
1

SPIHT implemented in a XC4000 device
Jörg Ritter, Görschwin Fey, Paul Molitor

Abstract— In this paper we present an efficient FPGA implementation
of the ’Set Partitioning in Hierarchical Trees’ (SPIHT) algorithm of Said
and Pearlman [1] in combination with an arithmetic coder. The FPGA im-
plementation is applied within a partitioned approach for wavelet-based
lossy image compression [2]. The basic SPIHT algorithm uses dynamic data
structures that make a hardware realization difficult. We illustrate in detail
how these dynamic data structures can be implemented in the FPGA with-
out the use of external memory. We present a hardware realization which
can be run with a frequency of 40 MHz in a Xilinx XC4000 device. The de-
sign requires 23% less internal memory as the recently published algorithm
’SPIHT Image Compression without Lists’ of Wheeler and Pearlman [5].

I. INTRODUCTION

Discrete wavelet transformation (DWT) followed by embedded
zero-tree encoding is a very efficient technique for image com-
pression [4], [1]. DWT of an image results in a multi-scale rep-
resentation of the image. Normally, the coefficients of the low-
est frequency bands concentrate almost all of the wavelet trans-
formed images energy and the high frequency bands of differ-
ent scales and orientations show a strong self similarity. These
properties of DWT images can be exploited for efficient cod-
ing. A coding algorithm specially developed for DWT trans-
formed images is the set partitioning in hierarchical trees algo-
rithm (SPIHT) which has been presented by Said and Pearlman
in 1996 [1]. The basic SPIHT algorithm as it has been pre-
sented by Said and Pearlman makes intensive use of dynamic
data structures to exploit the self similarities just mentioned.
This makes a hardware implementation of the basic SPIHT algo-
rithm very difficult. Here we meet the challenge to present an ef-
ficient FPGA implementation with negligible memory require-
ments. Compared to the recently published version of SPIHT
without lists [5] we need 23 percent less internal memory, even
without the partitioned approach.

The paper is structured as follows. In Section II, we give
a brief description of the basic SPIHT algorithm and introduce
all notations and terms necessary to understand our approach,
which we discuss in Section II-B. The modified SPIHT algo-
rithm is compared to the basic one in Section II-C. The hard-
ware implementation in a Xilinx XC4000 device is presented in
Section III. Our choice of the probability models and our imple-
mentation of an arithmetic coder is explained in Section III-B.

II. THE SPIHT ALGORITHM AND OUR MODIFICATIONS

The SPIHT algorithm can be applied to grey-scale and colored
images. It is applicable for lossless and lossy compression. The
visual quality and the compression results are excellent. Further-
more, the algorithm produces an embedded stream, i.e., the most
important information to restore an image comes first. This is an
important property for compression algorithms to be effective
in transmissions of compressed images over networks because
it makes previews of different qualities available. The SPIHT

Institut of Computer Science, Martin-Luther-University Halle-Wittenberg,
Germany, email: ritter@informatik.uni-halle.de

algorithm is applied to wavelet-transformed images. The trans-
formation reduces the correlation between neighboring pixels.
The energy of the original image is concentrated in the lowest
frequency band of the transformed image. Additionally self sim-
ilarities between different scales which result from the recursive
application of the wavelet transformation steps to the low fre-
quency band can be observed. Consequently, based upon these
facts good compression performance can be achieved if those
coefficients are transmitted first which represent most of the im-
age energy.

A. Basic idea of SPIHT

In order to exploit the addressed self similarities during the cod-
ing process, oriented trees of outdegree four are taken for the
representation of a wavelet transformed image. Each node of
the trees represents a coefficient of the transformed image. The
levels of the trees consist of coefficients at the same scale. The
trees are rooted at the highest scale of the representation. The
SPIHT-algorithm assumes that each coefficient ����� is a good pre-
dictor of the coefficients which are represented by the subtree
rooted by � ��� . The overall procedure is controlled by an at-
tribute, which gives information on the significance of the coef-
ficients. More formally, a coefficient of the wavelet transformed
image is insignificant with respect to a threshold � if its magni-
tude is smaller than �	� . Otherwise it is called significant with
respect to the threshold � . A set
 of coefficients or a whole
tree
 is called insignificant with respect to � if all its elements
or nodes, respectively, are insignificant with respect to � . Thus,
function � � defined by � �

