦ ek) .(14)

In essence, conditions (13) and (14) prevent an optimal sub-
sequence from being replaced by a suboptimal one while at
the same time the optimality of the overall sequence would be
preserved. Equivalence to Bellmann’s principle can be shown
by a straightforward induction on k.

Next, the schema of recursion is given, together with
sufficient and necessary conditions following (13) and (14).
Thereby, we focus on the problem of BDD optimization,
giving the schema for BDDs right away. However, note that it
is straightforward to transfer the idea to (any) other sequencing
problem.

Theorem 3: Let κ be an objective function for BDDs and let
F be a BDD. Let xi ∈ I ′ ⊆ Xn. Let cost = (acc,�, CUT, C)
be a cost function for κ. Further, let π∗

i ∈ ΠI′\{xi} such that
π∗

i (k) = xi.
Assume that the following conditions are respected:

1) C(v) does not depend on the last n − |I ′| positions in
π∗

i .
2) Let I1, I2 ⊆ Xn, xj /∈ I1, I2 = I1 ∪ {xj}, π1, π2 ∈

Π(I1) where π1(|I2|) = π2(|I2|) = xj , and let π1 be
κ-minimal for |I1|.
For shorter notation,

coll1(π1F, |I2|) =
⊙

v∈CUT(π1F,|I2|)

C(v) and

coll2(π2F, |I2|) =
⊙

v∈CUT(π2F,|I2|)

C(v).

It must be

cost(π1F, I1) = cost(π2F, I1) ⇒
acc(cost(π1F, I1), coll1(π1F, |I2|))
= acc(cost(π2F, I1), coll2(π2F, |I2|)),

cost(π1F, I1) < cost(π2F, I1) ⇒
acc(cost(π1F, I1), coll1(π1F, |I2|))
< acc(cost(π2F, I1), coll2(π2F, |I2|)).

Let min cost∅ = cost(F, ∅). Then the following recurrent
equation for min cost

min costI′

= min
xi∈I′



acc(min costI′\{xi},
⊙

v∈CUT(π∗

i
F,|I′|)

C(v))



 (15)

holds and we have

min costXn
= min

π∈Π
κ(πF).

Further, a DP-method to compute min costXn
exists. It is

operating on the state space 2Xn .
Condition 1) states that the node contributions must not depend
on the order of variables which are situated at deeper levels
than |I ′|, the current depth of recursion. Otherwise the recur-
sion would not be well-defined since it would depend on future
values. Although it might look a bit over-formal, condition 2)
is just a straightforward “translation” of (13) and (14) into the
BDD context. As before, the correctness of the schema follows
from Bellmann’s principle. In the following, the schema is
applied to various problems of BDD minimization.

1) Application to Node Minimization: The cost function
for the number of nodes is cost = (

∑

,
∑

, nodes, 1), see
Section II. The term min cost∅ = 0 is the starting value of
the recursion. It is trivial to show that Conditions 1) and 2)
are respected. Hence min costXn

= minπ∈Π |πF |.
By that, essentially the same schema as in (4) is obtained

(with the minor specialization that πi is chosen as π∗
i).

This DP-approach can be turned into a B&B method by the
use of lower bounds. In [19], the lower bound

l b = min costI + max{|K(F, |I |)| , n − |I |} + 1 (16)

has been proposed. At the end of a recursion step of the
outlined DP-approach, all data for a subset I for which the
lower bound exceeds or equals the current upper bound (which
is updated with every intermediate BDD constructed), can
safely be excluded from further consideration. This is because
any ordering in Π(I) must yield BDD sizes larger than the
smallest BDD seen so far.

2) Application to Minimization of Expected Path Length:
The cost function for the expected path length is cost =
(
∑

,
∑

, nodes, ωε), the starting value is min cost∅ = 0. This
yields a schema essentially equivalent to the one in (7). Again
it is trivial to show that Conditions 1) and 2) are respected.

Note that the idea of (16) directly transfers to EPL-
minimization. Here, it is possible to use the lower bound

l b = min costI +
∑

v∈K(F,|I|)

ωε(v). (17)

In the remainder of the section, the schema is applied to
the objective functions α and µ. An additional notation is
used: for the remainder of the section, let last: IRn → IR;
last(x1, . . . , xn) = xn for all x1, . . . , xn ∈ IR.