�
�
�������� ������ ��� � �"!$#&% � ��� � %(' �	� char-

acterizes the significance of
 .
In the basic SPIHT algorithm, the coefficients of a wavelet-

transformed image are classified in three sets, namely the list
LIP of insignificant pixels which contains the coordinates of
those coefficients which are insignificant with respect to the cur-
rent threshold � , the list LSP of significant pixels which contains
the coordinates of those coefficients which are significant with
respect to � , and the list LIS of insignificant sets which contains
the coordinates of the roots of insignificant subtrees. During the
compression procedure, the sets of coefficients in LIS are refined
and if coefficients become significant they are moved from LIP
to LSP.

We consider an image with) rows and) columns ()*��	+	,.-&/10) and assume a 2 -bit grey-scale resolution. For all 3
with 4657398;:=<?>A@B) , let C (�DC � 3E
) be the set of the co-
ordinates of the tree roots after 3 wavelet transformation steps,
i.e., CGF��IH �KJ ,MLN
 % 4�8 J ,ML75 O@QPSRATNU$V Thus, after :=<?> @)
transformation steps, CW�XH � 4Y, 4$
Z, � 4(,[�\
], � �?,Q4$
Z, � �$,[�\
 U always
holds. However, note that the coefficient at coordinate

� 4(, 4A
 has
no children, as this coefficient represents the lowest frequency
band. Let ^ ��J ,MLN
_F��`H � � J ,Q�[LN
Z, � � J ,Q�[L_ab�c
], � � J ad�?,e�[LN
], � � J a�?,e�[Lfag�\
 U be the set of the coordinates of the children of node

2

�KJ ,"LA
 (in the case that node
�KJ ,MLN
 has children), � �KJ ,MLN
 be the set

of the descendants of node
��J ,"LN
 , and � ��J ,MLN
 F���� ��J ,"LN
��?^ �KJ ,"LA

be the set of the descendants excluding the four children. Each
element of LIS will have as attribute either � or � . If the type
of an entry

�KJ ,MLN
_/ LIS is � , then the entry
�KJ ,MLN
 represents set� ��J ,"LN
 . If the type is � , then it represents � ��J ,MLN
 .

The decoder duplicates the execution path of the encoder. To
ensure this behavior, the coder sends the result of a binary de-
cision to the decoder before a branch is taken in the algorithm.
Thus, all decisions of the decoder are based on the received bi-
naries. The pseudo-code of the basic SPIHT-algorithm is shown
in Figure 1. It can be divided into three parts. The first part
initializes the lists and computes the logarithm of the maxi-
mal coefficient value �	��

� . It is easy to see that the bit planes� ��

� ab�?, V[V�V , 2�� � need not be processed. The sorting phase
and the refinement phase are executed � ��
�� +1 times starting
with bit plane ����
�� down to bit plane 0. In pass � , the sort-
ing phase first outputs the � ��� bits of the coefficients of LIP. If
a coefficient �[��� � becomes significant, the sign has to be output
and �Z��� � is moved to LSP. After this step, the elements of LIS are
processed in an analogous manner. The refinement phase out-
puts the bits of the elements of list LSP, respectively. For more
details we refer to [1].

B. Modified SPIHT

In this section we present the modifications necessary to ob-
tain an efficient hardware implementation of the SPIHT com-
pressor. At first, we have to notice that the codec cannot be
applied to the whole image at once. A partitioned approach
in which each partition is wavelet transformed and compressed,
separately, has to be used. Here we use a method based on the
partitioned approach to wavelet transform an image which has
been recently presented in [2]. Furthermore we exchange the
sorting phase with the refinement phase to save memory for sta-
tus information. However, the greatest challenge is the hardware
implementation of the three lists LIP, LSP, and LIS.

In contrast to the usually performed wavelet-based compres-
sion we use a partitioned approach to wavelet transform im-
ages [2] before the algorithm of Said and Pearlman is applied.
This results in a design in which only small ����� ��� bit sub-
images are stored in FPGA-memory, massive parallelism is in-
troduced, and the dynamic range of the data structures is reduced
in a significant manner. The transformation of a ����� sub-image
with the used CDF(2,2) wavelet [4] which is a integer-to-integer
wavelet induces growing bit widths at higher scales. The bit
width encountered during the transformation of a ����� ��� sub-
image with � bit grey-scale resolution is at most �?� bit.

In the basic SPIHT-algorithm status information has to be
stored for the elements of LSP specifying whether the corre-
sponding coefficient has been added to LSP in the current itera-
tion of the sorting phase (see Line 20 in Figure 1). In the worst
case all coefficients become significant in the same iteration.
Consequently, we have to provide a memory capacity of � @ bits
to store this information. However, if we exchange the sorting
and the refinement phase, we do not need to consider this infor-
mation anymore. The compressed data stream is still decodable
and it is not increased in size. Of course, we have to consider
that there is a reordering of the transmitted bits during an itera-

(0) Initialization
compute and output �! #"%$ &�'()+*�,-/.1032 46587 9;:<082 4;=�>@?BA C 082 4 A D ; setEBF	GIH KJ and

EMLNGIH !O ;
add those elements

� ��� � �B! O with P � �K� � �RQ �J to
EML�F

as type- S entries

(1) Sorting phase
(2) foreach

� �K��� � ! EBLTG
(3) output

F<U � ��� � �
;

(4) if
F<U � ���K� � IV then

move
� ��� � �

to
EBF	G

and
output the sign of C 032 4

(5) foreach
� �K��� � ! EBLNF

(6) if
� �K��� �

is of type S then
(7) output

FWU � P � �K� � ���
;

(8) if
FWU � P � �K� � ��� IV then

(9) foreach
�YX �[Zc� !]\ � �K� � �

(10) output
F U �^X �[Zc�

;
(11) if

FWU �^X �_Zc� IV then
add

�^X �`Z��
to

EaF�G
and

output the sign of C`b 2 c
(12) else

append
�^X �_Zc�

to
EMLNG

;
(13) if d � �K��� �eQ KJ then
(14) move

� ���K� �
to the end of

EML�F
as an entry

of type f and go to step (5)
(15) else remove

� ���K� �
from

EBLNF
(16) if

� ���K� �
is of type f then

(17) output
FWU � d � ��� � �K� ;

(18) if
FWU � d � ���K� �K� IV then

(19) append each
�^X �_Zc� !g\ � �K� � �

to
EML�F

as an entry
of type S and remove

� ��� � �
from

EML�F
;

(20)Refinement phase
foreach

� �K��� ��! EBF	G
except those included in the last

sorting pass, output the � -th bit of A C 082 4 A ;
(21) if k=0 then end; else decrement � ; goto step (1)

Fig. 1. The basic SPIHT-algorithm

tion. We will take a closer look at this problem in Section II-C.
To obtain an efficient realization of the lists LIP, LSP and LIS,

we first have to specify the operations that take place on these
lists and deduce worst case space requirements in a software
implementation.

For LIS, we have to provide the operations ”initialize as empty
list” (Line 0), ”append an element” (Line 0 and 19), ”sequen-
tially iterate the elements” (Line 5), ”delete the element under
consideration” (Line 15 and 19), and ”move the element un-
der consideration to the end of the list and change its type”
(Line 14). Note that the initialization phase cannot be ignored
because there are several partitions to compress. Dependent on
the realization chosen the costs of the initialization phase can be
linear in the number of elements. The estimation of the space
requirement for LIS is quite easy because LIS is an independent
set. This can be easily proved by complete induction [3]. Note
that if the list is longest, then all its elements are of type � .
Consequently, the number of elements of LIS is smaller than or
equal to the number of nodes in the next to the last tree level.
Thus, LIS contains at most hji@	k @ �lhjim k @ �onV/p � @ elements. This
results in an overall space requirement of nV/p � @rq � �S: <$>$@ � i@
 a �c

bits.