3) Application to Minimizaton of Number of Paths: The
node contribution must be based on the cost function in (9),
as all other equations define node contributions which depend
on the lower part of the BDD (and thus this would violate
Condition 1)). Consequently, the only choice for the cost
function that respects Condition 1) is

cost = (last,
∑

, C, ωα)

First, clearly ωα(v) does not depend on the part of the ordering
after the position of var(v), thus Condition 1) is respected.
Second, for a BDD πF , it is

cost(πF, Xn)) = last(. . . ,
∑

v∈C(πF,n)

ωα(v))

= κ(πF).

because of (9). We can choose an arbitrary value as the starting
value of the recursion because the accumulation function is the
function last. This yields the recurrence:

min costI′ = min
xi∈I′





∑

v∈C(π∗

i
F,|I′|)

ωα(v)



 (18)

where π∗
i ∈ ΠI′\{xi} such that π∗

i (|I ′|) = xi is de-
rived. Note that the equation is recurrent although no terms
min costI′\{xi} do occur since π∗

i results from previous steps.
In particular notice that the first condition of the general
recursion schema already forces these choices. But what
about the second condition, expressing the key of Bellmann’s
principle? Does it hold?

Next this is disproven by giving a counter-example (see
Fig. 1). It shows that Condition 2) may be violated.

In Fig. 1(a), the ordering π1 = x1, x2, x3, x4 for a BDD
π1F is α-minimal for I = {x1, x2, x3}. This can be seen
by inspecting all 3! = 6 possible permutations of I (due to
space limitation we cannot depict all these orderings). We
have costα(π1F, I) = 8. In Fig. 1(b), the ordering π2 =
x2, x1, x3, x4 for a BDD π2F representing the same function
causes a cost of 9 for I . Now let I ′ = {x1, x2, x3, x4}. It is
costα(π1F, I ′) = costα(π2F, I ′) = 10, i.e. a suboptimal sub-
ordering does not lead to higher “future” costs. This violates
the second implication of Condition 2).

4) Application to Minimizaton of Maximal Path Length:
The consideration is analogous to Section VI-C.3, essentially
just

∑

is replaced by max and ωα is replaced by ωµ. Again
a counter-example shows that Condition 2) may be violated
(the other condition again holds), see Fig. 2. In Fig. 2(a) the
ordering π1 = x1, x2, x3 for a BDD π1F is µ-minimal for
I = {x1, x2}: since the function essentially depends on x1,
x2, at least one path going through two nodes, one labeled x1,
the other x2, must exist. This path is of minimal length 2. The
ordering x2, x1, x3 in Fig. 2(b) for a BDD π2F representing
the same function also causes a cost for I of 2. However, the
cost for I = {x1, x2, x3} is 3, whereas it is only 2 in the BDD
π1F . This violates the first implication of Condition 2).

VII. EXPERIMENTAL RESULTS

In this section, experimental results are presented. All
algorithms have been applied to circuits of the LGSynth93
benchmark set [24]. The tested methods target the two objec-
tive functions that allow a DP-based B&B-approach following
the framework presented in this paper. This includes the exact
B&B method for EPL minimization outlined in Section VI-A1

and Section VI-C.2 (called εXACT) as well as the approach
to EPL-sifting described in [11]. For a comparison, also the
best B&B method for exact node minimization called JANUS
[20] has been applied.

To put up a testing environment, all algorithms have been
integrated into the CUDD package [25]. By this it is guaran-
teed that they run in the same system environment. A system
with an Athlon processor running at 2.2 GHz, with a main
memory of 512 MByte and a run time limit of 36,000 CPU
seconds has been used for the experiments.

In a series of experiments, all methods have been applied to
the benchmark functions given in Table I. In the first column
the name of the function is given. Column in (out) gives
the number of inputs (outputs) of a function. The next two
columns time and space give the run time in CPU seconds and
the space requirement in MByte for the approach JANUS, re-
spectively. The next column opt. # shows the minimal numbers
of nodes for a BDD representing the respective function. In
the next two columns the same quantities run time and space
requirement are given for the method εXACT, respectively.
The next column opt. ε gives the optimum ε-value for a BDD
representing the respective benchmark function. The next two
columns show the run time and the space requirement for the
approach to EPL-sifting. The last column ε̂ gives the heuristic
ε-value as determined by EPL-sifting, respectively.