We consider both the list LIP and the list LSP together be-
cause they can be implemented by one data structure. Again,
we start with the operations applied to both lists. These are ”ini-
tialize as empty list” (Line 0), ”append an element” (Line 0,
4, 11, and 12), ”sequentially iterate the elements” (Line 20),
and ”delete the element under consideration from LIP” (Line 4).
The maximum size of both lists is at most � @ . Furthermore, it
holds, that LIP s LSP �ut . Thus, % LIP % a % LSP % 8v� @ also

3

holds. � @ is a tight upper bound for % LIP % a % LSP % . An exam-
ple, where the worst case is attained, is given in [3]. Thus, the
overall space requirement for both lists is � @�q �S: <$>$@@� bits. To
reduce the memory requirement for the list data structures in the
worst case, we implement the lists as bitmaps. Note that by this
approach we loose the ordering information within the lists LIP,
LSP, and LIS. The effect of this reordering with respect to the
decoded image will be discussed in detail in Section II-C.

(0) Initialization
compute and output � H "%$ &�'()+*�,-;.1082 46537 9/:<032 4`=�>@? A C 032 4 A D ;
foreach

��� ���K� � O�� V setEBF	G � ��� � � �
EMLNG � ��� � � � V � if

� �K��� � ! O� �
else

foreach
��� ���K� � > (� V setEML�F � �K� � � � S �

if
� �K� � � ! O and

\ � ��� � � Q KJ� �
else

(1)Refinement and sorting phase for list
EMLNG

(2) for
� ���	�	� O
� V

(3) for
� ���	�	� O
� V

(4) if
EBF	G � ���K� � IV then

output the � -th bit of A C 032 4 A ;
(5) if

EMLNG � ���K� � IV then
(6) output

F U � ��� � �
;

(7) if
FWU � ��� � � IV thenEaF�G � �K�K� � IV ; EBLTG � �K�K� � �

;
output the sign of C 032 4 ;

(8) Sorting phase for list
EML�F

(9) for
� ���	�	� > (� V

(10) for
� ���	�	� > (� V

(11) if
EML�F � �K�K� � KS then

(12) output
F<U � P � ��� � �K�

;
(13) if

F<U � P � ��� � �K� IV then
(14) foreach

�^X �_Z�� !]\ � ��� � �
(15) output

FWU �^X �_Zc�
;

(16) if
FWU �YX �[Zc� IV thenEBF	G �^X �[Zc� IV ;

output the sign of C b 2 c ;
(17) else

EMLNG �^X �`Z�� IV ;
(18) if d � �K� � � Q KJ then
(19)

EML�F � ��� � � Kf ;
(20) else

EML�F � ��� � � �
;

(21) if
EML�F � �K�K� � Kf then

(22) output
F<U � d � �K� � ��� ;

(23) if
F U � d � �K�K� �K� �V then

(24) (foreach
�^X �_Z�� !]\ � ��� � �K� EML�F �YX �[Zc� KS ;

(25)
EBLNF � ��� � � �

;
(26) if k=0 end; else decrement � ; goto step (1);

Fig. 2. The modified SPIHT-algorithm

We provide two synchronous single-port RAM modules for
the three lists. The lists LIP and LSP are realized in one RAM
module, the list LIS in the other one. The RAM module which
realizes LIP and LSP has a configuration of � � � entries of bit
length � as for each pixel � �K� � of the � � � image either

�KJ ,MLN
 /
LIP or

��J ,"LN
�/ LSP or
��J ,"LN

�/ LIP � LSP holds. The second

RAM module implements LIS and is realized by a bitmap with a
configuration of i@ � i@ entries of bit length � and � (for a subset
of im � im). Of course, with logarithmic coding we could further
reduce the RAM size but at the cost of a much more complex
control mechanism. To sum it up, the list LSP � LIP and the list
LIS have size 512 bit and 80 bit, respectively, for partition size
��� , i.e., ��� ��� .

C. Comparison of the algorithms

The modifications made ensure that the compressed stream can
still be decoded and that exactly the same number of bits are pro-

duced. However, the reordering of the embedded stream which
is due to the realization of the lists LIP, LSP, and LIS by bitmaps
can have an effect on the visual quality of the reconstructed im-
ages.