The results show that the run times of εXACT are gener-
ally larger than that of the exact node minimization method
JANUS. There are two reasons for that: the BDDs cre-
ated in intermediate steps during operation of εXACT can
be significantly larger than those in the size-driven method
JANUS. Moreover, εXACT needs to maintain an additional
node attribute (the ωε-value) with time-consuming hash table
accesses during variable swap operations.

For the first time, results of an exact approach to EPL-
minimization are given. This allows for the evaluation of the
previous heuristic approach called EPL-sifting which shows
that it performs much faster (up to five orders of magnitude).
Most of the time it achieves almost optimal results. However,
it can also be observed that the results obtained by εXACT
show an improvement in the ε-value of 9.6% on average. In
some cases (see comp, sct, cordic, t481, and vda) the gain is
significant and it can be more than 50% (see comp).

VIII. CONCLUSIONS

We investigated the exact optimization of BDDs with re-
spect to path-related objective functions. First, it is shown
that these functions can be very sensitive to a chosen variable
ordering. Second, deeper understanding of the computational
effort of exact optimization methods targeting the new ob-
jective functions has been obtained. For this purpose, the
framework of Friedman and Supowit has been reformulated

1Instead of (17) only min costI has been used as a lower bound since
otherwise the extra effort of computing the lower bound exceeded the gain in
run time for all but the smallest benchmark functions.

TABLE I
RESULTS

name in out JANUS εXACT EPL-sifting
time space opt. # time space opt. ε time space ε̂

cc 21 20 81s 36M 46 939s 50M 1.78 0.03s <1M 1.78
cm150a 21 1 277s 37M 33 785s 23M 3.50 0.03s <1M 3.50
cm163a 16 5 0.9s <1M 26 4.5s <1M 2.34 0.03s <1M 2.34
cmb 16 4 0.3s <1M 28 0.2s <1M 2.00 0.03s <1M 2.00
comp 32 3 3287s 130M 95 9419s 108M 4.00 0.13s <1M 9.28
cordic 23 2 1.9s <1M 42 50s 2M 4.73 0.03s <1M 6.28
cps 24 102 2359s 61M 971 26335s 96M 2.31 0.10s <1M 2.31
i1 25 16 20s 10M 36 232s 23M 1.72 0.03s <1M 1.72
lal 26 19 450s 79M 67 10023s 310M 2.06 0.03s <1M 2.08
mux 21 1 278s 36M 33 786s 22M 3.50 0.03s <1M 3.50
pcle 19 9 5.2s 3M 42 169s 10M 2.50 0.03s <1M 2.50
pm1 16 13 0.6s <1M 40 1.6s <1M 1.74 0.03s <1M 1.75
s208.1 18 9 5.3s 2M 41 177s 10M 2.69 0.03s <1M 2.69
s298 17 20 8.7s 3M 74 59s 5M 2.10 0.03s <1M 2.10
s344 24 26 847s 111M 104 24872s 347M 2.22 0.03s <1M 2.22
s349 24 26 851s 111M 104 24932s 347M 2.22 0.03s <1M 2.22
s382 24 27 416s 75M 119 14831s 347M 2.15 0.04s <1M 2.16
s400 24 27 413s 75M 119 14793s 347M 2.15 0.03s <1M 2.16
s444 24 27 462s 82M 119 14637s 347M 2.15 0.04s <1M 2.19
s526 24 27 833s 111M 113 16755s 347M 2.21 0.04s <1M 2.21
s820 23 24 1080s 59M 220 9374s 93M 2.54 0.04s <1M 2.54
s832 23 24 1127s 59M 220 9660s 93M 2.54 0.04s <1M 2.55
sct 19 15 6s 3M 48 191s 10M 2.25 0.03s <1M 2.36
t481 16 1 0.4s <1M 21 4.5s <1M 8.25 0.03s <1M 9.00
tcon 17 16 0.6s <1M 25 25s 5M 1.50 0.03s <1M 1.50
ttt2 24 21 521s 82M 107 16189s 347M 2.55 0.03s <1M 2.55
vda 17 39 30s 3M 478 512s 6M 4.39 0.05s <1M 4.43

using less restrictive conditions, obtaining a more general
framework for approaches based on Dynamic Programming
and founded on Bellmann’s principle. It was shown that neither
the number of paths nor the maximal path length in BDDs can
fulfill all requirements of the framework. This result limits the
hope for efficient methods targeting this optimization task.

On the other hand we successfully derived a new exact
algorithm for the expected path length in BDDs. It is a
DP-based B&B method that can be obtained by the general
framework.

Experimental results showed the feasibility of the exact
approach. For the first time it became possible to evaluate
heuristic approaches to EPL minimization.

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

[2] B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs
in NP-complete,” IEEE Trans. on Comp., vol. 45, no. 9, pp. 993–1002,
1996.

[3] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” in Int’l Conf. on CAD, 1993, pp. 42–47.

[4] G. Fey and R. Drechsler, “Minimizing the number of paths in BDDs -
theory and algorithm,” IEEE Trans. on CAD, 2005.

[5] ——, “Utilizing BDDs for disjoint SOP minimization,” in 45th IEEE
International Midwest Symp. on Circuits and Systems, 2002, pp. 306–
309.

[6] M. Thornton, R. Drechsler, and D. Miller, Spectral Techniques in VLSI
CAD. Kluwer Academic Publisher, 2001.

[7] S. Reda, R. Drechsler, and A. Orailoglu, “On the relation between
SAT and BDDs for equivalence checking,” in Int’l Symp. on Quality
of Electronic Design, 2002, pp. 394–399.

[8] G. Cabodi, S. Nocco, and S. Quer, “SAT-based bounded model checking
by means of BDD-based approximate traversals,” in Design, Automation
and Test in Europe, 2003, pp. 898–903.

[9] Y. Y. Liu, K. H. Wang, T. T. Hwang, and C. L. Liu, “Binary decision
diagram with minimum expected path length,” in Design, Automation
and Test in Europe, 2001, pp. 708–712.

[10] S. Nagayama, A. Mishchenko, T. Sasao, and J. Butler, “Minimization
of average path length in BDDs by variable reordering,” in Proc. of
International Workshop on Logic and Synthesis, 2003.

[11] R. Ebendt, W. Günther, and R. Drechsler, “Minimization of the expected
path length in BDDs based on local changes,” in Asian and South Pacific
Design Automation Conf., 2004, pp. 866–871.

[12] S. Nagayama and T. Sasao, “On the minimization of average path lengths
for heterogeneous MDDs,” in Int. Symp. on Multiple-Valued Logic, 2004,
pp. 216–222.

[13] ——, “On the minimization of longest path length for decision dia-
grams,” Proc. of International Workshop on Logic and Synthesis, pp.
28–35, 2004.

[14] R. Bellmann, “Dynamic programming treatment of the traveling sales-
man problem,” J. Assoc. Comput. Mach., no. 9, pp. 61–63, 1962.

[15] M. Held and R. Karp, “A dynamic programming approach to sequencing
problems,” J. Soc. Indust. Appl. Math., vol. 10, no. 1, pp. 196–210, 1962.

[16] R. Bellman, Dynamic Programming. Princeton, New Jersey: Princeton
University Press, 1957.

[17] K. Brace, R. Rudell, and R. Bryant, “Efficient implementation of a BDD
package,” in Design Automation Conf., 1990, pp. 40–45.

[18] S. Friedman and K. Supowit, “Finding the optimal variable ordering for
binary decision diagrams,” IEEE Trans. on Comp., vol. 39, no. 5, pp.
710–713, 1990.

[19] R. Drechsler, N. Drechsler, and W. Günther, “Fast exact minimization
of BDDs,” IEEE Trans. on CAD, vol. 19, no. 3, pp. 384–389, 2000.

[20] R. Ebendt, W. Günther, and R. Drechsler, “An improved branch and
bound algorithm for exact BDD minimization,” IEEE Trans. on CAD,
vol. 22, no. 12, pp. 1657–1663, 2003.

[21] ——, “Combining ordered-best first search with branch and bound for
exact BDD minimization,” IEEE Trans. on CAD, 2005.

[22] Y. Iguchi, T. Sasao, and M. Matsuura, “Evaluation of multiple-output
logic functions using decision diagrams,” in Asian South Pacific Design
Automation Conf., 2003, pp. 312–315.

[23] N. Ishiura, H. Sawada, and S. Yajima, “Minimization of binary decision
diagrams based on exchange of variables,” in Int’l Conf. on CAD, 1991,
pp. 472–475.

[24] Collaborative Benchmarking Laboratory, “1993 LGSynth Benchmarks,”
North Carolina State University, Department of Computer Science, 1993.

[25] F. Somenzi, “CU Decision Diagram Package Release 2.4.0,” University
of Colorado at Boulder, 2004.