Let � and �� denote the original and the reconstructed image,
respectively. The basic SPIHT algorithm and our modified one
can be compared by — I � � � , �� ,��[
 , the difference between the
SPIHT algorithm and the modified algorithm after coding � bits.
There are two main cases to consider. Figure II-C illustrates the

E

MSE

k-th bit plane(k+1)-th bit plane number of coded bits b

lb(k) = 0

ub(k)

DSPIHT

Dmodified

Fig. 3. Idealized illustration, ��� , ��� are the lower/upper bound
following considerations. First, we have to compare the orig-
inal and the reconstructed image after a complete bit plane is
coded. Because the same information is produced by both algo-
rithms (even though in different order), � � � ,��� ,��Z
 � 4 holds.
However, the more interesting case is the difference of the two
algorithms during the coding of a bit plane. The maximum dif-
ference during the coding of the � ��� bit plane can be estimated
with lower and upper bounds ��� � � � and � � � � � . Obviously, the
lower bound ��� � � � is zero. This is a tight lower bound. Fey [3]
proves � � � � � �"! � . Note that this is a rough estimate because
it is independent of the image under consideration. Even if this
upper bound is rather high, it is very difficult to distinguish the
reconstructed images with the naked eye, in general.

III. FPGA-IMPLEMENTATION

In this section we present the most important details of the
FPGA implementation. The design was written in VHDL. We
have used a PCI card (microEnable, Silicon Software GmbH
[6]) equipped with a Xilinx FPGA XC4085XLA device as pro-
totyping platform. We shortly explain the overall functionality
before we present some of the modules in detail. Each partition
of the wavelet-transformed image is transfered once to an inter-
nal memory module. At first, the initialization of the bitmaps
representing LIP, LSP and LIS and the computation of the sig-
nificances is done in parallel. The significances of sets/trees are
computed for all thresholds � 8 �	��

� at once and are stored in
modules named ’SL’ and ’SD’, respectively (see Section III-A).
With this information the compression can be started with bit
plane � ��
�� . The different finite state machines control the over-
all procedure. The compressed data is transfered to the local
SRAM on the PCI card or directly to the PC memory. Addi-
tionally, an arithmetic coder can be configured into the design to
further reduce the compression ratio (see Section III-B).

A. Efficient computation of significances

In the following we will concentrate on the module which com-
putes the significances. The significance of an individual coef-

4

ficient is trivial to compute. Just select the � ��� bit of % �[�K� � % in
order to obtain � � �KJ ,MLN
 . However, it is much more difficult to
efficiently compute the significance of sets for all thresholds in
parallel. In the following we use the notation ��� �
�
 which gives
the maximum threshold for which some coefficient in set
 be-
comes significant. Once ��� �
�
 is computed for all sets � and� , we have preprocessed the significances of sets for all thresh-
olds. In order to do this, we use the two RAM modules � � and
��� . � and � are organized as O m � O m ��� :=<?>A@e� ��
�� ad�	� and
O @ � O @ �
�K: <$> @ � ��
�� ad��� memory, respectively. The compu-
tation is done bottom up in the hierarchy defined by the spatial
oriented trees. The entries of both RAMs are initialized with
zero. Now, let

�
� ,��
 be a coordinate with 465 � ,��b5`) just
handled by the bottom up process and let

�KJ ,MLN
 � ��� X@�� , � Z @��

be the parent of

�
� ,��
 if it exists. Then ��� and � � have to be
updated by the following process:

1) if ����� ��������� � then "!$#&%
�('*),+ -/.10�243� 5!6#7%8�9'�)��8 ;:<#&���8�=)8>
2) ;:<#7%8�&'�),+ -?.10�2@3� ;:<#7%8�9'�)��8 BA�#&�����=)8>
3) if ��� � � ����� � � then ;:<#7%8�&'�),+ -?.10�2@3� ":<#&%8�9'�)��8 ;:<#&���8�=)
>

The bottom up process can be done in linear time using a simple
address counter.

B. Arithmetic Coding

Our design can optionally be configured with an arithmetic
coder that processes the data which is output by the SPIHT al-
gorithm. We decided to utilize the coder of Feygin, Gulak and
Chow [7]. It is very suitable for FPGA design because it does
not contain multiplication operations and is not based on float-
ing point arithmetic. The implementation is straightforward.

In this context, the most interesting part was the development
of probability models adapted to the SPIHT compressor. To
develop accurate probability models, we have investigated the
cumulative percentage of the different output positions in the
algorithm in detail. Note that in our modified algorithm (see
Figure 2) there are exactly eight lines (Line 0, 4, 6, 7, 12, 15,
16, 22) which output some data. For each of these output posi-
tions we provide one probability model and call them C V , V[V�V CED
(e.g. model C m correspond to Line 7). In order to obtain mean-
ingful models, we have counted the number of ones and zeros
with respect to their output position while compressing our set
of benchmarks images. Then we have expressed these cumula-
tive percentages using conditional probabilities, with a history
of maximum size four.

The VHDL implementation of these probability models have
been specified by finite state machines, too. The compressed
stream of the SPIHT algorithm is first stored in a circular buffer
of length 4. A signal �GF � � , which determines the model, is
provided from outside. It selects the corresponding probabil-
ity model. A module named ’carry chain’ implements the so
called bit stuffing for the potential carry overs in the arithmetic
coder [8]. Furthermore, there exist signals to insert escape se-
quences and to stop the compression at the specified bit rate.

C. Experimental results

We have implemented two versions of our design, one without
and one with the arithmetic coder. We have achieved clock rates

of 40MHz for both implementations. Note that our VHDL de-
signs were synthesized without manual optimizations. All ba-
sic memory and arithmetic modules were generated with Xilinx
tools. Our implementations take 743 and 1425 logic blocks of
the Xilinx device, respectively.

In order to compare the software implementation with our
presented FPGA design we measured the execution time of both.
To obtain a faithful measurement of the hardware execution time
we have included a counter (resolution 25ns) into the design. We
could improve the compression time of H �\� �IH �\� � � bit grey-
scale images by a factor of 10 in comparison to an AMD 1GHz
Athlon processor.

The effect of the arithmetic coder upon the compression ratio
is shown in Table I. The coder compresses the SPIHT output
by further 2 to 4 percent. It is remarkable, that the compression
ratio is always improved, in the lossless as well as in the lossy
case.

TABLE I

INFLUENCE OF THE ARITHMETIC CODER

image baboon barbara goldhill lena peppers
0.5 bpp 95.9 98.6 97.4 97.3 95.7
lossless 97.8 97.3 96.8 96.0 96.1

IV. CONCLUSIONS

We have presented an efficient FPGA design with negligible
memory requirements. In comparison to [5] we could reduce the
internal memory from

� ! aKJV/p 2ML
) @
to

� n�NV/p aOJV/p 2ML
) @
bit. It

is remarkable, that in conjunction with the partitioned approach
we need

� n�NV/p a JV/p q �$�c
 q � @ �74 V ��� ! kbytes only compared to� !_a JV/p q �$�c
 q) @ �g�=P�� kbyte of the algorithm ’SPIHT Image
compression without Lists’ on the whole image (bit-width 2QL �
�?� bit,) �RH �\� , ��� ���). Thus the design should fit many times
in a newer FPGA device (especially if block RAM is available)
to achieve high data throughput rates.

REFERENCES

[1] A. Said and W. A. Pearlman. A new fast and efficient image codec based
on set partitioning in hierarchical trees. In Trans. Signal Processing, volume
5, no.9, pages 1303–1310. IEEE, 1996.

[2] J. Ritter and P. Molitor. A partitioned wavelet-based approach for image
compression using FPGA’s. In Proceedings of the 2000 Custom Integrated
Circuits Conference, pages 547–550. IEEE, 2000.

[3] G. Fey. Set partitioning in hierarchical trees: A FPGA - implementation.
Master thesis (in German), Martin-Luther-University Halle, Germany, 2001.

[4] I. Daubechies. Ten lectures of wavelets. SIAM, Philadelphia PA, 1992.
[5] F. W. Wheeler, W. A. Pearlman. SPIHT Image Compression without Lists

In Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2000),
IEEE, 2000

[6] Silicon Software GmbH, microEnable, PCI Prototyping Card, User Guide,
1999

[7] G. Feygin, P. G. Gulak, P. Chow. Minimizing Error and VLSI Complexity in
the Multiplication Free Approximation of Arithmetic Coding In Transactions
on Signal Processing, IEEE, 1993

[8] J. Rissanen, G. G. Langdon. Universal Modeling and Coding In Transac-
tions on Information Theory, Vol. II 27, IEEE, 1981

